.ﬁr

5

STARTED,




Getting Started

with Zinc Programming

Zinc® Application Framework™
Version 4.0

Zinc Software Incorporated
Pleasant Grove, Utah



Copyright © 1990-1994 Zinc Software Incorporated

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".



Preface xxv

What is Zinc? xxvii
What you need to write Zinc programs xxvii
System requirements Xxvii

The manuals xxviii

Programmer’s Reference xxviii
Getting Started xxix
Zinc Designer xxix

Technical support xxix

Conventions used in this book xxxi

Getting Started with Zinc Programming



section one

Zinc concepts

1  Installing Zine 3

how to install Zinc in your operating environment

Safety first. .. 3

DOS, Windows, and OS/2 4
Confirm license agreement 4
Run the installer program 4
Select a drive and subdirectory 4

Select the package option 4
Install Zinc 5

Macintosh 5
Confirm license agreement 5
Run the installer program 5
Choose an installation 5
Specify an installation folder 6
Install Zinc 6
Make aliases 6

OSF/Motif and Unix Curses 6

Confirm license agreement 6
Extract Zinc 7
Run the installation script 7

NEXTSTEP 8

Confirm license agreement 8
Extract Zinc 8
Load the package 8

Finished! 9

Vi

Getting Started with Zinc Programming



2 Introduction to Zinc 11

what Zinc is
what Zinc’s components are
how Zinc benefits us

An object-oriented solution 12

Transition to C++ 13

The benefits of Zinc 14

Zinc: an application framework 15
The Event Manager 18

UI_DEVICE and abstract classes 19
Event mapping 20
Benefits of logical event mapping 20

The Window Manager 21

“Top down” and “bottom up” 21
Window position and priority 22
Native objects, not emulated 22

The display 23
The help and error systems 24
Storage and retrieval 25

Globalization 26

The obstacles to reaching the global market 26
ISO 8859-1 and Unicode 26

Language and locale 26

Delta storage 27

Geometry management 28
Printer support 28

Conclusion 28

Getting Started with Zinc Programming vii



3 Window Objects 29

the different types of window objects
how window objects work

Zinc’s window objects 30

Basic window objects 30
Buttons 31

Combo boxes 32

Dates 33

Geometry management 35
Icons 35

Lists 35

MDI windows 36

Menus 36

Notebook 37

Numbers 37

Scroll bar 38

Slider 39

Spin control 39

Status bar 39

String fields 40

Table 41

Text 41

Time 42

Tool bars 43

Other programmer-defined window objects 43
Editing window objects 44

Conclusion 44

viii

Getting Started with Zinc Programming



4 Writing Multiplatform Programs 45

multiplatform application design
special considerations of each environment

About multiplatform programming in Zinc 46

Single source 46

Engines and keys 46

Look and feel 46

Libraries 46

Compiler options 47

Main( ) 47

Event handling 47

Executable naming conventions 48
Shipping applications 49

DOS 49

Look and feel 49
DOS libraries 49
Compiler options 49
main( ) 50

Windows 50
Look and feel 50
Windows libraries 50
Compiler options 50
WinMain( ) 51

0S/2 52
Look and feel 52
OS/2 library 52
main( ) 52

Macintosh 52

Look and feel 52
Macintosh libraries 52
main( ) 53

Getting Started with Zinc Programming ix



OSF/Motif 53
Look and feel 53
OSF/Motif libraries 53
main( ) 54
Shipping applications 54
Curses 54
Look and feel 54
Curses libraries 54
main( ) 55
NEXTSTEP 55

Look and feel 55
NEXTSTERP library 55
main( ) 55

Event handling 55

Conclusion 56

S  Event Flow and Mapping 57

top-down and bottom-up event handling
event map tables
palette mapping

Top down 58
Bottom up 60
Event processing 62

Event map table 64

Event mapping algorithm 65
Palette mapping 65

Conclusion 67

Getting Started with Zinc Programming



6 Library Classes 69

base classes
region lists
display classes

Base classes—Zinc’s periodic table 70

UL_ELEMENT 72
UL_LIST 72

Event Manager 73

Input devices 73
The event queue 74

Window Manager 75

Window objects 75
Event member functions 76

Help system 77
Error system 78

Screen displays 78

Region lists—DOS and Curses 79
Virtual display functions 81

Conclusion 81

7  Zincand C++ 83

instantiating and destroying objects
member variables and scope
member functions, overloaded functions and operators

Getting Started with Zinc Programming i



Class definitions 84

How to design classes 84
Derived classes 86
Multiple inheritance 88
Abstract classes 88
Friend classes 89

Object creation 90
Explicit instantiation 90
Implicit instantiation and scope 90
Base class construction 91
Array constructors 92
Overloaded constructors 92
Copy constructors 93
Default arguments 94

Object deletion 94
Explicit deletion 94
Implicit deletion and scope 95
Virtual destructors 95
Base class destruction 96
Array destruction 96

Member variables 97

Variable definitions 97
Static member variables 97

Member functions 98

Function definitions 98

Default arguments 98

Virtual member functions 99

Virtual functions and message handling 100
Overloaded member functions 100
Overloaded operators 101

Static member functions 102

Conclusion 104

Xii Getting Stari‘ed with Zinc Program;ﬁing



8  Globalization 105

enabling a Zinc program

how to use ISO 8859-1 and Unicode characters

shipping a globalized application

Enabling Zinc objects 106
Enabling objects 106
Character types 107
Using wide character strings 107
Localizing our application 108
Localizing Zinc objects 108

Localizing our objects 109
Detecting the language 109
Detecting the locale 110
Building our application 110
Shipping our application 110
Non-Unicode applications 111
Required files for Unicode applications 111

Conclusion 111

Getting Started with Zinc Programming



section two Zinc programming

9 “Hello, Universe!” 115

Using UI_APPLICATION
Learning to write a simple Zinc application
Shutting down an application

What we’ll do 116
Include files 117
A new Main( ) 119
Creating a window and adding a text field 120
Responding to events 121

Under the hood of UI_APPLICATION::Main( ) 121
What UI_APP does 122
Main( ) 122

Event flow and Control( ) 123

HELLO1.CPP without UI_APPLICATION 124

The Event Manager 124
Shutting down HELLO1.CPP 125

Conclusion 125

Xiv Getting Started with Zinc Programming



10 Help and Error Systems 127

Using Zinc’s help and error systems
Writing an exit function
Creating user interfaces programmatically

The help system 128

The error system 133

Control flow of the error system 133
Exit function 134

Multiple windows 135

Program flow 138

Cleanup 138

Conclusion 138

11 Using the Designer 139

Working with persistent objects
Creating user interfaces with Zinc Designer

What we’ll do 140

Using the Designer 141

Creating a file 141

Creating a window 142

Creating a window object 144
Creating additional windows 145
Saving the file 147

Window access 148

Run-time features 148

Conclusion 149

Getting Started with Zinc Programming

XV



12 Eventflow 151

working with top-down and bottom-up event flow
writing a user function to validate input

What we’ll do 152

Running the program 152
Source code 152
Class definitions 153

Creating the window 155
The user function 157

Following events 158

Event flow—DOS 159
Event flow—Windows 160

Conclusion 161

13 7he Zine Data File 163

the data file
adding and deleting objects to and from the data file

What we’ll do 164
Running the program 164
Source code 165
Program flow 165
Class definitions 166
Creating the user interface 168
Using the Designer to create the window 168

DICTIONARY _WINDOW 169

Xvi Getting Started with Zinc Programming



Wiring up the interface 169
The Event( ) function 169

The D_ENTRY class 170

Z11. STORAGE_OBJECT 170
The constructor 170

The New function 170

The Save function 170

The DICTIONARY class 171

Conclusion 172

14 Virual List 173

creating a virtual list
using the UIW_TABLE class

What we’ll do 174
Running the program 174
Source code 175
Analyzing the source code 175
Program flow 177

Using the UIW_TABLE object 177
Table structure 177
The table record 178
The table header 178
Adding records to the list 179
Adding fields to the records 179
Getting the data into the fields 180

Conclusion 182

Getting Started with Zinc Programming xvii



15 Deriving a Device 183

how to work with input devices 183
how to write a simple keyboard macro 183
how to initialize the macro device class & its base class

What we’ll do 184

Source code 184

Program execution 184

Class definitions 185

Program flow 186

Base class initialization 188
Initializing member variables 189
The Poll( ) function 190
Responding to events 191
Enhancements 191

Conclusion 192

16 cCustomized Displays 193

the basics of designing of a display class
initializing the display class and its base class
giving a display class custom behavior

What we’ll do 194
Using the class 194
Source code 194
Writing UI_BGI_DISPLAY 196

Initializing the base class 196
Initializing UL_BGI_DISPLAY 197

Xviii

Getting Started with Zinc Programming



Display destructor 199

The Rectangle( ) function 199

Drawing on the screen 199
Information member functions 201

Conclusion 202

17 Using Locales 203

detecting the system locale
setting an object’s locale

What we’ll do 204
Running the program 204
Source code 205
Analyzing the source code 205
Program flow 208
REPORT_WINDOW 208
Wiring up the interface 208
Changing locales 209

Conclusion 210

18 Using Languages 211

detecting the system language
setting the application language

What we’ll do 212
Running the program 212

Getting Started with Zinc Programming Xix



Source code 213

Analyzing the source code 213

Program flow 215
REPORT_WINDOW 215

Wiring up the interface 215

Changing languages 216

Conclusion 217

19 Program Design 219

design of a large application
using event map tables
using accelerator keys

What we’ll do 220
Source code 220
Program specification 221
Design and implementation 222
Accelerator keys 225
General program flow 227
Control 229
Control program flow 231
Display options 233
Display program flow 234
Window options 239
Window program flow 241

Event options 246
Event program flow 247
Monitoring library events 250
The event monitor 251

XX

Getting Started with Zinc Programming



The ZincApp window manager 256

Help options 258

Help program flow 260
General library help 264

Structured programming—in a word, don’t 264

Conclusion 267

appendices

A Compiler Considerations 269

Borland 271

Makefiles—DOS, Windows, OS/2 271
Borland 4.0 IDE—DOS, Windows 272
Borland 1.5 IDE—OS/2 272

Microsoft 273

Makefiles—DOS, Windows 273

Visual Workbench—DOS, Windows 273
Symantec 274

Makefiles—DOS, Windows 274

Symantec 6.1 IDDE—DOS, Windows 275
Watcom 275

Makefiles—DOS, Windows, OS/2 275

Watcom 10.0 IDE—DOS, Windows, OS/2 276
IBM 276

Makefiles—OS/2 276

Getting Started with Zinc Programming

xxi



WorkFrame/2 277

Macintosh 277
THINK Project Manager (TPM) 277

Motif 278
Curses 279
NEXTSTEP 279

B Example Programs 281

Callbacks 281
VALIDT 281

Drawltem 282

ANALOG 282
GRID 284
GRAPH 285
DISPLY 285
LSTITM 286

Event and palette mapping 287

CALC 287
CALNDR 288

Get/set data 289

PHONBK 289
WINDOW 289
POSTWN 290
NOTEBK 290
STATUS 290
MENUS 291
SPREAD 292
AGENCY 292

118N 294
I18N 294

xxii

Getting Started with Zinc Programming



DELTA 295

Messages 296

MESSGS 296
MATCH 296
WORLD 297

Miscellaneous 297

FRESTR 297
DRAG 298
SPY 299
COORDS 300
FONTS 300
COLORS 301

New objects 301

GMGR 301
PRINTR 303
SPIN 305
MDI1 306
PERIOD 307
TABLE 307
MSGWIN 308

C Zinc Coding Standards 311

Naming 312

Classes and structures 312
Functions 312
Variables 312
Constants 313

Organization 313

Class scopes 313
Files 314

Comments 315

Getting Started with Zinc Prbgramming

xXXiii



Files 315
Functions 315
Variables 315
Blocks 315

Indentation 316

Classes and structures 316
Functions 317

Function calls 317

Case statements 318

If and for statements 318

D  Keyboard and Mouse
Mappings 319

DOS and Windows 320
OSF/Motif and Curses 323
Macintosh 325
NEXTSTEP 326

XXiv Getting Started with Zinc Programming



Preface

L you want to learn to program using Zinc, this manual is for you.

This book teaches programmers how to write robust programs using Zinc
Application Framework, the advanced object-oriented development environ-
ment that runs under nearly every popular operating environment in the
world.

Zinc’s mission is to help programmers write object-oriented, graphical,
event-driven programs that are portable across operating systems, CPU
architectures, and languages and locales. Programmers often must deal with
issues like writing programs that run under multiple environments, or use
unrelated display technology, or that show text and data formatting in multi-
ple languages like English, German, and Japanese. By design, Zinc makes
writing these programs far easier. But to achieve this, Zinc had to become
different from other programming environments—and this difference means
the programmer who is just starting out with Zinc faces the prospect of
learning something new.

Getting Started with Zinc Programming XXV



Preface

No other book before this one explained to novice Zinc programmers how to
write a Zinc program step by step. Though programmers who used other
environments found Zinc’s reference manuals invaluable for their depth of
information, the programmer just starting out with Zinc found it hard to learn
the core principles of writing Zinc programs only through following the tuto-
rial. Therefore we designed this book to help the novice Zinc programmer
get up to speed with maximum speed and efficiency—and with a minimum
of intimidation.

Since this book was designed to help the programmer who is just starting out
with Zinc, we will occasionally cover a subject in less detail than more
expert programmers would prefer. We encourage Zinc masters to look to our
Reference Manual for more detail.

Things we’ve left out altogether are in-depth discussions about object-ori-
ented programming, programming in C++, and operating systems. Although
we don’t expect you to be an expert C++ programmer, we do expect that you
have some knowledge and understanding of object orientation and C++
before you start this tutorial.

To teach you the conceptual framework of writing Zinc programs, we start
out with one of the smallest programs possible. After, we introduce more
complicated, though still easy to understand, example programs, designed to
teach specific Zinc features and benefits. This approach offers an opportu-
nity to understand how every line of code works and fits together—and why
Zinc is a wonderful choice for writing applications with graphical interfaces
that run under multiple operating environments, languages, and locales.

While you learn how to write Zinc programs, you’ll also learn some key
principles important to how Zinc accomplishes its mission of portability.
Each chapter will emphasize one of these key principles to keep you focused
on learning that principle well. Later on, you can generalize these principles
to help you write any program with Zinc.

By the end of this book, you will know enough about Zinc to use it on your
own. But you’ll probably want to refer back to this manual from time to time
to refresh your memory about how to accomplish a specific task

XXVi

Getting Started with Zinc Programn;i;gr



What is Zinc?

Zinc is an application framework that programmers use to write object-ori-
ented, graphical, event-driven programs that are portable across operating
systems, CPU architectures, and languages and locales.

But more than a mere set of tools, Zinc is also an architecture, or a coherent
structure that follows a set of design principles. Zinc discusses these design
principles in detail in the first part of this manual. Briefly, however, in its
classes and member functions, Zinc uses specific design principles of event-
driven architecture, object orientation, portability, and flexibility. Zinc pro-
grams that use these classes and follow these principles benefit by how eas-
ily they port to different operating systems and CPU architectures, and how
flexibly they adapt to different languages and locales.

As we learn to write Zinc programs, Zinc’s intuitive design will stand out
more and more—indeed, you will be able to anticipate how features of Zinc
will work without having used them. This quality is what makes Zinc attrac-
tive to so many programmers around the world.

What you need to write Zinc programs

System
requirements

Writing Zinc programs means purchasing a Zinc Engine and a Key for the
target operating environment. You will also be required to have a supported
compiler for that environment.

DOS text and DOS graphics. To write Zinc programs for DOS in real mode,
you need a Zinc Engine and DOS Key; a C++ compiler for DOS such as the
Borland C++, Microsoft C++, or Symantec C++ compiler; DOS 3.1 or later;
and a Microsoft mouse—compatible driver. To write Zinc programs for DOS
Text and DOS Graphics in protected mode, you need the above as well as a
DOS extender SDK. See the READ.ME file for a list of currently supported
DOS extenders. Most “real-world” applications will require a DOS extender.

riG;trti;g Started with Zinc Programming xxvii



Preface

Windows. Zinc Engine and Windows Key; a C++ compiler for Windows
such as the Borland C++, Microsoft C++, or Symantec C++ compiler; and
Windows 3.0 or later. To develop applications for Windows NT you need a
Zinc Engine and Windows Key; and a C++ compiler for Windows NT, such
as the Borland C++, Microsoft C++, or Watcom C++ compiler.

0S/2. Zinc Engine and OS/2 Key, a C++ compiler for OS/2 such as the Bor-
land C++, IBM C++, or Watcom C++ compiler, and OS/2 2.0 or later.

Macintosh. Zinc Engine and Macintosh Key, a C++ compiler for the Macin-
tosh such as the Symantec C++ compiler, and Macintosh System 7 or later.

OSF/Motif . Zinc Engine and Motif Key, a C++ compiler compatible with
AT&T’s cfront version 2.1, and OSF/Motif I.lor later running on X11R4 or
later. You may need to change some source code to use the Motif Key on
hardware platforms that are not directly supported by Zinc. Though Zinc
makes no claim that Zinc programs written for a version of OSF/Motif not
directly supported by Zinc will work properly, doing so should be straight-
forward.

Unix Curses. Zinc Engine and Curses Key, and a C++ compiler compatible
with AT&T’s cfront version 2.1.

NEXTSTEP. Zinc Engine and NEXTSTEP Key; and NEXTSTEP 3.2 User
and Developer editions or later, which come with the required compiler.

The manuals

Programmer's
Reference

The Programmer's Reference is comprised of two volumes.

The Programmer's Reference Volume I contains descriptions of Zinc Appli-
cation Framework support classes, the calling conventions used to invoke
the class member functions, short code samples using the class member
functions, and information about other related classes or example programs.
Support objects are those objects that are not window objects.

XXViii

Getting Started with Zinc Programming



Getting Started

Zinc Designer

The Programmer's Reference Volume 2 contains descriptions of Zinc Appli-
cation Framework window object classes, the calling conventions used to
invoke the class member functions, short code samples using the class mem-
ber functions, and information about other related classes or example pro-
grams.

Some miscellaneous information is presented in the Appendices of Pro-
grammer's Reference Volume 2. This section (Appendices A through I) con-
tains support definitions, system event definitions, logical event definitions,
class identifications, storage information, internationalization information,
and some hardware issues.

Getting Started contains a general overview of Zinc’s architecture in addi-
tion to a series of tutorials designed to help us learn how to write Zinc pro-
grams.

If you're a Zinc novice, or if you're a beginning or intermediate C++ pro-
grammer, you should probably begin at the beginning of this book and learn
what the pieces of Zinc are and how they fit together. If you’ve already
learned about Zinc, or if you have extensive experience with C++, you may
want to start with “Section Two—Zinc Programming,” which teaches you
how to write many different Zinc applications.

Zinc Designer contains an overview of the principles of Zinc’s interactive
interface design tool, in addition to feature-by-feature explanations of Zinc
Designer’s functionality.

Technical support

Zinc Software Incorporated offers a comprehensive technical support pro-
gram to registered users, so be sure to complete and return the registration
card. Currently, Zinc registered users are eligible for the following support
services at no charge:

Limited warranty. The terms of your limited warranty are explained in the
Zinc Application Framework End User Software License Agreement.

Getting Started with Zinc Programming XXiX



Preface

Telephone support. If you need assistance beyond what the Zinc manuals or
your reseller can provide, you can call +1 801 785 8998 between 8:00 a.m.
and 5:00 p.m. Mountain Time, or +44 (0)181 855 9918 between 9:00 a.m.
and 5:00 p.m. London Time, or +81 (052) 733 4301 between 9:00 a.m. and
5:00 p.m. Japan Time to speak with one of our technical support representa-
tives. Technical support is closed during the noon hour and on weekends and
holidays. Please have the following information ready before you call:

Your Zinc version number, serial number, and registered name
Your hardware and operating system configuration

Your compiler and version number

Electronic support. If you want to send messages to Zinc's technical support
representatives, download software maintenance releases (requires pass-
words), exchange ideas with other programmers, or download user contribu-
tions, you can use the following electronic support services:

Zinc Fax. In North America, call +1 801 785 8996. In Europe, call +44
(0)181 316 7778. In Asia, call +81 (052) 733 4328. If you need to send
more than one page of code, don't use the Fax.

Zinc BBS. In North America, call +1 801 785 8997 with 300-9600 baud
(V.32bis), 8 data bits, no parity, 1 stop bit or +1 801 785 8995 with 300-
9600 baud (HST dual standard), 8 data bits, no parity, | stop bit. In
Europe, call +44 (0)181 317 2310 with 300-9600 baud (HST dual stan-
dard), 8 data bits, no parity, 1 stop bit. In Asia, call +81 (052) 733 4359
(HST dual standard), 8 data bits, no parity, 1 stop bit. Zinc's BBS is
accessible 24 hours a day.

Internet. Zinc's Internet connection is accessible 24 hours a day.
Email: tech@zinc.com

Anonymous ftp: ftp.zinc.com

Web server: http://www.zinc.com/

CompuServe—Zinc's CompuServe forum is accessible 24 hours a day.
GO ZINC

Special offers. You can receive special promotional offers for new products
and product upgrades.

Zinc’s technical support program is subject to change without notice.

XXX

Getting Started with Zinc Programmingr )



Conventions used in this book

This manual uses the following conventions:

TABLE 1. Conventions

Italics identify arguments, variables, and pointers in function and
method prototypes.

Bold identifies file and directory names, and Zinc class and member
function names.

Constant identifies programming examples and command line or shell

width output.

text

(e is the command line DOS prompt, which you can access from

inside Windows

Getting Started with Zinc Programming : XXXi




Preface

XXXii 7 Getting Started with Zinc Programming



section one

Zinc concepts

Getting Started with Zinc Programming



Getting Started with Zinc Programming



wn  Installing Zinc

This chapter explains how to install Zinc for all its supported operating
environments. Refer to this chapter for instructions on how to ensure Zinc’s
components are installed correctly. Also, refer to the appropriate section for
your operating environment for installation instructions.

Safety first. . . Before actually installing Zinc Application Framework, back up your distri-
bution disks.

Concepts

Getting Started with Zinc Programming 3



Installing Zinc

DOS, Windows, and OS/2

Confirm license
agreement

Run the installer
program

Select a drive
and subdirectory

Select the
package option

Installing Zinc on a DOS, Windows, or OS/2 system takes five steps:

1. Confirm license agreement.

To install Zinc Application Framework, read and accept the Zinc Appli-
cation Framework End User Software License Agreement and the Source
Code License Addendum. The license agreement is found at the begin-
ning of this manual. To confirm and proceed with the installation, select
“yes.” Otherwise, select “no” and the installation will abort.

2. Run the installer program.

The install program is a DOS executable, and should be run from DOS or
a DOS window in OS/2, Windows, or Windows NT.

Insert into your floppy drive the first Zinc Engine diskette. Then run the
Zinc 4.0 Installer on the diskette by typing the following:

A:INSTALL

3. Select a drive and an installation subdirectory.

Select the hard drive on which to install Zinc. Then, on that hard drive,
select an installation subdirectory. Press <Enter> to accept the default
directory, \ZINC, or type in a new directory and press <Enter>.

4. Choose Zinc engine and key(s).

The following is a list of diskette packages you need to use Zinc on your
computer.

Required
+ Zinc Engine
Optional
DOS Key
Windows Key
+ 0OS/2 Key

Getting Started with Zinc Programming



Install Zinc

5. Install Zinc.
The program installs Zinc from the distribution floppies to your hard
drive and displays its progress on the screen. Periodically, it will prompt
you for a new disk. Remove the current disk from the drive, insert the
appropriate new disk, and press any key to continue the installation.

When the process is complete, a message appears on your screen indicat-
ing that Zinc Application Framework has been successfully installed.

Macintosh

Confirm license
agreement

Run the installer
program

Choose an
installation

On a Macintosh computer, the install process takes six steps:

1. Confirm license agreement.

To install Zinc Application Framework, read and accept the Zinc Appli-
cation Framework End User Software License Agreement and the Source
Code License Addendum. The license agreement is found at the begin-
ning of this manual. To confirm and proceed with the installation, select
“yes.” Otherwise, select “no” and the installation will abort.

2. Run the installer program.

Insert into your floppy drive the first Zinc Macintosh Key diskette. Then
run the Zinc 4.0 Installer icon on the diskette. After reading the
README file, select “Continue.”

3. Choose an installation.

Choosing “Install” installs the entire Zinc Application Framework pack-
age. If you choose the default Zinc installation, skip to the next step.

Choosing “Custom” allows you to specify only those components of
Zinc Application Framework you wish to install. You can select the
entire Zinc Application Framework by choosing “Zinc Application
Framework 4.0 (All),” or you can select from a range of options by click-
ing on the first option in the range, and then, while holding the <Shift>
key on the keyboard, clicking on the last option in the range—this will
select all options between them. Then choose “Install” after you have
selected the desired components.

_ Getting Started with Zinc Programming 5



Installing Zinc

Specify an

installation

folder

Install Zinc

Make aliases

OSF/Motif and Unix Curses

Specify where to install Zinc Application Framework.

The Symantec project manager requires that you install Zinc in the same
folder that contains the Symantec THINK Project Manager. If you wish
to install Zinc Application Framework into a folder with a name other
than the default, enter the new name in the field provided.

Begin installation of Zinc.
Choose “Save” to begin installing the files.

When installation is complete, you may install Zinc in another location,
or you may simply quit.

Make aliases.

The Symantec compiler needs to know how to locate Zinc files when
compiling. Make aliases of the SCCPP700 Include folder, located in the
Include folder, and of the SCCPP700 Library folder, in the Library
folder. Move these aliases to the Aliases folder within the Symantec C++
folder.

Installation is now complete. You may wish to precompile Zinc's header
files, which will speed up compile time considerably. To do so, refer to

the file MAC.TXT, included in the Read Me Files folder in the Zinc
directory now installed on your hard drive.

Confirm license

agreement

Installing Zinc on an OSF/Motif or Curses system, takes three steps:

1

Confirm license agreement.

To install Zinc Application Framework, read and accept the Zinc Appli-
cation Framework End User Software License Agreement and the Source
Code License Addendum, found at the beginning of this manual. To con-
firm and proceed with the installation, select “yes.” Otherwise, select
“no” and the installation will abort.

Gétting Started with Zinc Proéraﬁi}ﬁing



Extract Zinc

Run the
installation
script

2.

Extract Zinc from distribution media.

Copy the Zinc distribution to your system by following the appropriate
instructions in one of the sections below. The examples below will place
the Zinc distribution in /usr/local/Zinc.

a. Installing from tape. To install Zinc from a tape, change directory to
the installation directory. Use the tar command to extract the contents of
the tape. For example, use tar xv or tar xvf TAPENAME, where TAPE-
NAME is the name of the tape drive on your system, such as /dev/rmt/
1m.

b. Extracting from DOS floppy or DOS BBS. To install Zinc from the
DOS file ZAF4xMTF.TZ, mount the DOS floppy or use a communica-
tions software package to retrieve the file, then move or copy the DOS
file into the installation directory.

Use zcat and tar to uncompress and unarchive the distribution files:
localhost> cat zaf3émtf.tz | zcat | tar xvf -

If you purchased the Zinc Unicode key, uncompress and unarchive the
distribution files this way:

localhost> cat zaf36uni.tz | zcat | tar xvf -

c. Extracting from a file. If you received the file zaf.motif.4.x.tar.Z over
the Internet, move the file to the location that you want to contain the
Zinc directory tree, such as /usr/local.

Use zcat and tar to uncompress and unarchive the distribution files:
localhost> zcat zaf.motif.3.6.tar.z | tar xvf -
If you purchased the Zinc Unicode key:

zcat zaf.unicode.3.6.tar.Z | tar xvf -

Run the installation script.
Once you have extracted Zinc from the distribution media, run the instal-
lation script called INSTALL.

localhost> ./INSTALL

The script will detect whether you’ve installed the OSF/Motif or Curses
keys. If you have, the script will ask you which you would like to use.

INSTALL also asks questions about what type of system you have, and
then it will show you the default configuration for your system type. You
can change any parameters necessary. INSTALL then configures all the

Getting Started with Zinc Programming 7



Installing Zinc

NEXTSTEP

makefiles in the Zinc tree. If the C++ compiler on your system needs to
have C++ source file names to end with something besides .cpp, such as
.C, .cc, or .cxx, INSTALL changes all the source files in the Zinc tree.

Confirm license
agreement

Extract Zinc

Load the
package

Installing Zinc on a NeXT computer or on a PC running NEXTSTEP takes
three steps:

1.

Confirm license agreement.

To install Zinc Application Framework, read and accept the Zinc Appli-
cation Framework End User Software License Agreement and the Source
Code License Addendum, found at the beginning of this manual.

Extract Zinc from distribution media.

a. Extracting from floppy. To extract Zinc from a floppy, insert the floppy
into your computer and mount it in the Workspace. Click on the floppy
icon in the Workspace Manager, and drag the Zinc.pkg icon from the
floppy to a directory in which you have write permissions.

b. Extracting from DOS BBS. To install Zinc from the DOS file
ZINC.NXT, use a communications software package to retrieve the file,
then move or copy the DOS file into the Zinc installation directory. Then
rename the DOS file to Zinc.pkg.compressed. Last, open the Tools
Inspector panel, and select Uncompress.

c. Extracting from a file. If you received Zinc.pkg.compressed over the
Internet, move the file to the Zinc installation directory. Then open the
Tools Inspector panel, and select Uncompress.

Load the package.

Double-click on the Zinc.pkg icon to launch the NEXTSTEP Installer.
The Installer will then ask you to specify an installation directory.
Choose an installation directory such as /LocalDeveloper/Zinc or /usr/
local/lib. When the Installer prompts you, remove the floppy in the com-
puter and replace it with the next one.

Getting Started with Zinc Programh1ing



Finished!

Now that you’ve reached the end of this chapter, you’'re finished installing
Zinc. Now you’re ready to learn the details of Zinc’s architecture—what the
pieces of Zinc are, and how they fit together.

7(5etting Started with Zinc Programml:ng | 9



Installing Zinc

10 ” rGetting Started with Zinc Proéféh?n?i@



Introduction to Zinc

In the early days of the Industrial Revolution, pinmaking was a slow,
excruciating process. Each pinmaker, responsible for the entire construction
of each pin, would fashion its head, its shaft, and finally sharpen the pin
from a solid sliver of metal. Pinmaking was so inefficient, a group of twenty
talented pinmakers might produce no more than twenty pins per week.
Understandably, pins were expensive.

Then came the development of interchangeable parts, and the craft of pin-
making became radically more efficient. Teams of pinmakers specialized in
creating pin components—some would create the heads, some the shafts,
and still others would put them together into a finished product. Because
each pinmaker could benefit from the work of others, pin production soared
and its costs plummeted.

Key
Concepts

Getting Started with Zinc Programming 11



Introduction to Zinc

An object-
oriented solution

In the early days of the Information Revolution, programming, like pinmak-
ing, was also a slow process. Like pinmakers carving pins whole from solid
slivers of metal, each programmer was responsible for writing his entire pro-
gram. A programmer would first design the program according to a specifi-
cation, create the program's procedures from scratch, and finally test and
debug those procedures in a long and drawn-out process. Programming was
so inefficient, a group of twenty talented programmers might take five years
to produce a robust mission-critical program. Understandably, programs,
like pins in the Industrial Revolution, were expensive.

With the development of object-oriented programming, analogous to the
development of interchangeable parts in the Industrial Revolution, the craft
of programming became radically more efficient. Teams of programmers
specialized in creating parts of programs. Some wrote file storage objects,
some event handling objects, still others concatenated the objects into work-
ing programs. Because these programmers could concatenate objects into
working programs without knowing how the objects worked, they often
would write object-oriented programs in a fraction of the time.

Procedural programs are difficult to maintain, difficult to port to different
operating environments, and difficult to enhance with new features. This is
what Zinc calls “the procedural dilemma.” Caught in the procedural
dilemma, procedural programmers struggle valiantly to incorporate new fea-
tures into their programs. Often they give up, and rewrite their programs
from scratch when incorporating new features.

Object-oriented programming helps programmers avoid the procedural
dilemma by offering interchangeable software components. Object-oriented
programmers realize dramatic improvements in productivity and reliability,
and consequently the costs of developing and maintaining object-oriented
programs plummets.

Zinc helps programmers write object-oriented programs, in turn helping us
solve the procedural dilemma.

Zinc gives us a robust library of C++ classes that we can access in our appli-
cations. This library includes classes that handle events, manage windows,
display help and error messages, and write to the displays. Further, Zinc's
library includes user interface objects like windows, buttons, controls, lists,
menus, tool bars, strings—all native to every environment Zinc supports.
Zinc's architecture is open and extensible by design, allowing us to create
custom versions of Zinc objects with behaviors that precisely meet our
needs. With Zinc's modularity we won't find ourselves painted into a corner.

Gettini_c:lrrStarted with Zinc Programming



Transition to C++

Zinc also features an intuitive interface design tool, Zinc Designer. Because
Zinc Designer is tightly integrated with the Zinc class library, from within
the Designer we have direct access to all of the library's features, including
event handling and window management infrastructure, and Zinc interface
objects. Further, our interfaces run under any environment Zinc supports
with a look and feel native to the environment.

In addition to Zinc Designer and Zinc's robust and comprehensive class
library, Zinc lets us write applications to run under multiple operating envi-
ronments with one set of source code, which makes porting trivial. For
example, with one set of source code, we can port our Zinc applications to
DOS text and DOS graphics in real and protected modes, Microsoft Win-
dows, OS/2, Macintosh, OSF/Motif, Unix Curses, and NEXTSTEP. Further,
one set of source code makes maintenance easier, letting us spend our devel-
opment resources on developing new products, not on trying to juggle sev-
eral versions of the same product.

Zinc also helps us write programs that we can internationalize easily. If we're
writing programs that need to run in multiple languages like English, Ger-
man, and Japanese, and that need to display data in formats specific to cer-
tain countries, money and dates, for example, Zinc does much of the work
for us.

We might question the need to learn the new features of C++, and more
importantly, object-oriented programming in general. But as we learn our
way around Zinc, we'll find many compelling reasons to use Zinc and
object-oriented programming techniques.

The transition to object-oriented programming is nontrivial—but because
Zinc has an elegant and consistent architecture, Zinc's a great place to start.
Designed from the ground up for helping programmers write object-oriented
programs that have graphical user interfaces, respond to events, and support
multiple operating environments and languages, we'll find writing object-
oriented programs in Zinc will become intuitive and natural.

However, to complete the Zinc tutorials, we recommend at least a working
knowledge of object-oriented programming concepts as well as differences
between ANSI C and C++. To successfully complete the tutorials, for exam-
ple, you will need to understand basic principles of object-oriented program-
ming like classes, inheritance, polymorphism; as well as basic features of
C++ like constructors and destructors, member functions, virtual functions,
and function and operator overloading.

Getting Started with Zinc Prbgramming 13



Introduction to Zinc

The benefits of
Zinc

Writing object-oriented Zinc applications offers us several benefits over
writing the same application procedurally. Some of those benefits are—

Consistency. Because of its object-oriented nature, Zinc eliminates develop-
ing and maintaining multiple versions of source code for multiple platforms.
With Zinc we can focus our efforts on developing, maintaining, and enhanc-
ing one set of source code, and let Zinc interact at a low level with the oper-
ating environment and display so we don't have to. Through abstraction,
Zinc insulates us from the complexities of the operating environment with-
out restricting our access to environment specific features, like Microsoft
Windows messages or the raw scan codes from the keyboard.

Ease-of-use. Instead of generating source code which is difficult to optimize
and is not object oriented, Zinc Designer saves our user interface as plat-
form-independent resources.

Reusability. Not only are Zinc's base classes reusable, but any object or class
that we create can become a part of our tool kit. We save time by using
classes that have previously been tested and debugged. After all, “the line of
code we didn’t have to write is the line of code that won't break.”

Extensibility. Because Zinc is object oriented from the ground up, we benefit
from a powerful feature of OOP—inheritance. Rather than developing an
object from scratch, we can use Zinc's base classes with their existing mem-
ber functions and data to derive new classes. For example, we can create a
new input device like a digitizer by deriving our own class from Zinc's
device class. With inheritance we can stand on the shoulders of giants by
creating only the unique characteristics of the new class and reusing the
characteristics of the old class.

Maintenance. Object-oriented applications are much easier to maintain than
structured programs. With object-oriented encapsulation, C++ keeps rele-
vant data and functions together and allows us to modify an object without
affecting other parts of the application.

Flexibility. Wherever possible, Zinc has chosen to give the programmer
more flexibility, rather than more rules. This means that Zinc, like C++
itself, gives us more freedom to write code, and less worries about conform-
ing to arbitrary Zinc standards.

14

Getting Started with Zinc Programming



Zinc: an
application
framework

Globalization. Zinc is the only environment where programmers can write
Zinc programs for all other popular languages and locales. Zinc uses the
ISO8859-1 character set, which defines 8-bit characters, by default, but also
provides support for the Unicode 16-bit character set using the Unicode Key.
Zinc maps strings between these character sets and the native character set of
the target operating systems. Additionally, Zinc also allows programmers to
save language and locale information in a single file, and separate the infor-
mation for applications that use different languages in the same locale, and
different locales with the same language.

At the highest level of its architecture, Zinc consists of components that han-
dle specific tasks; these components make up what Zinc calls the Zinc
Application Framework, which is an infrastructure for helping us write
event-driven, object-oriented, global programs faster than we could other-
wise.

For example, one Zinc component is an infrastructure for retrieving events
and routing them to the part of our program that knows how to respond to
those events. Another component is an infrastructure for managing those
parts of our application that respond to events, as well as managing how win-
dows behave on screen and how they respond to user input.

Getting Started with Zinc Programh;)ing 15



Introduction to Zinc

This diagram displays the basic Zinc components and how they work
together in an infrastructure. Study this diagram until you know how to rec-
reate it without looking at the book, and you'll have a much easier time of
understanding Zinc as we continue with this discussion.

keyboard cursor mouse timer

Y Y Y Y

UI_EVENT_MANAGER

N

Main event loop

N

Support resources I | Ul_WINDOW_MANAGER
help error
system system

P | Window 2
even color
rEpRing HaBbiag (noncurrent

Window 1

display storage (current)
ﬁ;:ftry printer

Here's a description of all these components and what they do:

Input devices. The keyboard, mouse, cursor, timer, or any other devices that
generate events.

16 Getting Started with Zinc P;);jramming



Event Manager. Handles the flow of events and system messages throughout
the application. Certain operating systems sometimes will pass events to a
window object, bypassing the Event Manager.

Window Manager. Controls the behavior of windows. Certain operating sys-
tems sometimes will pass events to a window object, bypassing the Window
Manager.

Display. The display of the computer running the Zinc application. General-
ized by Zinc as an abstract class, from which programmers derive displays
specific to particular display libraries.

Help system. Displays help information at run time.

Error system. Displays error information when a user enters inappropriate
data.

Event mapping. Mapping of raw input, such as mouse clicks and keystrokes,
to logical system events such as sizing, moving, and redrawing.

Color mapping. Mapping of colors in a specific operating system to Zinc
colors.

Storage. Reads and writes objects to and from disk.

Geometry management. Allows the programmer to specify rules that dictate
how objects should be positioned and sized in specific situations.

Printer support. Allows the application to send output to a printer, either by
performing a screen dump or by using the display primitives to draw an
image.

Getting Started with Zinc Pr_bgram;lgg 7 17



Introduction to Zinc

The Event Manager

The Event Manager is Zinc's infrastructure for handling events and system
messages. It accepts events from common input devices such as the key-
board and mouse and it stores event information in the event queue. The
Event Manager also handles custom input devices we write ourselves like a
digitizer or a scanner device.

keyboard cursor mouse timer

Y Y Y Y

UI_EVENT_MANAGER

N

Main event loop

o

UI_WINDOW_MANAGER

The event queue stores events until the event loop can pass the event to the
appropriate window or window object. The event queue can buffer as many
as 100 events by default, but this can be easily changed by the programmer.
The Event Manager deals with these events one at a time until the event
queue is empty. At run time, the event loop immediately takes events from
the queue and passes them to the appropriate window or window objects.

For example, in DOS, when the user presses Alt <F4>, the
UID_KEYBOARD device, which is a specific Zinc class that handles key-
board events, receives the keystroke event and puts it into the event queue.
As the event loop repeats its cycle, it passes the event to the Window Man-
ager, which then passes it to the appropriate window or window object. The
event loop repeats until the user gives the application the “quit” event.

18 7 Getting Started with Zincil;rggratﬁmihg




Ul_DEVICE and
abstract classes

We've skimmed over how the Event Manager works with input devices to
retrieve events. Now we'll explain how Zinc's devices work. Most compiler
libraries have a set of functions to get input information from the keyboard,
functions like getch( ), getchar( ). However, most of these libraries include
neither functions to handle information from other devices like the mouse,
nor functions to handle multiple input devices. Zinc provides seamless sup-
port for multiple, diverse devices, which is what makes Zinc such a flexible
event-driven environment.

Zinc handles keyboard and mouse input in classes called
UID_KEYBOARD and UID_MOUSE. By responding to events, which are
information that comes from input devices, a Zinc program can follow the
user’s orders and call member functions, change data, even load new lan-
guages and locales “on the fly.”

All input devices inherit from the base class UI_DEVICE, which is an
abstract class. An abstract class defines the basic behavior for a type of
object, but typically leaves specific implementation details to a derived
class. An instance of an abstract class cannot be created; a class must be
derived from it and an instance of that class created. If we were to create our
own input device, we would derive it from UI_DEVICE and add our own

functionality.
Ul_DEVICE

( UID_KEYBOARID C UID_MOUSE )

UID_CURSOR

programmer-
defined device
objects

UID_TIMER

Gettir;g Started with Zinc Programming | 19



Introduction to Zinc

Event mapping

Benefits of
logical event

mapping

Many user interface libraries convert raw input information to logical infor-
mation when the input device sends information. For example, a mouse
device may define the left mouse button click as the L_SELECT operation.
The programmer must then decipher the L_SELECT operation in the context
of his or her program's operations, a task that many programmers find cum-
bersome.

Zinc takes a different approach to event mapping. Zinc receives raw events
from input devices at run time and interprets them in the context of the
object and the type of operation being performed. This means the program-
mer doesn't have to write as much code, freeing him or her up to focus on
writing the program's core functionality.

Here's how Zinc's event mapping works. Imagine running a hypothetical
application that has a main window and a text field. Here's a description of
how Zinc would map the events generated in DOS when clicking the left
mouse button or pressing the <F2> key on the keyboard:

1. The input device, UID_KEYBOARD or UID_MOUSE, receives the
event and places the keyboard or mouse information in the event queue.

2. The Window Manager passes the event to the current window.
3. The window passes the event to the current window object.

4. The UIW_TEXT window object evaluates both the keyboard and mouse
events as the L_BEGIN_MARK operation.

5. Finally, the results of the L_BEGIN_MARK operation return to the win-
dow and then to the Window Manager.

Here's how logical event mapping benefits us. First, each object interprets
the event according to how the object operates, eliminating the need for us to
write code to tie events to window objects. The UIW_TEXT object views
both events as an L BEGIN_MARK operation. However, if the mouse click
returned unprocessed to the Window Manager, it would interpret it as an
L_BEGIN_SELECT operation, while the <F2> key, which is unknown by the
Window Manager, would remain unprocessed.

Another benefit from logical event mapping gives us the ability to create
additional input devices that generate their own raw event information. This
way, we can define logical event mapping for Zinc but still receive all the
raw event information generated by the new input device. Still another bene-
fit is that we can easily redefine key mapping without changing Zinc's source
code, allowing us to customize our programs without interfering with how
Zinc operates.

20

Getting Started with Zinc Programming



But the most important benefit from logical event mapping is portability.
Because Zinc allows each object to behave differently, an object has the flex-
ibility to behave differently under different operating environments. We can
assign behavior on an object-by-object basis, a manageable task, in contrast
to forcing an object to reevaluate its behavior in contexts of different operat-
ing environments.

The Window Manager

“Top down” and
“bottom up”

So what happens after the Event Manager gathers events in the event queue?
How does the program know how to respond to those events? The answer
lies in the Window Manager, which determines how windows and window
objects behave.

Just as good tourists do what the Romans do when in Rome, Zinc ensures
that when we're writing programs that run under multiple operating environ-
ments, the programs behave as though they're native to that environment. In
fact, Zinc creates native applications for each environment it supports. One
reason Zinc does this is to ensure each program responds to events in the
manner native to that operating system, making programming simpler.

An operating environment with no native ability to handle events means that
if we want to write an event-driven program for that environment, we’ll have
to bring our own event handling infrastructure with us. Zinc’s native event
handling model is a “top-down” model because events trickle down from the
top, the main event loop, through the Window Manager and the current win-
dow, to the current window object. Each of these objects gets a chance to
determine if it should respond to the event; if an object doesn’t or can’t, it
merely passes it down the hierarchy.

Some operating environments that can handle events use what is called a
“bottom up” event handling model in which the event goes directly to the
lowest level current object. In this case, events follow a more complicated
route. Here’s a brief description. When we write a Zinc program that runs
under Microsoft Windows, an example of an operating environment that
uses the bottom-up model of handling events, Zinc relies on the native meth-
ods of Windows for its windows and window objects to respond to system
events.

Getting Started with Zinc Programming 21



Introduction to Zinc

Window
position and
priority

Native objects,
not emulated

For example, if a user clicks on an object, the operating system gets the
event and places it on its own event queue. When Zinc gets the event from
the event queue and starts to process it, instead of routing the native message
through the Zinc hierarchy, it sends it to the operating system and lets it pro-
cess it like any other native event. Because Windows is a bottom-up environ-
ment, the event goes directly to the window that was clicked on, the
“bottom” object. If that object does not handle the event, it may choose to
pass it back up the hierarchy so that a higher level object can process it—
hence the term “bottom up.”

The Window Manager maintains a list of windows and minimized windows.
The Window Manager determines the position and priority of windows on
the screen and channels the events to the proper windows.

Window 2 (noncurrent) gets all keyboard info

L

Window 1 (current)

Window 1 gets
all mouse clicks here

L--

For example, if Window 1 overlapped Window 2, the Window Manager
would route all keyboard information to Window 1, since it is the topmost
window—the current window. In addition, any mouse events that overlapped
Window 1 or the area intersected by Window 1 and Window 2 will be sent to
Window 1 for processing. If a mouse event overlaps the area occupied only
by Window 2, however, that event would go to Window 2.

All windows and window objects derive either directly or indirectly from the
U WINDOW_OBJECT base class. This means that all Zinc windows and
window objects share certain behaviors and characteristics, notably the abil-
ity to appear native to the operating environment under which we compile
our programs.

Zinc doesn’t emulate the look and feel of a native object, as do some other
application frameworks. Rather, Zinc uses native objects—no emulation
needed. Windows and window objects native to each environment are faster

22

Getting 'Started with Zinc Progfémmihg |



rThefi?iiplay

because the Zinc program doesn't have to draw the objects or process system
events that the native object already processes. When we write programs in
Zinc for multiple environments, our programs are indistinguishable from
other programs written specifically for those environments.

If you've ever used a program that runs under multiple environments, and
that program uses windows and window objects different from those that
you're used to, you'll understand the frustration of users who feel that the
programmer didn't care enough to write that program specifically for them.
Because all windows and window objects are native, it’s easier for us to
write applications.

Since Zinc programs support multiple operating environments, Zinc has cre-
ated some infrastructure for making those programs easier to write in an
intuitive and simple way.

Zinc's infrastructure is an abstract class called UI_DISPLAY. We will never
use a display of the UI_DISPLAY class; rather, we will use a display
derived from UI_DISPLAY, but with behaviors defined for a specific type
of display, such as a Borland BGI display, an OS/2 display, or a NEXTSTEP
display. As an abstract class, UL_DISPLAY defines some functions that a
display object should perform, but it leaves how those functions should be
performed up to the specific displays.

This object-oriented approach to handling displays gives us an attractive
benefit. We can run our graphical application under all the environments
Zinc supports with one set of source code, merely deriving a display specific
to our own. Further, because all displays derive from UI_DISPLAY, they all
have the same interface, making it less work to understand how to access dif-
ferent displays.

Gett;ing Started with Zinc Proéramming 23



Introduction to Zinc

24

Ul_DISPLAY

Here's both a representation of the Ul DISPLAY class hierarchy and a list
of all the classes derived from the UL_DISPLAY base class:

(UI_BGI_DISPLAY

UI_GRAPHICS_DISPLAY

UI_MACINTOSH_DISPLAY

AN

UI_MSC_DISPLAY

UI_MSWINDOWS_DISPLAY

UI_NEXTSTEP_DISPLAY

Ul_OS2_DISPLAY

UI_TEXT_DISPLAY

UI_WCC_DISPLAY

UI_XT_DISPLAY

WEANAAN AN DS

programmer-defined display

The help and error systems

Most robust applications have some sort of help system to give users infor-
mation about features while running the program. Zinc makes it easier for us
to write such a help system with a class called, appropriately,
UI_HELP_SYSTEM. This class uses Zinc windows to display help infor-
mation, ensuring that no matter which applications we want our program to
support, we'll only have to write the help information once.

Zinc initially does not make us include the UI_HELP_SYSTEM class; if
we don't want the help system class linked into our programs, we don't have
to use it. Zinc gives us the choice to decide whether or not we include a help
system, putting us in control of how we write our own applications.




As with help systems, most robust applications have some sort of error sys-
tem that tell us when we've made a mistake while running the program.
Zinc's error system is a class called, appropriately, U_ ERROR_SYSTEM.
This class uses Zinc windows to display error information. Again, as with
the help system, this means no matter which environments we want our pro-
gram to support, we'll only have to interface with one error system.

Zinc initially does not make us include the UI_ERROR_SYSTEM class; if
we don't want the error system modules linked into our programs, we don't
have to use it. Zinc gives us the choice to decide whether or not we include
an error system, putting us in control of how we write our own applications.

Storage and retrieval

We've seen how Zinc gives us quite a bit of infrastructure for handling much
of what goes on under the hood of an object-oriented, event-driven, graphi-
cal application. In addition to all the other infrastructure Zinc gives us, we
can use Zinc's ability to save and load data to and from disk. Zinc uses an
advanced method for saving and loading data to disk called persistent object
technology. Persistence isn't unique to Zinc, but Zinc's flavor of persistence
allows us to store and retrieve C++ objects to and from disk as platform-
independent resources through low-level file management routines as well
as persistent object technology.

Zinc uses its own storage and retrieval classes in Zinc Designer. When we
interactively create and modify windows and window objects using Zinc
Designer, we're using the same storage and retrieval classes we'd use without
Zinc Designer.

Getting Started with Zinc Programming 25



Introduction to Zinc

Globalization

The obstacles to
reaching the
global market

ISO 8859-1 and
Unicode

Language and
locale

We've covered almost all of Zinc's infrastructure for writing object-oriented,
event-driven, graphical applications. But we still need to discuss how Zinc
makes it easy for us to write applications that run in different languages and
display localized information about dates, money, and so forth.

True globalization is a complex process. If we were to write a program and
deploy it on desktops in North America, Europe, and the Pacific Rim, among
other things, we would have to enable our program to be compatible with
complex permutations of languages and locales, eight- and 16-bit character
sets, incompatible hardware and display technologies, and a plethora of
input methods.

Zinc takes more of the burden off our shoulders than any other application
framework. Using Zinc’s optional Unicode key ensures that our programs
can detect their language and locales at run time, use both 8-and 16-bit fonts
as appropriate, run on nearly all popular hardware combinations, and work
with nearly all popular input methods.

We’re not obligated to use Unicode to deploy our Zinc applications in most
areas of the world; Zinc programs automatically use the eight-bit ISO 8859-
1 character set, which contains most international characters. This means the
base Zinc Engine and Keys let us reach much of the world’s software market
right out of the box. However, if we must deploy a Zinc application in a
nation that uses a 16-bit font, like most Asian countries, Zinc gives us the
option to use Unicode, an international standard for character sets. Unicode
contains every character from every modern language, giving Zinc a single,
comprehensive standard for displaying characters.

For example, if we wrote a Zinc application and intended to distribute the
executable in the United States and Japan, we'd translate the interface text
into Japanese, and then use Zinc's Unicode characters to represent the Japa-
nese text on our interface. We'd do the same thing if we wanted to translate
our interface to any other language—Unicode contains any characters we'd
need. Using Unicode to represent character sets makes programming easier
because we only need to deal with one standard.

Another reason running Zinc applications in different languages and locales
is easier is that Zinc gives us the ability to store different languages and
locales in the same interface file. If we write our Zinc application with

26

Getting Started with Zinc Programming



Delta storage

English and Japanese interfaces, we don't have to juggle two different inter-
face files; Zinc can store it for us in one place, giving us fewer components
to worry about.

Zinc keeps certain globalization information separate from interface text,
however; this information concerns the locale, or region of the world where
our program will run. Part of translating a program is displaying locale infor-
mation in a format that differs from country to country—date information,
decimals, and currency symbols in certain window objects, for example.
When we translate our program we merely specify to Zinc which locale to
use; it's as easy as that. In fact, Zinc automatically detects what language and
locale the environment is using, and will automatically adapt to the environ-
ment’s needs.

One dramatic benefit of separating language from locale is our program's
ability to use multiple languages within one distribution region. For exam-
ple, if we wrote a Zinc application for both English-speaking and French-
speaking Canadians, we'd still have to translate our interface into English
and French, but we'd only have to specify one locale—Canada. Another ben-
efit of separating language from locale is our program's new ability to use
different data formatting in the same language. For example, if we wanted to
write an application for Spanish speakers in Mexico, we'd still have to spec-
ify Mexican locale information, but we could merely translate our interface
into Spanish. Again, Zinc gives us flexibility in how we write our programs,
leaving the design decisions up to us.

Another reason running Zinc applications in different languages and locales
is easier is that Zinc gives us the ability to store only the differences between
languages and locales in what Zinc calls delta storage. If we write our Zinc
application with English and Japanese interfaces, Zinc doesn't have to dupli-
cate both interfaces, translated text and all; Zinc merely stores the differ-
ences between the interfaces, decreasing our program size and increasing its
performance. Without delta storage, users would have to dedicate a larger
amount of disk space to their applications.

Getting‘Started with Zinc ﬁrbgramm%é 27



Introduction to Zinc

Geometry management

Programming graphical user interfaces opens up the problem of how inter-
face objects should relate to each other visually—this is called geometry
management. Though some user interface design tools provide some rudi-
mentary rules for how those relationships should work, Zinc takes geometry
management to the next level. Zinc’s geometry management allows the pro-
grammer to specify sophisticated rules that dictate how objects should be
positioned and sized in specific screen resolutions, on every platform Zinc
supports.

Printer support

Part of the difficulty of writing crossplatform programs is determining how
to print. Zinc’s printer object allows our programs to perform a screen dump,
or to print an image using Zinc’s display primitives—bitmaps, ellipses, lines,
polygons, rectangles, as well as text. Zinc’s printer support formats text
across an entire page, providing page breaks as necessary. Further, Zinc pro-
vides the ability to print an environment’s default printer, as well as to a
PostScript file. And in DOS, which has no printer support, Zinc supports the
popular PCL format.

Conclusion

Zinc allows us to write programs easily ported to other operating environ-
ments, languages, and locales. Zinc's library includes native interface objects
like windows, buttons, controls, lists, menus, tool bars, and strings in every
environment Zinc supports, ensuring high performance and acceptance by
users. Zinc includes infrastructure that handles events, manages windows,
displays help and error messages, and manages the visual relationships of
interface objects, leaving us to concentrate on writing programs rather than
reinventing the wheel. In the next chapter we're going to discuss Zinc’s win-
dows and window objects.

28

Gettihg Started with Zinc Programming



Chapter 3

Window Objects

In the last chapter, we discussed how Zinc helps programmers write
object-oriented applications, Zinc's underlying infrastructure, and the types
of Zinc objects we can use in our applications. In this chapter, we'll discuss
Zinc's window object classes. We'll discuss each window object, what it
does, and how it works.

Most Zinc windows share basic window objects; they have borders, titles,
maximize buttons, minimize buttons, and system buttons. In another exam-
ple of how Zinc helps us write efficient programs, Zinc doesn't make us
include these basic window objects with every Zinc window we instantiate.
Instead, we add to our windows the objects we want, instead of deleting
objects we may not want.

the different types of window objeété
how window objects work

Getting Started with Zinc Programming 29



Window Objects

Basic window

Zinc's window objects

Below is a typical Zinc window and its basic window objects, in addition to
the code we'd need to write to instantiate them under any operating environ-
ment Zinc supports. Notice it doesn't take much code to instantiate this win-
dow and its basic objects.

+ new UIW_BORDER

new UIW MAXIMIZE BUTTON

new UIW MINIMIZE BUTTON

new UIW _SYSTEM BUTTON(SYF GENERIC)
new UIW TITLE(" Generic Window ");

Although some operating environments don't have some of these basic win-
dow objects—for example, NEXTSTEP windows don't support maximize
buttons—we can use these and all other window objects for any operating
environment Zinc supports. If we use a maximize button in a Zinc program
that runs under NEXTSTEP, the NEXTSTEP window simply will not dis-
play the maximize button.

Here's a list of the window objects we used in the above code, and the
classes which they comprise.

Border. The UIW_BORDER class. In graphics mode, the border is a three-
dimensional shaded region drawn around the window; in text mode, the bor-

Maximize button. The UIW_MAXIMIZE_BUTTON class. Located on the
top right side of the window. Changes the size of its parent window to
occupy the entire screen display.

Minimize button. The UIW_MINIMIZE_BUTTON class. Usually located
at the top right corner of the window. When pushed, it reduces the window to

objects
*window
+
+
+
+
der is a shadow.
S
an icon.
30

Getting Started witiiwﬁéih;brogr'ahmmg



Buttons

System button. The UIW_SYSTEM_BUTTON class. When pushed, selects
window or system specific commands associated with the window object,
such as size, move, maximize, minimize, and close. If the system button has
options, a pop-up menu appears on the screen.

=

Title bar. The UIW_TITLE class. Displays text to identify the window.

= Generic Window BE

Now that we've seen the different types of basic window objects we've used
in our code snippet, let's take a look at some more complicated window
objects we can use in our applications.

The simplest of the more complicated window objects is a button. A button
is a rectangular region of the screen that displays information and performs
an operation when pushed.

At its most general level, a basic button display information in the form of
text. But in Zinc, we can also use more complicated buttons—bitmapped
buttons, check boxes, and radio buttons, all of which look and act differently
from basic buttons. Though these more complicated buttons look and act dif-
ferently, they all derive from UIW_BUTTON and share the same behav-
ior—they display information and perform operations. In other words,
despite their more complicated behavior, they're all still buttons.

Below is an instance of UIW_BUTTON, the most basic button object in
Zinc’s library.

Bitmapped button. Displays a bitmap rather than, or in addition to, text. Bit-
mapped buttons used in text mode will not display graphics.

Getting Started with Zinc Programtﬁl"ﬁigww 3



Window Objects

Combo boxes

Check box. Check boxes in a window, a group, or a list box are members of
the same group. Multiple checkboxes from a group may be selected at any
time.

[ XON/XOFF

[] Line Wrap

Radio button. Radio buttons in a window, a group, or a list box are members

of the same group. Only one radio button from a particular group may be
selected at any time.

> 9600
® 4800
UIW_GROUP is a Zinc class for grouping Zinc objects together on screen.
Once we instantiate a group object, we add to the object the desired radio

buttons and check boxes. Unless we're using only one radio button or check-
box, we use the UIW_GROUP class to group our window objects together.

Group

Another more complicated Zinc window object is the combo box. Imple-
mented as the UIW_COMBO_BOX class, the combo box is a one-line
string field with a button object attached, that, when clicked, displays a list
of items from which we can choose.

Many operating environments include the combo box, the purpose of which
is to give the user multiple ways to select an option. When using a combo
box, a user can select options with the mouse, or he can type the option he
wants into the string field using the keyboard.

Here's how the combo box works. Consider a program that contains a list of
selections. When the user pushes the button attached to the string field, a list
that contains those selections appears on the screen. When the user clicks on
the selection he wants, the item is copied into the string field, and then the

32

Getting Started with Zinc Programming



Dates

list disappears. Alternatively, the user can type the selection into the string
field directly, bypassing the pop-up list and saving time. Here's a
UIW_COMBO_BOX object:

|Ilem 0 l E

When we write Zinc programs that display date information or gather date
information from a user, we use objects of class UIW_DATE. These objects
display date information and allow the user to enter and modify date infor-
mation in different formats. Below is a UIW_DATE object:

0870871994

The default behavior of a Zinc date object is to display the date in a format
native to the language and locale under which the program's running. How-
ever, by passing to the constructor certain styles, we can override any lan-
guage or localization information.

Here's a list of all the different styles Zinc's date class supports, and a sample
of how dates look using these styles.

TABLE 2. Date styles

Long month Displays the entire name of the ~ 3-28-1990

month as an ASCII string 12-04-1980
value. 1-3-2003
Dash Separates each date variable 3-28-1990
with a dash. 12-04-1980
1-3-2003
Day of Displays the day-of-week asan ~ Monday May 4, 1992
week. ASCII string value. Friday Dec. 5, 1980

Sunday Jan. 4, 2003

European Displays the date in the Euro- 28/3/1990

format. pean format of day/month/year. 4 December, 1980
3 Jan., 2003

Japanese Displays the date in the Japa- 1990/3/28

format. nese format of year/month/day. 1980 December 4
2003 Jan. 3

Cgtting Started with Zinc Progranjmi':ing 33



Window Objects

TABLE 2. Date styles

Military for-
mat.

Short day of
week.

Short

month.

Short year:

Slash.

Uppercase.

U.S. format.

Zero fill.

Displays the date in the format
day month year, where month is
either a three-letter abbreviated
word, and, if the

DTF_SHORT _YEAR or
DTF_SHORT_MONTH flags
are set, year is a two-digit year
value. If those flags aren't set,
month is spelled out, and year
is a four-digit value. May be
overridden with other date
styles.

Displays shortened day-of-
week value with the date.

Displays a shortened alpha-
numeric month value with the
date.

Displays the year as a two-digit
value.

Separates each date value with
a slash.

Displays the date in uppercase
format.

Displays the date in the U.S.
format of, month/day/year,
regardless of the default coun-
try information.

Inserts zeroes before the year,
month, and day values when
their values are less than 10.

4 Jul 91
4 July 1991

Mon. May 4,
Dec. 5,

January 4,

Mar. 28, 1990
Dec. 4, 1980
Jan. 3, 2003

3/28/90
December 4,
Jan. 3, '89

3/28/90
12/04/1900
1/3/2003

MARCH 28, 1990
DEC. 4, 1980
SATURDAY JAN 3,

March 28, 1990
12/4/1980
Jan 3, 2003

Fri.
Sun.

'80

March 08, 1990
12/04/1980

01/03/2003

34

1992
1980

2003

2003



Geometry
management

lcons

Lists

Though geometry management isn’t a window object, it affects the way win-
dow objects display themselves in relationship to their parent windows and
other objects.

An object's geometry is its height, width, and location on its parent, and
geometry management is a feature that allows the location and size of other
objects to determine an object's geometry. For example, we can use Zinc's
geometry management to keep a button centered in its parent, regardless of
the parent’s size.

An icon is a small window that displays a graphic image that allows the user
to recognize information quickly. Zinc’s UIW_ICON class gives instances
of Zinc icons some standard behavior and properties. For example, when we
instantiate an icon of the UIW_ICON class, we can display it on a window
or attach it to the window as a the icon to which the window will minimize.

Below is an instance of the UIW_ICON class.

=

Lists provide a method of giving the user predefined, uneditable selections to
choose from. Because the user can choose only the selections that we give
him, we can ensure that our program can use those selections as valid input.

To give us a quick way to include lists in our Zinc applications, Zinc pro-
vides two list classes, UIW_VT_LIST and UIW_HZ_LIST, which display
selections either in a vertical list with one column, or a horizontal list with
one or more columns. The available selections are added to the lists as
instances of other Zinc objects, typically strings or buttons.

These are instances of vertical and horizontal list objects:

Item 1 L+ Item 1 Item b
Item 2 ltem 2 Item 7
Item 3 R Item 3 Item 8
Item 4 Item 4 Item 9
Item 5 Item 5 Item 10
Item 6 b

Item 7 + «f 1 [+

Get?ing Started with Zinc P?cogr;a;n;mg 35



Window Objects

MDI windows

Menus

The Zinc windows we've seen so far display themselves on screen indepen-
dently of each other; they can overlap and cover each other, but so far they
can't display themselves inside of another window. However, the popular
Microsoft Windows environment specifies a type of window called the MDI
window, or multiple-document interface window, that displays itself inside
another window, and so Zinc created its own MDI window object that we
can use to display windows inside other windows.

However, unlike other window objects we've discussed in this chapter,
Zinc's MDI window doesn't derive from its own class. A Zinc MDI window
is a normal Zinc window, but with a flag that tell the window to become an
MDI window. To instantiate an MDI parent and child window with Zinc, we
instantiate two windows, the first an MDI parent, and the second an MDI
child. However, we create these windows with the flag
WOAF_MDI_OBJECT; then we simply attach the child to the parent with
the overloaded + operator.

Zinc MDI parent windows behave like any other Zinc window; they may be
maximized, minimized, moved, or sized within the MDI parent. The only
restriction of MDI child windows is that they cannot move outside of their
parent—the parent window clips the child at the inside of their parent's bor-
der. Below is an MDI parent window that contains an MDI child window
and several minimized MDI child windows.

'=] Personal Assistant [~]~
File
=] Edit [+]=«
&
| =
2 {
Phone Book  Calendar  Computer  Calculator Disk.

In describing Zinc's more complicated window objects, we've discussed how
some of Zinc's objects present selections to the user. Now we're going to dis-
cuss what Zinc lets us do with menus. What sets menus apart from lists and
combo boxes? The crucial difference between menus, lists, and combo bars
is that menus provide an intuitive way to find functions associated with a
specific window.

36

Getting Started with Zinc Programming



Notebook

Numbers

In Zinc, menus of four components: pull-down menus and items, and pop-up
menus and items. The pull-down menu is the first level in the selection pro-
cess. Below is a typical window with a pull-down menu object that stretches
across the window below the title bar.

The pull-down menu consists of a pull-down item labelled File. This pull-
down item lists the types of functions that the user can access while this win-
dow is active; because this pull-down item groups similar functions together,
the user can find a function without sorting through the pull-down items.
When the user clicks on a pull-down item, the pull-down menu displays a
pop-up menu that lists those similar functions as pop-up items. Then in only
a few seconds, with only one mouse click and some mouse movement, the
user can merely click on a pop-up item and access that function. Here is a
menu object:

|

File

The Zinc notebook class, UUW_NOTEBOOK, offers an intuitive interface
for navigating around groups of related objects. An instance of a notebook
object has tabs like a notebook in the real world—except the notebook object
“turns” to the page when the user clicks on it. Here’s an instance of a note-
book object, taken from Zinc Designer:

General | SubObjects | Pasition [ Geomety | Advanced
----- Support Features ----- +
Title: |<untitled> ] [ Border
Minlcon: N F [:l Maximize Button
; l (None) —I;I [] Minimize Button
O System Button
Name: [<UNTITLED> I8 O Geomety M
y
Help: |(None) ,é] [] Vertical Scroll-Bar
[] Horizontal Scroll-Bar
..... Type -
& Default
l OK ' Cancel ] | Help I e +

Zinc gives us several classes for when we want our programs to display or
gather numeric information. Zinc supports three types of number fields with
the UIW_BIGNUM, UIW_INTEGER, and UIW_REAL classes.

Getting Started with Zinc PEEamming 37



Window Objects

The UIW_BIGNUM class displays numbers with up to 30 digits to the left
of the decimal point and eight digits to the right, by default. It also formats
numbers using percent signs, commas, and decimal places. The
UIW_INTEGER class displays numbers using the integer data type. The
UIW_REAL class displays real numbers and numbers in scientific notation
using double-precision, floating-point numbers. When an instance of the
UIW_REAL class displays numbers that are too long for the field, it uses
scientific notation so the user can view the entire number.

These are the display and entry styles we can use with the UIW_BIGNUM
class, in addition to examples of how these styles look.

TABLE 3. UIW_BIGNUM styles

Decimal. Shows the number with a decimal point at a fixed 10,000.00
location. 43.45
$149.95.
Currency.  Shows the number with the country-specific cur- ~ $10,000.00
rency symbol. DM100
£195
Credit. Shows the number with the appropriate credit (1000)
symbols whenever the number is negative. (23040)
(759)
Commas. Shows the number with commas in the appropri-  $10,000.00
ate positions. 45,000
1,195
Percent. Shows the number followed by a percentage 100%
symbol. 4.5%
10%

Scroll bar Scroll bars allow the user to scroll an object or its information using the
mouse. Both horizontal and vertical scroll bars can be created. A scroll bar is
created using the UIW_SCROLL_BAR class.

38 Getting Started with Zinc Programming



Slider

Spin control

Status bar

A slider is similar to a scroll bar, except that it doesn’t control another object;
instead it’s a standalone object. A slider lets us select a setting from a range
of values; it displays the current value in a range of values. A slider is cre-
ated using the UIW_SCROLL_BAR class by setting the SBF_SLIDER flag
in the constructor.

Many people who have worked with electronic equipment have used a dial
to quickly flip through a range of information. A dial gives us the ability to
test many values to find quickly the one we want without wasting a lot of
time. Zinc's spin control class, UIW_SPIN_CONTROL, is the window
object equivalent of a dial that lets users flip through a range of values to
find the one that works best.

A spin control instance displays the object's current value in a field, while
two buttons allow the user to increment or decrement that value. Our spin
control objects can use many Zinc window object classes, such as
UIW_BIGNUM, UIW_DATE, UIW_TIME, and so forth, to contain that
value. When instantiating a spin control object, we can tell the object to
increment or decrement its value by certain amounts that we specify.

Below is an instance of a Zinc spin control object:

[&]
20 H

Often, programs provide information about the status of some of its compo-
nents—for example, a program might display status information like the cur-
rent cursor location or the last key pressed. To make it easier for us to display
status information in our programs, Zinc gave us a class called
UIW_STATUS_BAR.

A Zinc status bar displays at the bottom of a window information about the
status of information in our program. To display this information we attach
time fields, date fields, number fields—anything that contains status infor-
mation—to the status bar, in the same way that we'd attach a window object
to a window.

Below is an instance of a Zinc status bar object:

08/09/94 @ | First name of customer
10:18;511 Hello Last name of customer

Getting Started with Z;nc;?;bgrgmmlnb 39



Window Obijects

String fields

A string is a set of characters upon which we can perform certain operations.
In Zinc, a string field is an object that displays or accepts from a user as
input a string, with or without special formatting, that takes up only one line
in a field. We'll often manipulate strings in our programs, so using an exist-
ing Zinc class instead of writing our own will save us a lot of time and work.

Zinc provides two classes for working with string fields, UIW_STRING
and UIW_FORMATTED_STRING. The UIW_STRING class allows us
to display and to gather from the user string information, whereas the
UIW_FORMATTED_STRING class does the same thing except it speci-
fies a format for the data that is entered and displays the data in that format.
For example, we would create a UIW_STRING field to accept the user's
name. But we would create a UIW_FORMATTED_STRING if we wanted
to accept the user's telephone number in the format (801) 785-8900, with
parentheses and a dash in the appropriate places.

Below is an instance of a string field object.

When we want to work with a Zinc string field, we pass to the string field object
special placeholder characters that represent how to format its encapsulated string
information. Though the UIW_STRING and UIW_FORMATTED_STRING
differ in how they format information, both classes share these placeholder charac-
ters along with common display styles. Here's a partial list of the display styles
these string field classes share:

TABLE 4. String-field display styles (partial list)

Lowercase Displays string in lowercase, no matter what its
original format.

Uppercase Displays string in uppercase, no matter what its
original format.

Spaces to Converts all spaces in the field to the underscore

underscores character.

Password- Doesn't echo characters as the user types in

style information.

Left justify Displays string at the leftmost border of the
field.

40

Getting Started with Zinc Pro;r;nfrfnin_g



Table

Text

TABLE 4. String-field display styles (partial list)

Right justify Displays string at the rightmost border of the
field.

Center justify Displays string in the center of the field.

A table is used to present lists of information to the user. Often the informa-
tion is comprised of multiple, related fields. The table can display headers to
describe the contents of each row and column of data.

Larry 111111111

Moe 222-22-2222
Curly 333-33-3333
Einstein 444-44-4444

Besides working with strings, manipulating text is one of the most common
things we'll do in writing graphical applications, so using Zinc's text class
will save us a lot of time and work. We can think of Zinc's text class as a
multiline string field class, except that we can attach scroll bars to our text
objects and that some of the custom display options can’t be used with the
text class.

Zinc's text class, UIW_TEXT, allows us to display and to gather from the
user text information; with UIW_TEXT we can use many of the custom dis-
play styles of the UIW_STRING class, in addition to functionality specific
to a text object, such as cursor movements. For example, Zinc text objects
include the built-in capability for moving to the beginnings and ends of
words, lines, and pages, in addition to scrolling up and down pages and
wrapping words that extend beyond the boundaries.

Below is an instance of the UIW_TEXT class.

This is a text field,
used to display
multiple lines of text.

We should use UIW_TEXT objects for multiline text information, and use
the UIW_STRING objects for single line information.

Getting Started with Zinc Prbgraim;lzn_c; M



Window Objects

Time

42

Additionally, when we instantiate a Zinc text object, we can use the
WOF_NON_FIELD_REGION flag to cause our text to take up all the avail-
able space inside the window's border. For example, a help window always
contains the basic window objects we discussed at the beginning of this
chapter, as well as a UIW_TEXT field that dynamically fills the window.

We can use Zinc's time field objects whenever we want to display time infor-
mation or gather time information from the user. Time field objects, created
using the UIW_TIME class, display time information and allow the user to
enter and modify time information in many different international formats.

Below is an instance of the UIW_TIME class.
|L[I:41 p.m. l

The default behavior of a Zinc time field object is to display the time in a
format native to the language and locale under which the program's running.
However, with certain Zinc flags, we can override any language or localiza-
tion information.

Here are the different styles Zinc's time field class supports, and a sample of
how time styles look.

TABLE 5. Time styles

Colon sepa- Separates each time variable with a 12:00
rator. colon. 13:00:00
12:00 a.m.
Hundredths. Includes hundredths value in the time, 1:05:00:00
which otherwise is not included. 23:15:05:99
7:45:59:00 a.m.
Lowercase. Shows time in a lower-case format. 12:00 p.m.
1:00 a.m.
7:00 p.m.
No separator. ~ Does not use separator characters to 120
delimit time values. 130000
17500
Seconds. Includes seconds value in the time, which ~ 8:09:30
by default is not included. 14:00:00
3:24:59 p.m.

Getting Started with Zinc 'Prograrm;ﬁirrrgﬁ



TABLE 5. Time styles

Twelve-hour Shows time using a 12-hour clock, 12:00 a.m.
clock. regardless of the default information. 1:00 p.m.
5:00 p.m.
Twenty-four Shows time using a 24-hour clock, 12:00
hour clock. regardless of the default information. 13:00
17:00
Uppercase. Shows time in an upper-case format. 12:00 P.M.
1:00 A.M.
7:00 P.M.
Zero fill. Fills hour, minute and second values with ~ 01:10 a.m.
zeroes when times values are less than 13:05:03
10. 01:01 p.m.
Tool bars Tool bars display at the top of a window and are used to provide quick access

to commonly used features. Tool bars are useful because, like pull-down
menus, they provide an intuitive way to access functions associated with a
specific window; but in providing a single button for accessing that function,
they save mouse clicks and movements and therefore they save time and
work. In Zinc, tool bars of the UIW_TOOL_BAR class can contain Zinc
objects like icons, buttons with bitmaps, strings, combo boxes, and so forth.

Below is an instance of the UIW_TOOL_BAR class.

= Tool Bar Window [=l-
Defaults |08 August 1994 | = Hard
Other Any window object that comprises and conforms to the operating protocol
programmer- defined by the UL_WINDOW_OBJECT base class.
defined window
objects

Getting Started with Zinc Programming 43




Window Objects

Editing window
objects

44

Conclusion

7&1‘%_&7 Started with Z?hc\Projc)ralﬁming R

Users can edit certain window objects, notably String, Formatted String,
Text, Number, Date, and Time. All editable window objects support the
following features:

TABLE 6. Features of editable window objects

Mark Marks part of the current field for cutting or copying. Marked
regions are shown as shaded regions.

Cut Cuts the marked contents of the current field and stores it in a
paste buffer. This data can later be pasted into any other field, as
long as the information is valid for that field type. For example,
the text *400” could be pasted into a numeric, string or text field,
but not in a check box.

Copy Copies the marked contents of the current field and stores it in a
paste buffer. This data can later be pasted into any other field, as
long as the information is valid for that field type.

Paste Copies the contents of the paste buffer into the current field. Data
can be pasted into any field, as long as the information is valid for
that field type.

In this chapter, we've learned about Zinc's window object classes, includ-
ing what they do and how they work. Besides borders, titles, maximize but-
tons, minimize buttons, and system buttons, which are the most basic
window objects in the Zinc library, we can use Zinc window object classes,
all operating-environment independent, for accomplishing many things.
These things include using dates and times with international formats, using
pull-down menus and tool bars, offering selections in vertical and horizontal
lists, displaying MDI windows, and manipulating strings and text.

In the next chapter we'll learn about issues of writing Zinc programs for mul-
tiple operating environments.



Chapter 4

Programs

Writing
Multiplatform

In the last chapter, we learned the contents of Zinc’s window and window
object classes, including what each does and how it works. In this chapter,
we’ll discuss how Zinc enables us to write programs for multiple operating
environments.

- multiplatform application design
- special considerations of each environment

Getting Started with Zinc Programming 45



Writing Multiplatform Programs

About multiplatform programming in Zinc

Single source

Engines and
keys

Look and feel

Libraries

Writing a Zinc program for multiple operating environments requires only
one set of source code. This is an important benefit of Zinc. Since we only
need to write one program for all our operating environments, we don’t have
to juggle multiple sets of source code, making multiplatform development
easier.

Zinc consists of two parts, the Engine and the Key. With the Engine and the
appropriate key, we can compile DOS text, DOS graphics, Windows and
Windows NT, OS/2, Macintosh, Motif, Curses, and NEXTSTEP programs
from the same set of source code.

The Engine includes all of Zinc’s code that is independent of specific operat-
ing environments. It also includes collateral such as this manual. The Key
includes precompiled libraries for our target operating environment, the
source code for the display class, and Zinc Designer.

An important Zinc goal is to allow our programs to look and feel native to
the environment for which they were compiled—for example, Zinc wants
our DOS applications to look and feel like DOS applications, our OS/2
applications to look and feel like OS/2 applications, and so forth. Zinc wrote
its libraries with windows and window objects for each operating environ-
ment it supports. This way, we don’t have to know the low-level details of
each environment, but can still access them directly if we wish. This means
our Zinc programs will look and feel native to our target environments
because they are native—and users will accept our programs without a sec-
ond thought.

Zinc’s source code for windows, window objects, and event handling for
each operating environment lives in certain library files, named for specific
things in each environment. For example, the DOS libraries are called
DOS_ZIL.LIB. This is the file we must link into the executable if we want
to write Zinc applications for DOS. For a complete list of all the library files
Zinc includes, consult “Appendix A, Compiler Considerations.”

46

Getting Started with Zinc Programmingﬂ



Compiler
options

Main()

Event handling

When writing a Zinc program for a target operating environment, pay special
attention to the following compiler options:

Application type. If your compiler can compile executables for multiple
environments, select the compiler option to create the application as an exe-
cutable for the target environment.

Memory model. If you are building an application for an operating system
that supports multiple memory models, you must use the large memory
model since this is the only model Zinc supports in those environments.

Ordinary C++ programs call main( ) as their first function, and Zinc pro-
grams are no different. However, in Zinc we can create the main( ) function
in two ways. The first is to create the Main( ) function in the Zinc class
UI_APPLICATION. This class provides our programs with a main( ) or
WinMain( ) function, depending on whether our target environment is DOS
or Windows; this class also initializes the display, Event Manager, and Win-
dow Manager. The second way is to write the main( ) function ourselves and
initialize the display, Event Manager, and Window Manager by hand.

Zinc designed the UI_APPLICATION class to handle much of the work of
setting up the infrastructure needed to run a Zinc program under multiple
operating environments. This infrastructure includes the display, the Event
Manager, and the Window Manager. We recommend that you use
UI_APPLICATION::Main( ) wherever possible to set up that infrastruc-
ture.

In Zinc, each window object contains an Event( ) function that processes
messages as appropriate for the target operating environment. We can clas-
sify event handling into two types: top down and bottom up.

In top down environments, the Event Manager receives events from input
devices such as the keyboard and mouse, which it places in the event queue.
Then the main event loop takes each event from the queue and dispatches the
event to the Window Manager, which processes the event with its own
Event( ) function, and determines whether or not it can respond to the event.
If the Window Manager can, it performs an action and passes control back to
the main event loop; but if the Window Manager cannot, it passes the event
to the current window, which then processes the event with its own Event( )
function. If it can, the window performs an action, but if it cannot, it passes it
to the current window object, which responds to the event.

WﬁGetting Started with Zinc Programming 47



Writing Multiplatform Programs

In bottom-up environments, the operating environment receives events from
input devices such as the keyboard and mouse, and processes the event in a
black box; inside the black box, the operating environment determines which
object the event is supposed to go to. When the system processes the event, it
dispatches the event to the current window object, which then determines
whether or not it can respond to the event. If the window object can, it per-
forms an action and returns control to the operating system; but if it cannot,
it may pass the event to its parent window for processing. Because the events
pass from the bottom, the current window object, to the top this type of event
handling is called bottom up.

When writing Zinc programs for different operating environments, be sure to
take into account how each environment processes events, because if we
write a Zinc program to deploy on DOS and Windows, each environment
handles events differently than the other. For example, if we write a Zinc
program for DOS that traps keyboard events, no matter what window object
is current, we might create a window that traps events since all events go
through the window. This does not hold true for Windows, so if we run our
program under Windows, the window will only trap messages if no other
window objects are current. Be sure to take into account event handling for
each target operating environment, so that you can write your programs to
handle events properly.

Exequtable So you can easily identify the environment for which you’ve compiled your
naming executable, Zinc maintains the following naming conventions for executa-
conventions bles:
TABLE 7. Naming conventions for executables

Environment Convention

DOS hellol

DOS 16-bit hello116

DOS 32-bit hello132

Macintosh Hellol

NEXTSTEP hellol

0S/2 ohellol

OSF/Motif hellol

Windows 3.x whellol

Windows NT nhellol
48 Getting Started with Zinc Programming



Shipping Be sure to include the following run-time files when you ship your finished
applications applications:

.DAT files (generated by Zinc Designer) required by your applications.
I18N.DAT required by globalized applications.

UNICODE.FNT required by double-byte (Unicode) applications run-
ning in DOS graphics mode.

YOU MAY NOT INCORPORATE INTO YOUR APPLICATION OR
DISTRIBUTE AS PART OF YOUR APPLICATION ANY PORTION
OF ZINC DESIGNER WITHOUT THE EXPRESS WRITTEN PER-
MISSION OF ZINC.

DOS

Look and feel In DOS, a Zinc application follows IBM's SAA/CUA specification for the
display and input devices. Using Zinc libraries, we can compile Zinc pro-
grams that run in DOS text and graphics, in both real and protected modes.

DOS libraries The DOS version of Zinc has been compiled into a single library file called
DOS_ZIL.LIB. When creating a DOS application, we must link
DOS_ZIL.LIB, and, if our program is designed to run in DOS graphics
mode, the appropriate graphics display class library as well, into the .EXE
file.

Compiler When creating a DOS application, select the following compiler options:
options
DOS program. If your compiler can compile executables for other environ-
ments in addition to DOS, select the compiler option to create the application
as a DOS executable program.

Large model. Set the compiler to the large memory model. Since Zinc only
uses the large memory model, we must ship all our applications with the
large memory model.

See “Appendix A—Compiler Considerations” for more information regard-
ing compiler-specific options.

Getfing Started with Zinc Pr@rammfng 49




Writing Multiplatform Programs

main()

Ordinary C++ programs begin with calling main( ) as the first function.
Zinc-based applications for DOS are no different. We may create the main( )
function in our DOS programs by using the UI_APPLICATION class,
which contains a main( ) function, and also initializes the display, Event
Manager, and Window Manager. Or we may create our own main( ) function
and initialize the display, Event Manager, and Window Manager by hand.

Mndgws

Look and feel

Windows
libraries

Compiler
options

In Windows, a Zinc application is an actual Windows application built with
actual Windows objects. When writing Zinc programs, we have full access
to the Windows API and Windows resources, including writing Win32 appli-
cations that run under the Win32s extensions for Windows 3.1 and Windows
NT.

The Windows version of Zinc has been compiled into a single library file
called WIN_ZIL.LIB, and a Windows NT library file called WNT-
_ZIL.LIB. When creating a Windows application, we must link WIN-
_ZIL.LIB, or, if we’re compiling a program for Windows NT,
WNT_ZIL.LIB, into the .EXE file.

When creating a Windows application, be sure to select the following com-
piler options:

Windows application. If your compiler can compile applications for other
environments in addition to Windows or Windows NT, select the compiler
option to compile the program into a Windows or Windows NT executable.

Large model. Set the compiler option to compile using the large memory
model. Since Zinc ships only with the large memory model, all Windows
programs must also use the large memory model.

See “Appendix A—Compiler Considerations” for more information regard-
ing compiler-specific options.

50

Getting Started with Zinc Progrrémrmingm



WinMain()

Ordinary C++ programs begin with main( ) as the first function. However,
when writing Zinc programs for Windows or Windows NT, we create instead
a function called WinMain( ), which Windows uses to begin executing an
application. Here is the definition of WinMain( ):

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow);

We can create the WinMain() function two ways. The first is to use
UI_APPLICATION::Main( ), which contains the WinMain( ) function,
and also initializes the display, Event Manager, and Window Manager. Zinc
recommends using UI_APPLICATION::Main( ) to promote portability
between operating environments and to ease program design.

The second way is to create the WinMain( ) function in our program and
initialize the display, Event Manager, and Window Manager by hand. The
following code sample demonstrates this technique:

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)
{
// Initialize the environment dependent display.
UL DISPLAY *display =
new UI_MSWINDOWS DISPLAY(hInstance, hPrevInstance, nCmdShow);

// Create the event manager and add devices.
UI_EVENT MANAGER *eventManager = new UI_EVENT MANAGER(display);
*eventManager

+ new UID KEYBOARD

+ new UID MOUSE

+ new UID CURSOR;

// Create the window manager.

UI WINDOW MANAGER *windowManager = new UI_WINDOW MANAGER(
display, eventManager);

// Clean up.

delete windowManager;

delete eventManager;
delete display;

return (0);

7Gett;'ng Started with Zinc Pro:c}famming 51



Writing Multiplatform Programs

Look and feel

0S/2 library

main( )

0S/2

In OS/2, a Zinc program is an actual OS/2 application built with actual OS/2
objects. When writing an OS/2 application, we have full access to the OS/2
API and OS/2 resources.

The OS/2 version of Zinc has been compiled into a single library file called
OS2_ZIL.LIB. When creating an OS/2 application, we must link
OS2_ZIL.LIB into the .EXE file.

Ordinary C++ programs begin with calling main( ) as the first function.
Zinc-based applications for OS/2 are no different. We may create the main( )
function in our OS/2 programs by using the ULl_APPLICATION class,
which contains a main( ) function, and also initializes the display, Event
Manager, and Window Manager. Or we may create our own main( ) function
and initialize the display, Event Manager, and Window Manager by hand.

Macintosh

Look and feel

In Macintosh, a Zinc program is an actual Macintosh application built with
actual Macintosh objects. When writing a Macintosh application, we have
full access to the Macintosh Toolbox and Macintosh resources.

Macintosh The Macintosh version of Zinc has been compiled into several library files,
libraries listed in the table below.
TABLE 8. Macintosh library files

Library Function

Mac_ZIL1 Global code and international classes

Mac_ZIL.2 Device classes

Mac_ZIL3 Window Manager and window object classes

Mac_ZIL4 UIW_WINDOW classes

Mac_ZIL5 Window support classes
52 Getting Started with Zinc Programming



main( )

TABLE 8. Macintosh library files

Library Function

Mac_ZIL6 Date and time classes
Mac_ZIL7 String and text classes
Mac_ZIL8 Window-derived classes
Mac_ZIL9 Button-derived and table classes
Mac_ZIL10 Number classes

UI_JumpTables Global object table
UI_Application UI_APPLICATION code
ZIL_Storage Storage code

Mac_ZIL.rsrc Macintosh-specific code

When creating a Macintosh application, we must link some or all of these
libraries into the .EXE file, depending on what functionality we need in our
application. For example, if we wanted to use the UL_APPLICATION class
in our Macintosh program, we would include the library UI_Application.

Ordinary C++ programs begin with calling main( ) as the first function.
Zinc-based applications for Macintosh are no different. We may create the
main( ) function in our Macintosh programs by using the
UI_APPLICATION class, which contains a main( ) function, and also ini-
tializes the display, Event Manager, and Window Manager. Or we may create
our own main( ) function and initialize them by hand.

OSF/Motif

Look and feel

OSF/Motif
libraries

In OSF/Motif, a Zinc application is an actual OSF/Motif application built
with actual OSF/Motif widgets. When writing Zinc programs, we have full
access to the OSF/Motif toolkit, Xt Intrinsics, X Library, and all X resources.

The OSF/Motif version of Zinc has been compiled into a single library file
called lib_mtf zil.a. When writing an OSF/Motif program, we must link
lib_mtf zil.a, as well as libXm.{a, so, sl}, libXt, libX11, and the Xm
library, into the executable file. We may have to change some source code to

Getting Started with Zinc Programming 53



Writing Multiplatform Programs

main()

Shipping
applications

Look and feel

Curses libraries

Ge?mg Started with Zinc Proé%ahming

use the OSF/Motif Key on hardware platforms not directly supported by
Zinc. See the README file for a list of currently supported hardware plat-
forms.

Ordinary C++ programs begin with calling main( ) as the first function.
Zinc-based applications for OSF/Motif are no different. However, the
main( ) function for OSF/Motif does require the standard argc and argv
parameters. When the OSF/Motif display is created, these parameters are
passed to the Xt Intrinsic initialization routines, which allow Zinc applica-
tions to use X command-line options, such as other displays, colors, fonts,
and so forth.

There are two ways to implement the main( ) function in our OSF/Motif
programs. The first is to use the UL_APPLICATION class, which provides
the main( ) function, and also initializes the display, Event Manager, and
Window Manager. Or we may create our own main( ) function and initialize
the display, Event Manager, and Window Manager by hand.

In addition to the files specified at the beginning of this chapter, be sure to
include this additional run-time file when you ship your finished Motif
applications:

ZincApp.ad, which provides your Zinc applications with defaults.

Curses

In Curses, a Zinc application uses the Curses library to perform terminal
screen /0.

The Unix Curses version of Zinc has been compiled into a single library file
called lib_crs_zil.a. When writing a Curses program, we must link
lib_crs_zil.a into the executable file. We may have to change some source
code to use the Curses Key on hardware platforms not directly supported by
Zinc. See the README file for a list of currently supported hardware plat-
forms.



main()

Ordinary C++ programs begin with calling main( ) as the first function. Zinc
applications for Curses are no different.

There are two ways to implement the main( ) function in our Unix Curses
programs. The first is to use the UL_APPLICATION class, which provides
the main( ) function, and also initializes the display, Event Manager, and
Window Manager. Or we may create our own main( ) function and initialize
the display, Event Manager, and Window Manager by hand.

NEXTSTEP

Look and feel

NEXTSTEP
library

main()

Event handling

In NEXTSTEP, a Zinc program is an actual NEXTSTEP application built
with actual NEXTSTEP objects. When writing a NEXTSTEP application,
we have full access to NEXTSTEP and its resources, with the exceptions of
drag and drop and object linking.

The NEXTSTEP version of Zinc has been compiled into a single library file
called lib_nxt_zil.a. When creating a NEXTSTEP application, we must link
lib_nxt_zil.a into the executable.

Ordinary C++ programs begin with calling main( ) as the first function.
Zinc-based applications for NEXTSTEP are no different. We may create the
main( ) function in our NEXTSTEP programs by using the
UI_APPLICATION class, which contains a main( ) function, and also ini-
tializes the display, Event Manager, and Window Manager. Or we may create
our own main( ) function and initialize the display, Event Manager, and
Window Manager by hand.

A Zinc window object running under NEXTSTEP contains an Event( )
function that processes messages using NEXTSTEP responder methods such
as -mouseDown, as well as delegate methods for classes such as Window.

Getting Started with Zinc Prdgramming 55



Writing Multiplatform Programs

Conclusion

In this chapter, we discussed how Zinc enables us to write programs for mul-
tiple operating environments. Since different operating environments require
different main( ) functions, writing programs for multiple operating environ-
ments can be eased with UI_APPLICATION::Main( ). Each operating
environment requires that we use certain libraries, and that we take into
account differences in event handling between environments.

In the next chapter, we’ll discuss event handling in greater detail and explain
more how top-down and bottom-up event handling works.

56

Getting Started with Zinc Programming



Event Flow and
Mapping

In the last chapter, we discussed how Zinc enables us to write programs for
multiple operating environments. In this chapter, we’ll discuss how events
flow through the system and how Zinc maps events. As stated earlier, Zinc
programs are event driven, which means that at their core they contain a
main event loop which spins in the background, catching events and dis-
patching them to the appropriate places. In Zinc, each window object con-
tains an Event( ) function that handles events as appropriate for the target
operating environment. And each environment may handle events in a top-
down or bottom-up manner. What follows is a discussion of how this works.

toﬁ—down and bottdm-up event handling

eventmap tables

palette mapping

Getting Started with Zinc Programming 57



Event Flow and Mapping

Top down

58

In top down environments, the Event Manager receives events from input
devices such as the keyboard, mouse, and perhaps the operating environ-
ment, and places the events in the event queue. The main event loop takes
the event from the queue and sends it to the Window Manager, which pro-
cesses it with its own Event( ) function. Then the object determines whether
or not it can respond to the event. If it can, it performs an action and returns
control to the main event loop; but if it cannot, it passes the event to the cur-
rent window, which processes the event with its own Event( ) function. If it
can, the window performs an action, but if it cannot, it passes it to the current
window object, which responds to the event. This continues until an object
processes the event or when the event comes to an object with no children.

The following diagram represents event flow in a program running under a
top down environment. The program contains two windows; the current win-
dow contains a UIW_GROUP object, which in turn contains several check-
box objects, while the noncurrent window contains no objects. The Window
Manager, the current window, and the current object maintain three pointers,

first, current, and last, which are the first object, the current subobject, and

the last object below each.

Here’s how events flow when the user presses a key.

1. First, the keyboard press sends an event to the Window Manager, which
tries to interpret the event and fails. It then passes the event to the current
window.

2. The window tries to interpret the event and fails. It then passes the event
to the UIW_GROUP object since it is the current object on the window.

3. The UIW_GROUP object tries to interpret the event and fails. It then
passes the event to the checkbox object that is current in the group.

4. The checkbox tries to interpret the event by looking in the event map
table. If the event maps into an event it can process, it does so.

5. Then the subobject returns a control code (not shown) indicating whether
or not it processed the event.

Getting Started with Zlngbraérammlngj 7



o The Window Manager tries to inter-

Ul WINDOW MANAGER pret the keyboard event.

[HVOgAIr

The appropriate window tries to
interpret the keyboard event.

-

Window 1
(current)

Window 2
(noncurrent)

The appropriate object tries to inter-
pret the keyboard event.

uaLind
- EEERER R N

The appropriate subobject inter-
prets the keyboard event.

Getting Started with Zinc 'Prbéfamming 59



Event Flow and Mapping

Bottom up

In bottom up environments, although the operating environment processes
events from input devices such as the keyboard and mouse that are related to
the system, the Event Manager still receives the input first, turns it into a
Zinc event, and hands it to the Window Manager.

If the event isn’t a native event, the event will flow from top to bottom as it
does in a top down environment. But when it is a native event, the Window
Manager hands the event to the system. When the system processes the
event, it sends it to the current low level window object, which determines
whether it will respond to the event. If it responds to the event, it returns con-
trol to the operating system; but if it doesn’t, it may pass the event to its par-
ent window, which then may process the event with its own Event( )
function. Because the events pass from the current window object on the bot-
tom, to the top, this type of event handling is called bottom up.

The following diagram represents event flow in a program running under a
bottom up environment. Again, the program contains two windows; the cur-
rent window contains a UIW_GROUP object, which in turn contains sev-
eral checkbox objects, while the noncurrent window contains no objects.

Here’s how events flow when the user presses a key.

1. First, the key press causes the Event Manager to send an event to the
Window Manager, which tries to interpret the event and fails. It then
passes the event to the operating environment.

2. The operating environment, in a black box, sends the object to the current
subobject.

3. The checkbox tries to interpret the event by looking in the event map
table. If the event maps into an event it can process, it does so.

60

Getting Started?ithiz;'hc;ograﬁrnﬁn;



The Window Manager tries to interpret the keyboard event
and sends it to the operating environment, a “black box.”

Ul_WINDOW_MANAGER

A

BLACK BOX

1S4

Window 2
(noncurrent)

Window 1
(current)

The “black box” dispatches the
event to the current subobject.

wauno

1844

N
2

*
¢
*
*

1S4}
(‘00
*

o @
ﬁ@o . '
/4 g A
S¢

Subobject 1 Subobject 2 Subobject 3

The current subobject interprets the event.

Getting Started with Zinc Programhwﬁg} 61



Event Flow and Mapping

When writing Zinc programs for different operating environments, be sure to
take into account how each environment processes events, because if we
write a Zinc program to deploy on DOS and Windows, both environments
handle events different from each other. For example, if we write a Zinc pro-
gram for DOS that traps keyboard events, no matter what window object is
current, the window itself gets events. This does not hold true for Windows,
so if we run our program under Windows, the window will only process
events if the operating environment thinks it ought to get them. Be sure to
take into account event handling for each target operating environment, so
that you can wrtite your programs to handle events properly.

Event processing

Here’s how events get processed in Zinc. When either the Window Manager
or the black box dispatches an event to an object, C++ ensures that it gets
sent to the most derived object. Notice in the following diagram that the
most derived object, the one that we derive from an existing Zinc object,
receives the event first. If our object’s Event( ) function can’t process the
event, it should send it to the next most derived object, and so on. The bene-

62

Getting_Started with Zinc Programming



fit is that we can extend Zinc—because we know that our object can receive
an event before any other predefined object, we can add custom functionality
to our objects that override Zinc functionality.

Here’s what should happens when derived objects process events:
1.
2.

Our custom object receives an event for processing.

If the most derived object, our custom object, cannot process that event,
it passes it up to the next most derived object, UIW_VT_LIST, for pro-
cessing.

If UIW_VT_LIST cannot process that event, it passes it up to the next

most derived object, UIW_WINDOW, for processing.

If UIW_WINDOW cannot process that event, it passes it up to the next
most derived object, UL_WINDOW_OBJECT, for processing.

If UL_ WINDOW_OBJECT cannot process that event, it passes it up to
the operating system for processing (if applicable), or returns a control
code indicating it could not process the event.

Getting Started with Zinc Programniing | 63



Event Flow and Mapping

Event map table

In Zinc, event map tables list important events that input devices can send,
and how Zinc objects interpret those events. Zinc’s event mapping conforms
to the key assignments of each operating environment’s specifications. For
example, a Zinc application running under Windows would conform to
IBM's Common User Access Panel Design and User Interaction specifica-
tion. And a Zinc application running under NEXTSTEP would conform to
NeXT’s user interface guidelines.

Here’s how map tables work. The following portions of eventMapTable,
which is a static table accessed by UL WINDOW_OBJECT::eventMapT-
able, define how a window object interprets events generated by the key-
board and mouse:

static UI_EVENT MAP eventMapTable[] =

{
{ ID WINDOW OBJECT,I, NEXT,E KEY,TAB },
{ ID WINDOW OBJECT,I, PREVIOUS,E KEY,BACKTAB },
{ ID WINDOW OBJECT,I, SELECT,E KEY,ENTER },

{ ID WINDOW OBJECT,I, CONTINUE SELECT,E MOUSE,M LEFT },

// End of array.
{ ID_END, 0, 0, 0 }
}i

An event map table entry is composed of the identification for the type of
object, the logical event, the device type that produced the message, and the
raw scan code of the event. In our example, a window object will process an
L_NEXT message when a user presses the <Tab> key.

Not only does Zinc's event mapping allow different devices to generate the
same logical message, but it also allows different objects to interpret the
same event in different ways. This is a strong benefit to programming in
Zinc. Because each object can respond differently to events, we don’t have
to write code to decipher how each object should behave in context of our
program; we need only tell the object to perform a method appropriate to
how it operates.

For example, the following portion of an event map table defines how a
string object will interpret events.
{ ID_STRING,L_BEGIN_MARK,E_MOUSE,M LEFT | M_LEFT_CHANGE},

{ ID STRING,L CONTINUE MARK,E MOUSE,M LEFT},
{ ID STRING,L END MARK,E MOUSE,M LEFT CHANGE},

64

Getting Started with Zinc Programming 7



Event mapping
algorithm

Palette mapping

A string interprets a click on the left mouse button as a mark operation
instead of a select operation. If a string object couldn’t respond differently, it
would have to override the select operation in order to set the mark opera-
tion, causing us to write more code than necessary.

When the object receives an event, the mapping algorithm walks through the
map table and searches for the best match according to the object's and the
device’s identification, the raw scan code, and the input modifier, usually the
keyboard shift state, associated with the event. For example, if the user
presses the left mouse button while the cursor is positioned in a string object,
the application will scan the map table until the best possible match is found,
shown below:

{ ID STRING,L BEGIN MARK,E MOUSE,M LEFT | M LEFT CHANGE }

As a result, the mark operation will begin within the string object. When the
application interprets the L_END_MARK logical message, the mark opera-
tion will be finished.

Zinc uses palette mapping to provide a way for objects to paint themselves
when in different states. Palette mapping takes the state of an object and
gives it a palette to use to paint itself.

UI_PALETTE, the Zinc palette class, is the set of colors an object uses
when drawing itself; the colors it uses depends on the mode of the display,
such as color text mode, color graphics mode, mono text mode, mono graph-
ics mode, and so forth. An object gets a palette when it draws itself. We can
describe a palette in terms of its graphics mode and foreground and back-
ground color; for example, a palette may contain a red foreground and a blue
background for color graphics mode.

UI_PALETTE_MAP contains an object ID, such as /ID_WINDOW_OBJ-
ECT, ID_WINDOW, or ID_LIST_ITEM,; a logicalPalette, such as PM_ACT-
IVE, PM_SELECTED, PM_CURRENT, PM_ANY; and the corresponding
UI_PALETTE.

A palette map table is a lookup table that is an array of UI_PAL-
ETTE_MAP:s.

Getting Started with Zinc Programl;)'ng 65



Event Flow and Mapping

When a WOS_OWNERDRAW object should draw itself, Zinc calls its Draw-
Item( ) function. The control code, passed to the DrawItem( ) function, tells
the object why it should draw—for example, it may receive an S_CURRENT
control code. The object uses the control code when calling the Zinc Logi-
calPalette( ) function, which will look at the control code and the current
state of the object in woStatus, such as active, current, inactive, selected, and
so forth. LogicalPalette( ) will use the control code and current status to
come up with a logical palette, determined by ORing together PM_ flags.

LogicalPalette( ) will call UI_ PALETTE_MAP::MapPalette( ), passing
in the object’s palette map table, the LogicalPalette determined above, and
five IDs, which are found in windowID. MapPalette( ) searches the palette
map table, comparing IDs and the logical palette to find the appropriate
UI_PALETTE. This UI_PALETTE is used when calling the display’s
drawing functions.

Most graphics libraries have special ways of using colors, and to make it eas-
ier for us to let us use the colors we want in our Zinc programs, Zinc pro-
vided concepts called palettes, palette maps, and palette map tables. For
example, the UI_BGI_DISPLAY has a protected member function called
MapColor( ) that maps Zinc UI_PALETTE structure information to colors
understood by the Borland graphics library. Below is how this works:

1. Call the MapColor( ) function with two parameters, palette, a pointer to
a UI_PALETTE class, and foreground, which tells us whether we want
the foreground or background color.

COLOR UI_BGI_DISPLAY::MapColor(const UI_PALETTE *palette,
int foreground)

{

2. Next, we determine the type of display our program is running in, and get
the appropriate number of colors from the palette.

// Match the color request based on the type of display.
if (maxColors == 2)
return (foreground ? palette->bwForeground :
palette->bwBackground) ;
else if (maxColors < 16)
return (foreground ? palette->grayScaleForeground :
palette->grayScaleBackground) ;
return (foreground ? palette->colorForeground :
palette->colorBackground);

66

Getting Started with Zinc Programming



Whenever a window object draws information on the screen, it must map the
map logical values into Zinc values. To do so, it uses
UIL_WINDOW_OBJECT::MapPalette( ) to get the palette from the sys-
tem. MapPalette( ) then uses a specified mapTable to match the Zinc value
to a system palette. Zinc uses three predefined map tables for palettes called
normalPaletteMapTable, helpPaletteMapTable, and errorPaletteMapTable.
All window objects use normalPaletteMapTable, the UI_HELP_SYSTEM
window uses helpPaletteMapTable, and the UI_ERROR_SYSTEM win-
dow uses the errorPaletteMapTable.

Conclusion

In this chapter, we’ve discussed how events flow through the system, and
how Zinc maps events and palettes. In the next chapter, we’ll learn about
Zinc’s library classes, and how they provide a kind of periodic table of
objects with which we can build new objects.

Getting Started with Zinc Programming 67



Event Flow and Mapping

GettEStarted with Zinc Programming




Chapter 6

Library Classes

In the last chapter, we discussed how events flow and how Zinc maps
events. In this chapter, we’ll learn about what Zinc calls its library classes.
Library classes are the molecules and elements that make up Zinc programs.

Some of Zinc’s library classes contain properties and behaviors that are so
basic they cannot be reduced—these are the Zinc elements. Others, however,
are comprised of other Zinc library classes—these are the Zinc molecules
that combine Zinc elements to create entirely new properties and behaviors.
For example, lists and list elements are the smallest units of Zinc that contain

base classes j:v}
region lists ;
display classes

Getting Started with Zinc Programming 69



Library Classes

its own properties and behaviors, whereas the Event Manager and Window
Manager consist of lists and list elements. Here’s a table that describes
Zinc’s library classes.

TABLE 9. Zinc’s library classes

Base classes Lists and list elements. Most Zinc components are made up
of these base classes

Event Manager Input devices, the Event Manager, and their support classes

Window Manager ~ All Zinc window objects, the Window Manager, and their
support classes

Help system Context-sensitive help displayed in a Zinc window
Error system Run-time errors displayed in a modal dialog box
Screen display Low-level screen functions, which include managing

screen regions

Base classes—Zinc's periodic table

Zinc contains two base classes: UI_ ELEMENT and UI_LIST. Zinc calls
UI_ELEMENT and UI_LIST base classes because they do not derive from
other classes. In fact, we can think of Zinc’s base classes like a periodic table
of objects that consists of two elements. Below is the definition of these two
classes and their public and protected members:

class EXPORT UI_ELEMENT
{
friend class EXPORT UI_LIST;
public:
virtual ~UI_ELEMENT (void);
int ListIndex(void);
UI_ELEMENT *Next(void);
UI_ELEMENT *Previous(void);
protected:
UI_ELEMENT *previous, *next;
UI_ELEMENT(void);
}i

class EXPORT UI_LIST
{

70 Getting Started with Zinc Programming



friend class EXPORT UI_LIST BLOCK;
public:
int (*compareFunction)(void *elementl, void *element2);
UI LIST(int (*_compareFunction)(void *elementl, void
*element2) = NULL);
virtual ~UI_LIST(void);
UI_ELEMENT *Add(UI_ELEMENT *newElement);
UI_ELEMENT *Add(UI_ELEMENT *element, UI_ELEMENT *newElement);
int Count(void);
UI_ELEMENT #*Current(void);
virtual void Destroy(void);
UI_ELEMENT *First(void);
UI_ELEMENT *Get(int index);
UL ELEMENT *Get(int (*findFunction)(void *elementl, void *matchData),
void *matchData);
int Index(UI_ELEMENT const *element);
UI_ELEMENT *Last(void);
void SetCurrent(UI_ELEMENT *element);
void Sort(void);
UI_ELEMENT *Subtract(UI_ELEMENT *element);
UI_LIST &operator+(UI_ELEMENT *element);
UI_LIST &operator-(UI_ELEMENT *element);
protected:
UI_ELEMENT *first, *last, *current;
}i

The Event Manager has two main classes: UI_DEVICE and UI_EVENT_-
MANAGER. The UI_DEVICE class derives from UI_ELEMENT and is
used to define the operation of input devices. Its derivation from UI_ELE-
MENT allows other classes to be grouped together, in the form of a list.
Since the UI_ EVENT_MANAGER class derives from UI_LIST, it is able
to maintain a list of all attached devices. This derivation also allows the
Event Manager to control the operation and flow of event information from
the input devices.

The Window Manager has three major classes: UL WINDOW_OBJECT,
UI_WINDOW_MANAGER, and UIW_WINDOW. The UI_WINDOW-
_OBJECT class derives from UI_ ELEMENT, and serves as the base class
for all window objects, such as buttons, icons, and menu items. Because
UI_ WINDOW_OBJECT derives from UI_ELEMENT, we can combine
window objects inside a parent window. Similarly, because UI_WIN-
DOW_MANAGER derives from UIW_WINDOW, it can group window
objects in a list.

Getting Started with Zinc Programming 71



Library Classes

UI_ELEMENT

UL_LIST

The UIW_WINDOW class is unique because it acts like an element when
attached to the Window Manager, and it acts like a list because it contains
window objects such as a border, title bar, and so forth. Appropriately, this
class derives from both the UI_ELEMENT base class through the
UI_WINDOW_OBJECT class and the UI_LIST base class.

We’ve been discussing two base classes, U_ELEMENT and UI_LIST.
Technically, however, Zinc has a third base class called UI_DISPLAY,
which provides to all of Zinc’s displays some basic behaviors and draw func-
tions. But we will use this class only when deriving a display class, so we’ll
spend most of our time talking about the other base classes.

The UI_ELEMENT class defines an element by what it can do, which is
point to other elements directly before or after it in a list. It’s meaningless to
create an instance of UI_ ELEMENT, because the class merely describes the
basics of what elements can do, rather than describing more specialized
things, such as collecting input from users or displaying themselves on
screen. These things are left to classes such as input devices and window
objects that derive from UI_ELEMENT and thereby inherit the basic
behavior of elements and then add more specialized behavior. We’ll explain
more of what’s going on under the hood in the next chapter when we discuss
abstract classes.

The UI_ELEMENT class has two member functions, Previous() and
Next( ), which allow an element to point to the element directly before or
after it in a list. Here’s an example of how this works. The following code
adds three input devices, a keyboard, mouse, and cursor to the Event Man-
ager object, which we’ll discuss later in this chapter.

eventManager->Add (keyboard) ;

eventManager->Add (mouse) ;
eventManager->Add(cursor) ;

If the mouse were the current object, Previous( ) would return a pointer to
the keyboard, whereas a call to Next( ) would return a pointer to the cursor.

The UI_LIST class defines a list by what it can do, which is contain ele-
ments. While you can create an instance of UI_LIST, it usually doesn’t
make much sense because the class merely describes the basics of what lists
can do, rather than the more specialized things like receiving and responding
to input devices or display a collection of windows and window objects on

72

Getting Started with Zinc Programmin_c?



the screen. These things are left to objects such as the Event Manager and the
Window Manager that derive from UI_LIST, which inherit the basic behav-
ior of lists and then add some more specialized behavior.

The UI_LIST class has four member functions, First( ), Last( ), Add( ), and
Subtract( ), as well as + and -, which are overloaded operators that allow us
to add and delete elements to and from the list without using the correspond-
ing functions. Predictably, the First( ) and Last( ) member functions retrieve
the first or last element in the list. For example, First() would return a
pointer to the keyboard object, and Last( ) would return a pointer to the cur-
SOr.

The Add( ) and Subtract( ) member functions, along with the + and — oper-
ator overloads, add or subtract list elements to and from the list object. For
example, the two code samples below are equivalent.

eventManager->Add (keyboard) ;

eventManager->Add(mouse) ;
eventManager->Add(cursor) ;

or

*eventManager
+ keyboard
+ mouse
+ cursor;

Event Manager

Input devices

We introduced the Event Manager in “Introduction to Zinc” on page 11,
where we described it as Zinc's infrastructure for handling events and system
messages. Now we can elaborate by saying UI_ EVENT_MANAGER, the
main class of the Event Manager portion of Zinc, uses the list functions of
UIL_LIST and adds a queueBlock member variable to store events.

The Event Manager’s UI_LIST contains input devices, such as keyboards
and mouses, that collect events as the user works with the application. Zinc
defines how these input devices work in classes called UID_KEYBOARD
and UID_MOUSE, which derive from UI_DEVICE. UI_DEVICE is an
abstract class that defines the structure of input devices and how they work,

é:t?i:@ Started with Zinc Programming 73



Library Classes

The event queue

but which must be derived from. The UL_DEVICE class derives from the
UI_ELEMENT, which allows us to add input devices to the Event Man-
ager’s list of input devices, and contains virtual member functions not
present in UI_ELEMENT called Event( ) and Poll( ), which control how
input devices operate. These functions also allow input devices to place
events in the event queue, which we’ll discuss later in this section.

We can use the Event( ) function to send a message to an input device to
change its behavior. Zinc applications pass this message in event.type. Here
are some sample messages we can send to input devices:

D_OFE Tells the device to stop placing events into the Event Manager's
event queue. It will send no further input information until a D_ON message
is received.

D_POSITION. Changes the position of a device. For example, if the device
receiving this message were a cursor, the position of the blinking cursor
would be changed to the screen position given by event.position.

DM_WAIT. Changes the mouse pointer to an hourglass. The mouse is the
only input device that uses this message.

Where the Event( ) function controls how input devices operate, the Poll( )
function allows each device to place events in the Event Manager's event
queue. For example, the UID_KEYBOARD class uses the Poll( ) function
to check if the user has pressed any keys. If so, the Poll( ) function places the
resulting event in the Event Manager's event queue.

Just as the Event Manager derives from UI_LIST and adds additional
behavior, so does the event queue, a member variable of type
UI_QUEUE_BLOCK, which we’ll discuss in just a moment. The queue-
Block member variable stores all unprocessed events.

Three major classes make up the event queue: the UL_EVENT structure, the
UI_QUEUE_ELEMENT class, and the UI_QUEUE_BLOCK class.

74

Getting Started with Zinc Programming



The UI_EVENT structure contains the event, the type of which depends on
the type of «class that generated the message. For example,
UID_KEYBOARD sets the following event information:

_event.type always contains the value E_KFEY. This lets all receiving
objects know that event.key contains any related keyboard information.

_event.rawCode contains the keyboard's raw scan code.
_event.modifiers is a flag field indicating the keyboard shift states.

_event.key contains other keyboard information, such as the shift state
and the key’s value.

The UI_QUEUE_ELEMENT and UI_QUEUE_BLOCK classes store
event information in a list block. The UI_QUEUE_ELEMENT class
derives from UL_ ELEMENT and contains the event information.

The UI_QUEUE_BLOCK class derives from UI_LIST BLOCK and
stores UI_QUEUE_ELEMENT objects. Though it’s natural for Zinc to use
its own UI_LIST_BLOCK class to build the UI_QUEUE_BLOCK class,
Zinc also gains in performance through using these classes, which allow the
event queue to buffer event information before the application processes it.
By buffering events in a list block, Zinc doesn’t allocate and destroy mem-
ory every time it receives or dispatches a message, an slow process, thereby
increasing performance.

Window Manager

Window objects

The class UL WINDOW_MANAGER controls the flow of events to all
windows and manages the front to back ordering of windows (called the z-
order). UI_WINDOW_MANAGER derives from UIW_WINDOW and
uses a virtual Event( ) member function to process messages it receives from
the main event loop.

The UIW_WINDOW part of the Window Manager contains a list of active
windows, and each window contains a list of its window objects. Since win-
dow objects derive from UI_ ELEMENT, they know how to belong to the
list that the Window Manager maintains.

_Getting Started with Zinc Programming 75



Library Classes

Event member
functions

Each Zinc window object derives from the UL_WINDOW_OBJECT base
class, which defines the structure and behavior of window objects.
UI WINDOW_OBJECT derives from the UI_ELEMENT base class,
adding the necessary functionality to display itself and to process events in
an Event( ) virtual member function.

The Event( ) function processes logical or system events sent to a window
object. Here are some sample messages that window objects can interpret:

S_CREATE. Tells the window object to initialize its internal information,
such as its size and position within a parent window. The S_CREATE mes-
sage is sent to all of the window objects associated with a window whenever
the window is attached to the Window Manager.

S_DISPLAY_ACTIVE. Tells the window object to display itself in its active
state. The complementary message is S_DISPLAY_INACTIVE.

L_BEGIN_SELECT. Begins the selection process of a window or window
object. For example, if the user presses the left mouse button, the selection of
an object is initiated. When the mouse button is released, an
L_END_SELECT is received, and the selection process is completed.

The UI_WINDOW_MANAGER::Event( ) member function sends events it
receives from the main event loop to windows. For example, if an applica-
tion contained two overlapping windows, the Window Manager would auto-
matically route normal event information to the top window, but pass a
mouse click to the bottom window if the user clicked the mouse on that win-
dow.

The Window Manager and window objects understand three types of events:

Logical Events. Logical events are the logical interpretation of a raw event
that was generated by an input device. For example, a window would inter-
pret a mouse click as the logical event L_BEGIN_SELECT, or “begin select-
ing something”; but a text field object would interpret the same mouse click
as L_BEGIN_MARK, or “begin marking text.” Logical events have an L_
prefixand generally should not be sent to an object. They are intended to be
interpreted.

76

Getting Started with Zinc Programming



System Events. The Window Manager, or window objects as the result of a
previous event, generate system events. For example, when a window is
added to the Window Manager, the Window Manager sends the window an
S_CREATE event. System events have an S_ prefix and are intended to be
generated and sent directly to objects or placed directly on the event queue.

Environment-specific. The operating system or host environment in which
the Zinc application is running generates these events. For example, when
running under Windows, Zinc objects understand and interpret WM_ mes-
sages such as WM_PAINT, or many other Windows messages. The same
holds true for Zinc objects running under other operating environments as
well.

Help system

The help system, designed to provide help for both general and specific fea-
tures of an application, contains one important virtual function,
DisplayHelp( ):

class EXPORT UI_HELP_SYSTEM

{
public:

virtual void DisplayHelp(UI_WINDOW MANAGER *windowManager,
UI_HELP_CONTEXT helpContext = NO HELP_CONTEXT);

The help window system's DisplayHelp( ) member function provides con-
text sensitive help information during an application. Each help context con-
tains a title, shown on the title bar, and a help message, shown in the text
portion of the window. The helpContext argument is used as an identifier to a
unique title/message pair.

Getting Started with Zinc Programming 77



Library Classes

Error system

The error system brings up a window to display error information whenever
an error is detected. The error system inherits one important virtual function,
ReportError().

The UI_ERROR_SYSTEM class uses a UIW_WINDOW object or an
environment specific error handling mechanism to present error information
to the screen.

The error system's ReportError( ) member function is used to display infor-
mation about the type of error encountered during an application. This func-
tion takes printf( ) style arguments that are used in the text portion of the
window.

Screen displays

Display classes provide common display primitive functionality to the Zinc
programmer but handle the output using the low-level graphics or text func-
tions. Each display class derives from the UI_DISPLAY base class. Zinc
defines the following display classes:

UI_BGI_DISPLAY. A graphics display that uses the Borland BGI graphics
routines to display information to the screen. The UI_BGI_DISPLAY class
provides support for CGA, EGA, VGA, and Hercules monochrome display
adapters running in graphics mode.

UI_GRAPHICS_DISPLAY. A DOS graphics display that uses the GFX
graphics libraries by C-Source, included with Zinc, to display information to
the screen. UI_GRAPHICS_DISPLAY supports CGA, EGA, VGA,
SVGA, and Hercules monochrome display adapters running in graphics
mode.

UI_MACINTOSH_DISPLAY. Uses the Macintosh's QuickDraw routines
to display information on screen.

UI_XT_DISPLAY. Uses the X11 drawing primitives to display information
using the X window system. Used by the OSF/Motif and X Keys.

78

Getting Started with Zinc Prograniming




Region lists—
DOS and Curses

UI_MSC_DISPLAY. Uses the Microsoft MSC graphics routines to display
information. Supports CGA, EGA, VGA, SVGA, and Hercules mono-
chrome display adapters in graphics mode.

UL_MSWINDOWS_DISPLAY. Uses the Microsoft Windows GDI graph-
ics routines to display information.

UI_NEXTSTEP_DISPLAY. Uses NEXTSTEP's Display PostScript Win-
dow Server to display information.

UIL_OS2_DISPLAY. Uses OS/2 GPI graphics routines to display informa-
tion.

UL_TEXT_DISPLAY. A compiler-independent text display used in DOS
and Curses. The UL_TEXT_DISPLAY class supports MDA, CGA, EGA,
and VGA display adapters in the following text modes:

25 line x 80 column mode,
25 line x 40 column mode,
43 line x 80 column mode, and

50 line x 80 column mode.

This class supports snow checking on CGA monitors and IBM TopView. In
turn, TopView supports Microsoft Windows and Quarterdeck DESQview
environments.

UI_WCC_DISPLAY. Uses the Watcom graphics routines to display infor-
mation. Supports CGA, EGA, VGA, SVGA, and Hercules monochrome dis-
play adapters in graphics mode.

Other programmer-defined screen display objects. Any  custom  display
object that derives from or conforms to the UI_DISPLAY base class. Zinc
posts third-party display classes supporting other DOS graphics libraries on
its BBS that Zinc customers are free to download.

The DOS and Curses display classes derive from UI_REGION_LIST,
which contains functionality for keeping track of regions on the screen.
When a program places an object on the screen under DOS or Curses, the
display class reserves a drawing region for the object. As the program places

Getting Started with Zinc Programming 79



Library Classes

more objects on the screen, the display class splits up the regions to allow
more objects to display themselves without disturbing higher level objects,
clipping screen regions according to an object's identification.

Region lists have three main components: a UI_REGION structure,
UI_ REGION_ELEMENT objects, and a UI_REGION_LIST class. The
UI_REGION structure contains the actual reserved region. The screen coor-
dinates are defined according to the mode of operation, with the top-left cor-
ner at {0, 0}. Here are some sample right-bottom coordinates for a screen,
based on the type of display mode:

TABLE 10. BGI display values

Display Columns Lines
Text 80 25

40 25

80 43

80 50
CGA 320 200
MCGA 320 200
EGA 350 480
VGA 640 480

The UI_REGION_ELEMENT and UI_REGION_LIST classes store the
region information in elements, organized in a list. The UI_RE-
GION_ELEMENT class derives from UI_ ELEMENT and contains the
actual region information as well as a unique identification:

class EXPORT UI_REGION_ELEMENT : public UI_ELEMENT

{

public:
SCREENID screenID;
UI_REGION region;

When a window is attached to the Window Manager, Zinc assigns it a unique
value stored in its screenID member variable. In addition, the screen is rede-
fined to contain the window's region. This area is represented by a new
UI_REGION_ELEMENT, where screenID is assigned the same value as
the window's screen identification, and region is assigned the same area
occupied by the window. The region variable is used later by display func-
tions to clip the boundaries of an object before any screen painting is per-
formed. For example, if two windows were attached to the screen and

80

Getting Started with Z}nc _Progrémming



Virtual display
functions

Conclusion

information were painted to the background window, the background infor-
mation would be clipped so that the painted regions would not overlap the
front window. Since all operating environments other than DOS and Curses
handle clipping internally, their display classes do not derive from
UI_REGION_LIST. In those environments, screenID 1is the handle
assigned to the object by the operating system.

Virtual display member functions define an abstract method of drawing
information to the screen. For example, all display classes have the
Rectangle( ) member function. In text mode, a rectangle is drawn with either
a single or a double line. In graphics mode, however, the same routine draws
a single or double pixel rectangle. Virtual display member functions allow us
to use drawing functions in all of Zinc’s display modes by acquiring at run
time basic information such as the display’s resolution, boundaries, and so
forth.

In this chapter, we learned about Zinc’s library classes, the basic elements
that combine to make up other classes. In the next chapter, we’ll learn about
how Zinc puts the advanced features of C++ to work across the entire appli-
cation framework.

Getting Started with Zinc Programming 81



Library Classes

82 Getting Started with Zinc ‘Programming



Zinc and C++

In the last chapter, we discussed how Zinc’s library classes combine to
make up other classes. In this chapter, we’ll examine how Zinc uses C++
features to define classes, instantiate and destroy objects, and work with
member variables and overloaded functions. We’ll also learn how Zinc uses
C++’s virtual functions to help objects respond to the right events.

Note that this chapter is not a substitute for learning C++, and that Zinc
depends heavily on the features of the language for many of its own features.
This chapter gives its best results if we are already familiar with C++.

Key
Concepts

Getting Started with Zinc Programming 83



Zinc and C++

Class definitions

How to design
classes

When Zinc’s architects wrote the library classes in C++, they followed some
explicit rules to make programming in Zinc logical and efficient. Here they
are—if we follow them, too, we’ll find understanding our code later on will
be easier.

il

Precede all C++ class definitions with the reserved word class; the envi-
ronment-specific identifier, ZIL_EXPORT_CLASS; and one of the
Zinc prefixes UL_, UID_, UIW_, and ZAF_.

The reserved word class tells the compiler that the definition not only
contains structural information, but member functions, inheritance infor-
mation, and pointers to member functions as well.

ZI1._EXPORT_CLASS, not part of the C++ language, is a Zinc type
definition to allow us to use one set of source code when writing pro-
grams for multiple operating environments, a key benefit of Zinc. In
Windows, for example, ZIL_EXPORT_CLASS is defined to be
HUGE, so that Zinc defines class HUGE UI_ ELEMENT, whereas in
DOS, Zinc defines class UI_ ELEMENT. Without
ZIL_EXPORT_CLASS , we’d have to maintain one set of source for
each environment we wanted to support.

The prefix UL_ indicates a “User Interface” class, UID_ a “User Inter-
face Device” class, UIW_ a “User Interface Window object” class, and
ZAF _a“Zinc Application Framework” class. These prefixes allow us to
have other C++ classes, such as list and list elements, without worrying
that our definition conflicts with Zinc’s. Some sample class definitions
are given below:

class ZIL_EXPORT CLASS UI_ELEMENT
class ZIL EXPORT CLASS UI DEVICE: public UI ELEMENT

class ZIL EXPORT CLASS UIW WINDOW : public UI WINDOW OBJECT,
public UL LIST

class 7IL, EXPORT CLASS ZAF MESSAGE WINDOW : public UTW WINDOW

2. Define public members first, then protected members, and private mem-

bers last. This way, we can find the member information we need without
wading through the wrong variables and functions.

84

Getting Started with Zinc Programming



Any function can access public members, which are documented in the
Programmer's Reference. Only instances of the class itself, objects
derived from those classes, and objects that are friends of that class can
access protected members, also documented in the Programmer’s Refer-
ence. Last, only instances of the class itself or friend classes can access a
private member variable; derived classes that are not friend classes may
not access the private members of another class. Private members are not
documented in any Zinc manual.

Below, the UID_KEYBOARD class, which derives from the
UI_DEVICE class, shows how this member access order is followed.
Note that the UID_KEYBOARD class, since it derives from
UI_DEVICE, could access UI_DEVICE’s public and protected mem-
bers; but since it’s not a friend class of UI_DEVICE, it may not access
any private members.

class ZIL EXPORT CLASS UID KEYBOARD : public UI_DEVICE
{
public:
static EVENT TYPE breakHandlerSet;
UID KEYBOARD(DEVICE STATE state = D ON);
virtual ~UID KEYBOARD(void);
virtual EVENT TYPE Event(const UI_EVENT &event);
protected:
virtual void Poll(void);
}i
3. Finally, place member variables and functions in separate logical groups.
Zinc groups member variables according to a logical order such as byte
boundary alignment, first use, most common usage, or a number of other
factors—we may pick the order we like best, but we should stick with it.
In contrast, however, we organize member functions in alphabetical order
with the constructor and destructor first. The UIW_BUTTON class

shows how.

class ZIL_EXPORT CLASS UIW_BUTTON : public UI_WINDOW OBJECT
{
public:

BTF FLAGS btFlags;

EVENT TYPE value;

UIW BUTTON(int left, int top, int width, ZIL ICHAR *text,
BTF_FLAGS btFlags = BTF NO TOGGLE | BTF AUTO SIZE,
WOF_FLAGS woFlags = WOF JUSTIFY CENTER,
USER_FUNCTION userFunction = NULL, EVENT TYPE value = 0,
ZIL ICHAR *bitmapName = NULL);

virtual ~UIW BUTTON(void);

virtual EVENT TYPE Event(const UI_EVENT &event);

Getting Started with Zinc Programming 85



Zinc and C++

Derived classes

ZIL ICHAR *DataGet(int stripText = FALSE);

void DataSet (ZIL ICHAR *text);

virtual void *Information(INFO REQUEST request, void *data,
OBJECTID objectID = 0);

static EVENT TYPE Message(UL WINDOW OBJECT *object, UL EVENT &event,
EVENT TYPE ccode);

In addition to the class definition rules described above, Zinc Software
employees adhere to a full set of internal coding standards, designed to
improve the readability and maintenance of code. For a full explanation of
these rules see “Appendix C—Zinc Coding Standards.”

Deriving classes, otherwise known as inheritance, is a benefit of C++ that
allows us to build applications with more functionality, less code, and fewer
bugs. By deriving a class and then adding or changing the behavior we want,
we leave other code untouched. If we wanted to do something conceptually
similar in C, we would have to copy all the code in a procedure that we
would otherwise subclass in C++, and modify much or all of it in order to
add or change the behavior we want. Copying and modifying, in contrast to
deriving, introduces bugs not present before, increases complexity, and
results in larger code and executable size.

86

_ Getting Started with Zinc Programming



One example of inheritance in Zinc is the UID_KEYBOARD class, whose
hierarchy is shown below:

( UI_ELEMENT )

( UIl_DEVICE )

(UID_KEYBOARD ’

Deriving UID_KEYBOARD from UI_DEVICE and UI_ ELEMENT base
classes has two benefits. First, because UID_KEYBOARD derives from
UI_ELEMENT, classes that derive from UI_LIST can group and manipu-
late it; this means the Event Manager can manage a UID_KEYBOARD
object. Second, because UID_KEYBOARD also derives from
UI_DEVICE, the Event Manager can call UID_KEYBOARD’s virtual
Poll( ) function, thereby allowing the keyboard device to place events into
the event queue.

Another example of class inheritance are the UITW_MINIMIZE_BUTTON
and UIW_MAXIMIZE_BUTTON classes, both three-dimensional buttons
which function when the user clicks on them with the mouse. Fundamen-
tally, they’re the same, but we change them by giving them different appear-
ances and by making them do different things.

Getting Started with Zinc Programming 87



Zinc and C++

Multiple
inheritance

Abstract classes

Multiple inheritance allows classes to inherit behavior from classes with dif-
ferent member functions and variables. This helps us avoid duplicating work
when our own classes must inherit behavior common to more than one class.
However, multiple inheritance has its critics.

Some programmers using object-oriented languages such as Objective-C
and Smalltalk-80 believe that multiple inheritance leads to more complicated
classes. Indeed, classes with multiple parents have code that’s harder to read.
However, Zinc could not have implemented some features as elegantly and
in such a small amount of code without multiple inheritance. Despite adding
more complexity to a class, multiple inheritance allows us to extend the fea-
tures of objects with less work, minimal code duplication, and more intu-
itively than if C++ did not use multiple inheritance.

UIW_WINDOW is an example of the benefits of multiple inheritance,
because it derives from both UL_WINDOW_OBJECT and UI_LIST, using
behaviors common to both. Because UIW_WINDOW derives from
UI_WINDOW_OBJECT, which in turn derives from UI_ELEMENT, it
can act as an element of a list. Also, because UIW_WINDOW derives from
the UIL_LIST base class, UIW_WINDOW can also behave as a list that
manages elements such as buttons, strings, and tool bars. Because of multi-
ple inheritance, UIW_WINDOW and other classes can inherit behavior
from disparate classes—without it, we would find implementing UIW-
_WINDOW much more difficult.

Abstract classes define a function but don’t implement it—they leave the
implementation to another class, allowing functionality to be decided at run
time. For example, Zinc’s display function defines a display, but leaves how
that display function will work to a derived class that detects what display
the computer is using, and configures itself appropriately.

Zinc uses abstract classes in its methods of abstracting devices and displays
of native operating environments. For example, Zinc’s UI_DISPLAY class
defines some basic behaviors, such as drawing lines and polygons—but it
leaves the implementation of these behaviors to classes that derive from
UI_DISPLAY. This way, a derived display class can inherit basic behaviors
from UI_DISPLAY, and implement them for a specific operating environ-
ment’s display. This is what Zinc calls a “less-thin” layer of abstraction over
the native operating environment’s API, in contrast to a thin or thick layer.

88

Getting Started with Zinc Programmihg



Friend classes

Because a thin layer is tightly bound to an operating environment, it provides
higher performance, but at the cost of less programming flexibility and port-
ability. In contrast, a thick layer of abstraction provides greater programming
flexibility and portability, but at the cost of lower performance. Zinc treads a
middle ground between thin and thick layers that benefits us two ways.

The first benefit of Zinc is that our Zinc programs run nearly as fast as pro-
grams that wrap a thin layer over the operating environment. Second, we
will find that writing the program will be nearly as flexible and portable as
writing a program using a thick layer of abstraction of the operating environ-
ment.

For a class to be considered abstract, it must have one or more pure virtual
functions. For example, UI_DEVICE has two pure functions, Event( ) and
Poll( ). Neither actually do anything in UL_DEVICE; rather, their function-
ality is implemented by the devices that inherit from UI_DEVICE. Here’s
an example of UI_DEVICE’s virtual functions:

class ZIL_EXPORT CLASS UI DEVICE : public UI_ELEMENT

{
friend class ZIL EXPORT CLASS UI_EVENT MANAGER;
public:

virtual EVENT TYPE Event(const UI_EVENT &event) = 0;
protected:

virtual void Poll(void) = 0;

}i

Abstract classes help us because we can define how a class behaves without
associating any specific code with the class. However, some classes appear
abstract, even though they are not; for example, the
UI_WINDOW_OBJECT appears like an abstract class, but it is not an
abstract class because it has no pure virtual functions. We’ll discuss virtual
functions in more detail in this chapter, including how virtual functions free
us from tying events to windows and window objects.

Friend classes allow a specified class to gain access to the protected and pri-
vate members of another class; we can hide the implementation of one class
but let a similar or corresponding class have special access rights. Often, a
Zinc class grants friend rights to other classes, most often, in Zinc Designer.
Other times, a class derived from the UI_ELEMENT base class grants
friend access to its parent list, allowing it to optimize access to its list ele-
ments.

Getting Started with Zinc Programming 89



Zinc and C++

Object creation

Explicit
instantiation

Implicit
instantiation
and scope

Once we’ve defined a class, the next logical step is to put it to work by
instantiating it, which means creating an object from the definition of a class
by allocating memory for it. When we instantiate objects, we either use the
new operator, or we create a static instance that is deleted automatically
when the program moves out of scope. Using the new operator is called
explicit instantiation, because by doing so, we state explicitly that we want
to instantiate a new object. Explicit instantiation is dynamic; the memory for
the new object is allocated from the freestore of available memory. The new
operator initializes a class and maintains its information until it sees a delete
operator, which frees the memory; if we didn’t use the new operator, the
object would be destroyed when the scope of the function ended.

Here is some sample code that initializes the display, the Event Manager, and
the Window Manager using the new operator:

#include <ui_win.hpp>
main()
{

// Initialize the screen.
UI_DISPLAY *display = new UI_TEXT DISPLAY;

// Initialize the event manager.
UI_EVENT MANAGER *eventManager = new UI_EVENT MANAGER(display);

// Initialize the window manager.
UI_WINDOW MANAGER *windowManager = new UI_WINDOW MANGER(display,
eventManager) ;

In contrast to using new to explicitly instantiate an object, we can write a
function to implicitly instantiate an object, which means the program instan-
tiates the object when it reaches the scope of its class. The biggest difference
between implicit and explicit instantiation is that implicit instantiation is
static; the compiler is responsible for allocating memory for the object.

In this example, the window created will be automatically deleted when the
scope of the function ends.
#include <ui_win.hpp>

ExampleFunction()

{

90

Getting Started with Zinc Programming



Base class
construction

// Create a window.
UIW_WINDOW window(0, 0, 25, 5);

A constructor initializes a new instance of an object, assigning to the object
the appropriate startup information. But C++ classes also call the construc-
tors of their base classes to assign startup information to them as well. For
example, the UL_TEXT_DISPLAY, which inherits from UI_DISPLAY and
UI_REGION_LIST, calls the UI_DISPLAY constructor and the UL -
REGION_LIST constructor before it initializes any information:

UI_TEXT DISPLAY::UI TEXT DISPLAY(TDM MODE mode) :
UI_DISPLAY(TRUE), UI REGION LIST()
{

}

C++ initializes a base class with no arguments automatically, whether or not
the derived constructor calls the base class. But Zinc calls base classes
explicitly in order to make code more readable. The UI_REGION_LIST
code above is one example of this—notice that we called
UI_REGION_LIST from the constructor of UI_TEXT DISPLAY. In
another example, here the UID_KEYBOARD constructor calls UlI-
_DEVICE to initialize its base class information:

UID KEYBOARD::UID KEYBOARD(DS STATE initialState) :
UI_DEVICE(E_KEY, initialState)
{

}

Sometimes, this base class initialization goes several levels up the inherit-
ance hierarchy. In the following example, UUIW_POP_UP_ITEM class calls
the UIW_BUTTON class for initialization, which in turn calls
UIL_WINDOW_OBJECT for base class initialization. This saves a lot of
code we’d otherwise need to write to initialize each object separately:

UIW_BUTTON::UIW BUTTON(int left, int top, int width,

7IL ICHAR * text, BTF FLAGS btFlags, WOF FLAGS _woFlags,
USER_FUNCTION _userFunction, EVENT TYPE _value,

ZIL ICHAR *_bitmapName) :

UI_WINDOW OBJECT(left, top, width, 1, _woFlags,

WOAF_NO FLAGS),

text (2ZIL NULLP(ZIL ICHAR)), btFlags(_btFlags),
value(_value), depth(2),

btStatus (BTS_NO_STATUS), bitmapWidth(0), bitmapHeight(0),

Getting Started with Zinc Programming 91



Zinc and C++

bitmapArray(ZIL_NULLP(UINT8))
{

}

UIW_POP UP_ITEM::UIW POP UP_ ITEM(void)
UIW _BUTTON(0, 0, 1, ZIL NULLP(ZIL ICHAR), BTF NO 3D,
WOF_NO_FLAGS),
menu(0, 0, WNF_NO FLAGS, WOF BORDER,
WOAF TEMPORARY | WOAF NO DESTROY),
mniFlags (MNIF SEPARATOR)
{

}

Array An array constructor initializes an array, and an example of a class that uses
constructors an array constructor is UI_QUEUE_BLOCK. Array constructors help the

Event Manager run more efficiently by allowing it to allocate memory for
the queue all at once, rather than allocating it as events come into the queue,
and then deallocating the blocks after it has been used. The code below
shows how the queue block initializes event information:

UI_QUEUE BLOCK::UI_QUEUE_BLOCK(int _noOfElements)
UI_LIST BLOCK(_noOfElements)
{
// Initialize the queue block.
UI_QUEUE_ELEMENT *queueBlock = new
UI_QUEUE _ELEMENT[ noOfElements];
elementArray = queueBlock;
for (int i = 0; i < _noOfElements; i++)
freeList.Add(NULL, &queueBlock[i]);

}
Overloaded Overloaded constructors are constructors that let us specify different param-
constructors eters, depending on how we would like to initialize the information in a new

instance of an object. For example, the ZIL_DATE class overloads its con-
structor in the following manner:

class ZIL EXPORT CLASS ZIL DATE
{
ZIL DATE(void);
ZIL DATE(const ZIL DATE &date);
ZIL _DATE(int year, int month, int day);
ZIL DATE(const ZIL ICHAR *string,
DTF_FLAGS dtFlags = DTF NO FLAGS);

92 Gettiné Started with Zinc Programmihg



Copy
constructors

Overloaded date constructors in the ZIL_DATE class allow us to create a
date object according to:

* the computer's system date, which requires no arguments;
a previously created date object;
three integer values, the year, month, and day; and

a country-independent, alphanumeric date.

Most classes derived from UL WINDOW_OBJECT have at least two over-
loaded constructors: one, or more, for basic run-time setup, and another for
persistent object access. For example, the UIW_POP_UP_ITEM class has
the following definitions:

class ZIL_EXPORT CLASS UIW _POP UP_ITEM : public UIW_BUTTON
{
UIW_POP UP ITEM(void);
UIW _POP UP_ITEM(ZIL ICHAR *text,
MNIF FLAGS mniFlags = MNIF NO FLAGS,
BTF FLAGS btFlags = BTF NO 3D, WOF_FLAGS woFlags = WOF NO FLAGS,
ZIL_USER_FUNCTION userFunction =
ZIL NULLF(ZIL USER FUNCTION), unsigned value = 0);

// Persistent object constructor.

UIW _POP UP_ITEM(const ZIL ICHAR *name,
7II, STORAGE READ ONLY *file,
ZIL STORAGE OBJECT READ ONLY *object);

The first constructor provides menu item separators, the second creates the
pop up item according to the information in the constructor, and the last con-
struct the pop-up item from disk information.

A copy constructor lets us pass a previously created class into the construc-
tor of another object. We use copy constructors when we want to instantiate
a new object with the data contained in another object. Several library
classes use copy constructors: ZIL_BIGNUM, ZIL_DATE, ZIL_TIME,
and ZIL_UTIME. An example of the date constructor is shown below:

class ZIL EXPORT CLASS ZIL_DATE
{
ZIL DATE(void) { DataSet(); }
ZIL DATE(const ZIL DATE &date);
ZIL DATE(int year, int month, int day);
ZIL DATE(const ZIL ICHAR *string,
DTF_FLAGS dtFlags = DTF_NO_FLAGS);

Getting Started with Zinc Programming 93



Zinc and C++

Default
arguments

Often, constructors give us the choice whether or not to use a default argu-
ment, which sets up some default behavior for an object when we instantiate
it. When we call a constructor, we can leave out any arguments and use the
constructor’s default, which Zinc specifies. The text display class uses a
default argument, TDM_AUTO, which sets the display to the highest possi-
ble text resolution.

class ZIL EXPORT CLASS UI_TEXT DISPLAY : public UI_ DISPLAY,
public UI_REGION LIST

{
public:
UL TEXT DISPLAY(TDM MODE mode = TDM AUTO);

If we want to use the text display’s default, we can call the constructor with
no arguments:

UI_DISPLAY *display = new UI_TEXT DISPLAY;

Otherwise, we can override the default by providing an argument. In this
case, our argument tells the constructor to create an 80 x 43 text display.
// Force 43 line mode.

UI_DISPIAY *display = new UI_TEXT DISPLAY(TDM 43x80);

Many other member functions contain default information. The Program-
mer's Reference contains information about the types of default arguments,
their use, and overriding their definition.

Object deletion

Explicit deletion

Once we’re done with an object, the next logical step is to delete it. When we
delete an object, we either use the delete operator, or allow the system to
delete the object when the scope of the function that instantiated the object
ends. The order of class creation and destruction is important. Generally, the
objects we create first we destroy last.

If we created an object using the reserved word new, we must delete it. For
example, when we create a display, Event Manager, and Window Manager
with new, we must use delete to free them.

94

Getting Started with Zinc Programming



Implicit deletion
and scope

Virtual
destructors

#include <ui win.hpp>
main()
{

// Initialize Zinc using the new operator.
UI_DISPLAY *display = new UI_TEXT DISPLAY;
UI_EVENT MANAGER *eventManager = new UI_EVENT MANAGER(
display);
UI_WINDOW MANAGER *windowManager =
new UI_WINDOW MANGER(display, eventManager);

// Restore the system.
delete windowManager;
delete eventManager;
delete display;

The example above showed how we could use the reserved word delete to
delete new objects. However, when a function creates a static instance of an
object, when the function’s scope ends, the object will be deleted automati-
cally. In the example below, the class destructor is called automatically when
the scope of ExampleFunction( ) ends.

ExampleFunction()

{
UIW WINDOW window(0, 0, 25, 5);

// The window is automatically destroyed when the scope of
// ExampleFunction ends.

}

The order of class creation and destruction is important. In general, those
objects that you create first, must be destroyed last.

Virtual destructors allow Zinc to call the destructor of the base class, rather
than the destructor of the derived object. This saves us from writing func-
tions that delete instances of classes that derive from our base class. For
example, the keyboard, cursor, and mouse derive from UI_DEVICE, which
is derived from UI_ELEMENT. If we delete the Event Manager, when its
list is destroyed, all objects attached to the list will be destroyed, even
though the list cannot possibly know what types of objects it is deleting.

class %IL_EXPORT CLASS UI LIST

{
public:
virtual "UI_LIST(void) { Destroy(); }

Getting Started with Zinc }?rogramming 95



Zinc and C++

Base class
destruction

Array
destruction

}
void UI_LIST::Destroy(void)

{
UI_ELEMENT *tElement;

// Delete all the elements in the list.
for (UI_ELEMENT *element = first; element; )
{

tElement = element;
element = element->next;
delete tElement;

}

When we call the destructor of a derived class, C++ calls the destructor of
the base class. This saves us from calling the destructor by hand, saving us
code. The UIW_BUTTON class’s destructor is a good example of how a
derived class constructor calls its base class’s destructor.

UTW_BUTTON: : ~UIW_BUTTON (void)

{
if (string)
delete string;

}

After the button class destructor is executed, C++ automatically calls the
destructor of UI_ WINDOW_OBJECT, then the destructor for
UI_ELEMENT. Thus, destruction of class objects works in an order oppo-
site of class construction. This way, member variables in base classes that a
derived class may rely on will still exist until after the derived object has
been completely destroyed.

UI_QUEUE_BLOCK uses an array destructor to delete its queue elements.
Array destructors should be used only in conjunction with array construc-
tors. Further, some compilers require that we specify the number of elements
in the array when deleting it, whereas others do not. The code for array
destruction is shown below.

UI_QUEUE_BLOCK::~UI_QUEUE BLOCK(void)

{
// Free the queue block.
UI_QUEUE ELEMENT *queueBlock = (UI_QUEUE ELEMENT *)elementArray;
delete queueBlock;

26

Getting Started with Zinc Programmihg B



Member variables

Variable
definitions

Static member
variables

As we discussed earlier in the chapter, Zinc member variables begin with a
lowercase character and are organized according to a logical order, such as
byte boundary alignment, first use, most common usage, or whatever makes
sense. An example of how Zinc defines member variables is the UL_LIST
class, with several of its member variables shown below:

class ZIL_EXPORT CLASS UI_LIST

{

protected:
UI_ELEMENT *first, *last, *current;
ZIL COMPARE FUNCTION compareFunction;

Zinc objects define and use member variables as bitwise flags.
UL WINDOW_OBJECT::woFlags is a good example of this:

// --- woFlags ---
typedef unsigned WOF FLAGS;
const WOF _FLAGS WOF NO FLAGS= 0x0000;
const WOF _FLAGS WOF_JUSTIFY CENTER= 0x0001;
const WOF_FLAGS WOF JUSTIFY RIGHT= 0x0002;
const WOF_FLAGS WOF_BORDER= 0x0004;
const WOF_FLAGS WOF _VIEW ONLY= 0x0010;
const WOF_FLAGS WOF UNANSWERED= 0x0080;
const WOF_FLAGS WOF_INVALID= 0x0100;
const WOF_FLAGS WOF_NON_FIELD REGION= 0x0200;
const WOF_FLAGS WOF_NON_SELECTABLE= 0x0400;
const WOF_FLAGS WOF_AUTO CLEAR= 0x0800;
class ZIL EXPORT CLASS UI_WINDOW OBJECT : public UI_ELEMENT
{
public:

WOF_FLAGS woFlags;

The base class UL_WINDOW_OBJECT logically ORs together the bits of
woFlags to form composite values to determine its mode of operation. See
the Programmer's Reference for what each flag sets.

Occasionally, classes define static member variables, which provide the
same information to any instance of the class or of a derived class. For exam-
ple, the UI_WINDOW_OBJECT class has a static member variable called
windowManager, which is a pointer to the Window Manager. All objects that
derive from UI_WINDOW_OBJECT will therefore point to the same Win-

Getting Started with Zinc Programming 97



Zinc and C++

dow Manager without any added work on our part. Other pointers in
UI_WINDOW_OBJECT, such as eventManager and display, allow all
window objects to use the same error and help systems.

static UI_DISPLAY *display;

static UI_EVENT MANAGER *eventManager;
static UI_WINDOW MANAGER *windowManager;

In addition to providing the same information to all objects of a class or that
derive from a class, static variables store internal information. For example,
in top-down operating systems such as DOS, Macintosh, and Curses, and
under certain conditions in bottom-up operating systems, the
UL WINDOW_OBJECT class uses a static variable called repeatRate to
store the rate at which an object will repeat a character when the user holds
down a key, as well as another called doubleClickRate, which determines
how fast a window will respond to the double-click of a mouse.

static int repeatRate;
static int doubleClickRate;

Remember that when we use static pointers as part of a class, C++ requires
that we declare space for them outside of the class definition.

Member functions

Function
definitions

Default
arguments

Zinc functions begin with an uppercase letter and usually form complete
words that describe the function. For example, the UI_ ELEMENT class has
the member functions ListIndex( ), Next( ) and Previous( ):

class ZIL_EXPORT CLASS UI ELEMENT

{

public:
int ListIndex(void);
UI_ELEMENT *Next(void);
UI_ELEMENT *Previous(void);

Earlier we learned that constructors often give us the choice whether or not
to use a default argument, which sets up some default behavior for an object
when we instantiate it. Just as constructors can use default arguments, so can

98

Getting Started with Zinc Programming



Virtual member
functions

member functions, which use default arguments to behave consistently. For
example, UI_DISPLAY uses many default arguments for filling zones and
XORing the screen output. Notice the default arguments in UL_DISPLAY’s
Bitmap( ), Ellipse( ),and MapColor( ) functions.

class ZIL_EXPORT CLASS UI DISPLAY : public ZIL INTERNATIONAL

{

public:

virtual ~UI_DISPLAY(void);

virtual void Ellipse(ZIL SCREENID screenID, int column, int line,
int startaAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int xor = FALSE,

virtual void Line(ZIL SCREENID screenID, int columnl,
int linel, int column2, int line2,
const UI_PALETTE *palette, int width = 1, int =xor = FALSE,
const UI_REGION *clipRegion = ZIL NULLP(UI_REGION));

virtual void Polygon(ZIL SCREENID screenID, int numPoints,
const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int _xor = FALSE;

Ti

In C++, virtual member functions ensure that when we call an object’s mem-
ber function, we don’t call the member function of the base class with the
same name. Zinc takes advantage of virtual functions by defining them in a
base class, and overloading them in derived classes to give those classes
basic behavior. In one example, the UI_DEVICE class defines virtual
Event( ) and Poll( ) routines.

class ZIL EXPORT CLASS UI_DEVICE : public UI_ELEMENT

{
public:

virtual EVENT TYPE Event(const UI_EVENT &event) = 0;
protected:

virtual void Poll(void) = 0;

When the Event Manager calls its devices’ Poll( ) functions, instead of call-
ing these functions, the Event Manager calls the virtual Poll( ) functions of
the keyboard, mouse, and cursor.

Getting Started with Zinc Programming 99



Zinc and C++

Virtual functions
and message

Earlier, we discussed how each window and window object interprets events
according to how the object operates, eliminating the need for use to write

handling code to tie events to window objects. Virtual functions help this happen. If
we wrote a program with a Window Manager and an attached window, when
the user clicked the mouse button, the Window Manager would send a mes-
sage to the window, where it calls the UIW_WINDOW::Event( ) function
to override the actions that the UL WINDOW_OBJECT base class would
normally perform. But if the window doesn’t know how to handle the mes-
sage, the window would pas the event up its inheritance hierarchy by calling
the UL_WINDOW_OBJECT::Event( ) base class function, which may
know how to handle the message. One benefit to how Zinc uses virtual func-
tions is that we can send messages to an object without having to know how
the object works; we let Zinc handle those details for us. A second benefit,
the one we’ve already discussed, is that we don’t need to tie events to win-
dow objects; we can tell a window object which events to watch for, and let
the window object work naturally.
Overloaded Overloaded member functions allow us to specify different parameters and
meml_)er values that a function accepts by default. For example, the ZIL_DATE class
functions overloads two member functions, Export( ) and Import( ):
class ZIL_EXPORT CLASS ZIL DATE : public ZIL UTIME
{
public:
void Export(int *year, int *month, int *day,
int *dayOfWeek=ZIL NULLP(int));
void Export(ZIL_ICHAR *string, DTF_FLAGS dtFlags);
void Export(int *packedDate);
DTI_RESULT Import(void);
DTI_RESULT Import(const ZIL DATE s&date);
DTI_RESULT Import(int year, int month, int day);
The overloaded Export( ) functions allow us to get
a date based on three integers, year, month, and day
a date based on an alphanumeric value
a date in a packed integer format
The overloaded Import( ) functions allow us to set
a system date, which requires no arguments;
a date based on a date class object previously constructed;
a date based on the year, month, and day; and
100 Getting Started with Zinc Programming



Overloaded
operators

Used properly, operator overloading is a major benefit of C++ for writing
more elegant and readable code.

Zinc uses operator overloading two different ways. The most common way is
to add an element to an existing list, as do the base classes UI_LIST,
UL EVENT _MANAGER, UI_ WINDOW_MANAGER, UIW_WINDOW,
and all objects that derive from the UIW_WINDOW class. The + operator
allows us to add a border, a maximize button, a minimize button, a system but-
ton, and a title to a parent control class, such as a window. For example, we
could use the following code to create a window and then attach to it sublevel
window objects:

// Create a simple window and attach sublevel window objects.
UIW WINDOW *window = new UIW _WINDOW(5, 5, 40, 6);
*window

+ new UIW_BORDER

+ new UIW MAXIMIZE BUTTON

+ new UIW MINIMIZE BUTTON

+ new UIW_SYSTEM BUTTON(SYF GENERIC)

+ new UIW TITLE(“Simple Window");

The second way Zinc uses overloaded operators is with the ZIL._DATE and
ZIL_TIME classes, which define operations for =, +, -, >, >=, <, <=, ++, -,
+=, -=, == and !=. In ZIL_DATE and ZIL_TIME, these operators incre-
ment the values of date or time objects or compare the chronological value
of two date or time objects. Below is an example of how ZIL_DATE does
this.

// ---- ZIL DATE ----- - - -
class ZIL EXPORT CLASS ZIL DATE : public ZIL UTIME
{
public:
long operator=(long days) { jday = days; return (jday); }
long operator=(const ZIL DATE &date)
{ jday = date.jday; usec = date.usec; return (jday); }
long operator+(long days) { return (jday + days); }
long operator+(const ZIL DATE &date)
{ return (jday + date.jday); }
long operator-(long days) { return (jday - days); }
long operator-(const ZIL DATE &date)
{ return (jday - date.jday); }
long operator++(void) { jday++; return (jday); }
long operator--(void) { jday--; return (jday); }
void operator+=(long days) { jday += days; }
void operator-=(long days) { jday -= days; }
int operator==(const ZIL DATE& date)
{ return (ZIL UTIME::operator==(date)); }

Getting Started with Zinc Programmingi 101



Zinc and C++

int operator!=(const ZIL DATE& date)

{ return (ZIL UTIME::operator!=(date)); }
int operator>(const ZIL DATE &date)

{ return (ZIL UTIME::operator>(date)); }
int operator>=(const ZIL DATE &date)

{ return (ZIL UTIME::operator>=(date)); }
int operator<(const ZIL DATE &date)

{ return (ZIL UTIME::operator<(date)); }
int operator<=(const ZIL DATE &date)

{ return (ZIL UTIME::operator<=(date)); }
void SetBasis(int _basisYear) { basisYear = _basisYear; }
int GetBasis() { return basisYear; }

}i

The example below shows how we can use the overloaded date operators to
compare a date to special times throughout the year.

ZIL DATE currentDate;// Initialize the system date.
ZIL DATE newYearsl990("Jan. 1, 1990");
ZIL DATE twentyFirstCentury("Jan. 1, 2001");
// Check the dates
if (currentDate == newYears1990)
printf ("Happy new year!\n");
else if (currentDate < twentyFirstCentury)
printf("It's not the twenty-first century.\n");
else
printf("It's the twenty-first century.\n");

Static member Analogous to a static member variable, a static member function provides to
functions all instances of a class or of a derived class a common function. Here’s why
Zinc uses static member functions.

Static member functions allow us to check programmatically class informa-
tion before calling the class’s constructor. A good example of this is the
Z1L_STORAGE_READ_ONLY class, where we can check the validity of
a file or directory path without first creating a storage unit. We can do this by
calling the ZIL_STORAGE_READ_ONLY::ValidName( ) member func-
tion.

class ZIL_EXPORT CLASS ZIL STORAGE READ ONLY :
public UI_LIST
{
public:
static int ValidName(const ZIL ICHAR *name,
int createStorage = FALSE);

102 Getting Started with Zinc Programmihg



Static member functions perform generic operations. Two static members fit
into  this category: UIW_WINDOW::Generic() and UIW_-
SYSTEM_BUTTON::Generic( ). We can use these member functions, not
only to construct the object, but also to place generic subobjects in their lists.
For example, the definition for UIW_WINDOW::Generic( ) lets us make
one call that initializes a window and adds the border, maximize button, min-
imize button, system button, and title:

UIW_WINDOW *UIW WINDOW::Generic(int left, int top, int width,
int height, ZIL ICHAR *title, UI_WINDOW OBJECT *minObject,
WOF_FLAGS woFlags, WOAF FLAGS woAdvancedFlags,
UI_HELP_CONTEXT helpContext)

// Create the window and add default window objects.
UIW WINDOW *window = new UIW WINDOW(left, top, width, height,
woFlags, woAdvancedFlags, helpContext, minObject);
(void) & (*window
+ new UIW_BORDER
new UIW MAXIMIZE BUTTON
new UIW MINIMIZE BUTTON
new UIW SYSTEM BUTTON(SYF_GENERIC)
new UIW TITLE(title));
// Return a pointer to the new window.
return (window);

+ + + +

Static member functions send system messages to the Event Manager. For
example, when the end user presses <Enter> or clicks the mouse button on a
UIW_BUTTON object whose BTF_SEND_MESSAGE flag is set, the but-
ton sends a message, whose type is UIW_BUTTON::value, to the Event
Manager. It does this by calling a static member function called Message( ),
which simply places the event on the queue.

All window objects use static member functions when our programs call the
persistent object constructor. Each window object loaded from a Zinc
Designer file has a static member function called New( ), which links all
code related to the class into the executable when the program calls an
object’s constructor. Below is an example of an object's New( ):
static UI_WINDOW OBJECT *New(const ZIL ICHAR *name,
ZIL,_STORAGE READ ONLY *file,

ZIL_STORAGE OBJECT READ ONLY * object)
{ return (new UIW BUTTON(name, file, object)); }

Often, when using static member functions, we’ll find certain reasons for
using pointers to those functions. One important use for pointers to static
member functions is the addition of user functions to objects. For example,

Getting Started with Zinc Programming 103



Zinc and C++

when we create a button, we may want that button to call some function that
we wrote instead of one that Zinc wrote. If the user function is a member
function, it must be declared static because otherwise C++ doesn’t allow its
address to be passed.

Conclusion

In this chapter, we’ve discussed how Zinc uses C++ features in defining
classes, instantiating and destroying objects, and working with member vari-
ables and overloaded functions, in addition to how scope affects writing pro-
grams in Zinc.

In the next chapter, we’ll discuss the concepts of globalizing an application.

104

Getting Started with Zinc Progrémimiingi



Globalization

In this chapter we’ll discuss the concepts of globalizing an application.
The basic Zinc package is already fully globalized. You can build globalized
applications that use either 8-bit character strings or 16-bit Unicode charac-
ter strings.

Globalizing an application takes two steps: enabling and localizing.
Enabling a program means to create the program in such a way that it can be
easily ported to any locale. Typically, an application is not enabled, unless
the program can be localized without recompiling the source code. Therefore
an enabled program must detect its locale and resolve any hardware depen-
dencies at run time. One example of how difficult this can be is writing a
program enabled for the Japanese marketplace. Since most Japanese PCs are
non-ISA compliant, a program enabled for the Japanese marketplace must

Key
- Concepts

Getting Started with Zinc Programming 105



Globalization

Enabling objects

use different low-level functions. Therefore our application must know how
to detect that it’s running on Japanese PC hardware and configure itself
accordingly.

Localizing an application means to adapt the application to run properly for
a particular locale. This means that the program displays and formats date,
time, currency, and number fields consistently with how someone native to
that locale would expect to see them. Additionally, the program should trans-
late any of its text appropriately.

Zinc is already enabled and has been localized for many different languages
and locales. For an up-to-date list of the supported languages and locales, see
the READ.ME file.

As mentioned above, globalizing an application is done in two steps: first
enabling the application and then localizing it. Enabling the application is
the foundation upon which globalization is built, and so we must enable our
programs by design, not after-the-fact. Here are some issues to consider
when designing your applications..

‘Enabling Zinc objects

Zinc’s architects have enabled all objects in the Zinc library specifically to
ease globalizing our programs. We need not do anything to Zinc objects to
use them in our globalized applications.

Any object we use that presents information will likely need to be localized
later. This means we must provide a mechanism to allow the program to set
its data dynamically. We can follow three approaches.

1. Hardcode the data and change it for each locale. This is not a recom-
mended approach, since we may miss translating something, and since
we would have to provide a separate executable for each locale or lan-
guage.

2. Place the data in a separate module, in a table perhaps, that we can com-
pile and link into our application. This is not a good approach, since the
executable can only support a single language or locale;

Getting Started with Zinc Programminigw



Character types

Using wide
character strings

3. Place the data in a data file that can be accessed at run time. Zinc uses a
combination of methods two and three. Later in this chapter, we will dis-
cuss how Zinc uses these methods.

Zinc uses one of two character sets: ISO 8859-1 or Unicode. The ISO 8859-
1 characters are eight bits wide, while the Unicode characters are 16 bits. We
choose our program’s characters by examining its requirements. By default,
Zinc programs use ISO 8859-1 characters, but if we want to build a Unicode
application we define ZIL_UNICODE in UI_ENV.HPP, and our applica-
tion will use Unicode characters. Also, whenever Zinc needs to output text to
the screen or get text from the user, it maps the characters to or from the
hardware character set. Zinc provides mappings for many common hardware
character sets.

Because Zinc can support either 8- or 16-bit characters, our programs must
be written for either type. We do this by using ZIL_ICHAR types, a specific
Zinc data type, instead of the char type wherever we use characters. A
ZIL_ICHAR variable resolves to an 8-bit char when the program doesn’t
use Unicode, or to a 16-bit unsigned short if it does. The ZIL_UNICODE
macro defines its type definition. If UI_ENV.HPP doesn’t define
ZI1L._UNICODE when compiling the library, ZIL_ICHAR will be 8 bits
wide, whereas if it does, ZIL_ICHAR will be 16 bits wide.

Remember that the ZIL_UNICODE definition must be consistent between
the library and our source code.

Some compilers provide a wehar_t type, which should resolve to a 16-bit or
wider character type. Unfortunately, not all compilers support wchar_t or
define it to be a 16-bit or wider value. So even if our compiler supports
wehar_t, Zinc recommends using ZIL_ICHAR in case we must port our
application to another environment without a compiler that correctly sup-
ports the wchar_t type. In either case, ZIL_ICHAR provides more flexible
portability, as it resolves to either an 8-bit character or a 16-bit character as
appropriate for the application, whereas wchar_t stays the same.

This section applies to Unicode programs only. If we don’t currently support
Unicode, Zinc recommends nonetheless the use of the techniques presented
here, or at least encourages familiarity with them, in case our application uti-
lizes the Unicode character set in the future.

If our compiler supports wide character strings correctly, meaning wchar_t
is a 16-bit value or wider as discussed above, we can define literal strings
with the ‘L’ type specifier, such as wchar_t *wideString = L”wide string."

Getting Started with Zinc Programming 107



Globalization

But if our compiler does not support wide character strings—and many com-
pilers don't—we must use an alternate method of creating string literals,
because a string in double-quotes resolves to 8-bit characters. Though the
practice looks unconventional, we must create strings as arrays of
ZIL_ICHAR characters, initialized by specifying each character individu-
ally. For instance, the text “wide string” would look like this:
ZIL ICHAR wideString[] = { 'w', 'i', 'd', 'e',
E Egly et ipd NRio dnt gt Oy

Note the terminating O at the end of the string. The variable wideString from
this example is a 16-bit string we can use like a normal 8-bit string, except
that we must use the ZIL_INTERNATIONAL string functions for string
manipulation.

Localizing our application

Localizing Zinc
objects

Once we’ve enabled our application, localizing it is a matter of mere lan-
guage translation.

Many Zinc objects must be localized, which includes setting the correct date,
time, or number formatting; using translated text for things like system menu
options; providing default strings for things like error messages, and possi-
bly even changing bitmaps for icons and buttons. Zinc automatically local-
izes objects based on the system’s language and locale. If the program
cannot support the system’s language or locale for some reason, the program
will use its fallback data, originally linked at compile time.

The fallback data is the language, locale, and image information that is to be
used if the run-time system’s setup is not supported. We link in the fallback
language as the LANG_DEF.CPP file. By default, this file contains English
translations. If we wish to use another language, we need only copy the
desired LANG_<ISO>.CPP file from the ZINC\SOURCE\MNTL directory
to the ZINC\SOURCE directory, rename it to LANG_DEF.CPP, and
recompile the library. Similarly, LOC_DEF.CPP contains the fallback
locale, which we can change by copying the desired LOC_<ISO>.CPP file
from ZINC\SOURCEMNTL directory to the ZINC\SOURCE directory,
renaming it to LOC_DEF.CPP, and recompiling. The images used to draw

108

Gétting Started with Zinc Pr;:ogramming



Detecting the
language

objects are in IMG_DEF.CPP. If we wish to use different fallback images,
copy the desired IMG_<ISO>.CPP file from ZINC\SOURCEMNTL to
ZINC\SOURCE, rename it to IMG_DEF.CPP and recompile the library. In
order for our program to support any of the languages and locales that Zinc
supports, the application must find the I18N.DAT file at run time. This file
contains all the localization data for the various languages and locales, as
well as the map tables for using hardware character sets.

We can easily change the language, locale, or images of any single object or
of the entire application. To change the language for the entire application,
simply call languageManager.LoadDefaultLanguage( )—languageMan-
ager is a static, global variable of type ZIL_ LANGUAGE_MANAGER—
and pass it the two-letter ISO language code. Similarly, we can call the local-
Manager.LoadDefaultLocale() function to set the application’s locale, and
decorationsManager.LoadDefaultDecorations() will set the decorations for
the entire application. Each object that uses language, locale, or decoration
information also has a SetLanguage( ), Setl.ocale( ), or SetDecorations( )
function that can set the localization data for that instance of the object. We
will discuss this further as part of the tutorial later in this book.

Localizing our objects

If we are hardcoding data for our objects by embedding the data in the code
or by placing all the data in a single module or table, localizing is straightfor-
ward. If we are looking data up at run time, however, we need to know
which language and locale should be presented.

We may want to detect at run time which language the environment is using.
We can do this by inspecting the global languageManager variable, which is
a static variable of type ZIL_LANGUAGE_MANAGER. languageMan-
ager.defaultName is the two-letter ISO language code identifying which lan-
guage is in use.

One way to use the language code is to use it as an extension on a data file
previously translated to the language specified by that language code. For
example, our data file SUPPORT.FR may contain the French translations of
all the windows and text in our application. We may also have a file called
SUPPORT.DE that contains the German translations. After determining the

Getting Started with Zinc Programmihg 109



Globalization

Detecting the

locale

Building our
application

language code, we can create a file name, which in turn sets up the UI-
_WINDOW_OBJECT::defaultStorage. The system will then use that data
file automatically when loading windows. For a complete list of the ISO lan-
guage codes, see “Appendix H—ISO Language Codes” in the Programmer'’s
Reference, Volume 2.

We may want to detect at run time which locale the environment is using,
which will affect how our program formats dates, numbers, and times. Typi-
cally, we will not care about the locale, since Zinc objects format them-
selves. If we do need to know the locale, we can find out by inspecting the
global localeManager.defaultName variable, which will contain the two-let-
ter ISO locale or country code. For a complete list of ISO country codes see
“Appendix G—ISO Country Codes” in the Programmer’s Reference, Vol. 2.

There are two considerations when building our applications. The first is
whether the application is using the Unicode character set. Zinc applications
do not need the Unicode character set to be globalized. Support for this char-
acter set is required only if the application supports double-byte characters.
If the application does support Unicode, though, the Zinc library must be
compiled for Unicode support. This is done by defining the
ZIL_UNICODE precompiler variable in the UI_ENV.HPP source file and
rebuilding Zinc Application Framework's libraries. ZIL_UNICODE must
be defined when building our application, as well.

The second consideration when building our application is how we choose to
localize it. If we choose to compile in a file containing the library globaliza-
tion data for a specific locale, we must link it in. If we choose to either hard-
code the globalization data or access it at run time, we need take no other
steps at compile time.

Shipping our application

In this section we talk about the files that we must ship with our application.
We discuss the requirements for both 8-bit character and 16-bit character
modes.

7Gettin§ Started with Zinc Programming



Non-Unicode
applications

Required files for
Unicode
applications

When shipping non-Unicode applications, we must ship the following files:
The executable ((EXE);

The data file (.DAT) containing resources created in the Designer, if we
use one.

Any data files (I18N.DAT) with the library globalization data, if differ-
ent than our data file.

When shipping Unicode applications we must ship the following files:
The executable ((EXE);

The data file (.DAT) containing resources created in the Designer, if we
use one.

Any data files (I18N.DAT) with the library globalization data, if differ-
ent than our data file.

If our application uses the GFX graphics library to support DOS graphics,
we must also ship the UNICODE.FNT file. This file contains a font table
for most languages in the Unicode character set. Note that the GFX graphics
library is the only Zinc-supported DOS graphics library that supports the
Unicode character set. Therefore if our application must support DOS graph-
ics, we must use the GFX graphics library.

Conclusion

In this chapter, we’ve discussed how to globalize a Zinc application, includ-
ing enabling our objects and localizing our code for Unicode.

This is also the end of the section on Zinc’s main concepts. In this section
we’ve learned about Zinc’s architecture, its windows and window objects,
event handling and mapping, library classes, C++ features of Zinc, and glo-
balizing a program. In the next section, we’ll begin learning how to write
Zinc programs.

Getting Started with Zinc Programniin;c; N 1



Globalization

112 Getting Started with Zinc Programmir;é



section two

Zinc programming

Getting Started with Zinc Programming 113



114 Getting Started with Zinc Programming -



Chapter 9 ¢ ‘Hello, Universe !, ?

‘ ~ elcome to the section of this book on Zinc programming. This sec-
tion is full of tutorials and tips on how to write full-featured Zinc applica-
tions. We’ll start out by writing a small Zinc program.

Most programmers who learn a new language or programming environment
will write a program that prints the phrase, “Hello, world,” in a terminal win-
dow. But since our Zinc program can run on nearly every major platform in
the computer marketplace, we’ll print the phrase, “Hello, Universe!” into a
text field in a graphical window.

' Concepts

Getting Started with Zinc Programming 115



“Hello, Universe!”

What we’ll do

Here are the steps we’ll take in writing HELLO1.CPP.

1

Load the library called UI_WIN.HPP to use Zinc’s window object defi-
nitions and implementations.

Create a function called UI_APPLICATION::Main( ), which sets up
the infrastructure of writing portable, event-driven applications.

Create a generic window with the title “Hello Window.”

Add to the window the text “Hello, Universe!”, and some other data,
including flags.

Add the window to the Window Manager, the control center for all win-
dows and window objects.

Call a function called Control( ), which acts as the main event loop, get-
ting events from the system and dispatching them to the application.

Here’s the source code to HELLO1.CPP:

// HELLOl.CPP (HELLO)
// COPYRIGHT (C) 1990/1994. All Rights Reserved.
// Zinc Software Incorporated. Pleasant Grove, Utah USA
// May be freely copied, used and distributed.
#include <ui win.hpp>
int UI_APPLICATION::Main(void)
{
UIW WINDOW *window = UIW WINDOW::Generic(2, 2, 40, 6,
"Hello Window"); [
*window
+ new UIW _TEXT(0, 0, 0, 0, "Hello, Universe!", 256,
WNF_NO _FLAGS, WOF_NON FIELD REGION);
*windowManager
+ window;
Control();
return (0);

}

116 Getting Started with Zinc Programming



When we compile the program and run the executable, we see a screen like
this:

= Hello Window ==

Hello, Universe!

Include files The first step we took in HELLO1.CPP is declaring the include files
UI_WIN.HPP.

#include <ui_win.hpp>

In Zinc, UL_WIN.HPP is the header file that, among other things, contains
the definitions for window objects. Zinc also contains other include files in
addition to UI_WIN.HPP for handling other types of Zinc information, for
example, information for list objects, for screen displays, and so forth.

These include files initialize information specific to Zinc-supported compil-
ers, freeing us from worrying about which files to include, and which not to
include. We can always use the same headers no matter what compiler we
use, making writing Zinc programs easier.

One Zinc include file, UI_ENV.HPP, initializes information for specific
environments. For example, it includes WINDOWS.H, which contains
information for Microsoft Windows; OS2.H, which contains information for
0OS/2, and so forth. This is what allows your Zinc application to compile for
different environments. Here is a list of all Zinc’s include files, and what
they do.

TABLE 11. Include files in Zinc

Include file What it contains or defines

UI_ENV.HPP All values and information for specific compilers and envi-
ronments

UL_GEN.HPP Low-level classes like user interface elements and lists

UI_DSP.HPP How to handle screen displays for different environments

UI_MAP.HPP Keyboard scan codes and virtual key mappings

” Getting Started with Zinc Programming 117



“Hello, Universe!”

TABLE 11. Include files in Zinc

Include file What it contains or defines
UI_EVT.HPP Basic infrastructure for event handling
UIL_WIN.HPP Window objects

When we include the UL WIN.HPP file, we also include the UIl_ EVT.HPP,
UI_MAP.HPP, UI_DSP.HPP, UI_GEN.HPP, and UI_ENV.HPP files. This
means we need only include UI_WIN.HPP to use all of Zinc’s include
files.; under normal programming circumstances we’ll find it highly unlikely

that we’ll have to include any of those classes separately from
UI_WIN.HPP.

118 Getting Started with Zinc Programming



A new Main()

The next step we took in HELLO1.CPP after declaring include files was to
create a function called Main() from the class UI_APPLICATION. Using
this function will save a lot of code if we want to write an application that
takes advantage of Zinc’s benefits. Here’s the code again:

int UI_APPLICATION::Main(void)
{
UIW_WINDOW *window = UTIW WINDOW::Generic(2, 2, 40, 6,
"Hello Window");
*window
+ new UIW TEXT(0, 0, 0, 0, "Hello, Universe!", 256,
WNF_NO_FLAGS, WOF_NON FIELD REGION);
*windowManager
+ window;
Control();
return (0);

}

Here’s what this function does. Any meaningful Zinc program like
HELLO1.CPP uses a certain amount of infrastructure to display informa-
tion on the screen; enable windows to respond to events from the mouse,
keyboard, and the cursor; and to use and manage window objects—and to do
all these things across every environment Zinc supports. We could build that
infrastructure by hand for whatever environment under which we’d like to
run  our  applications, or we could merely use the
UI_APPLICATION::Main( ) function to create the infrastructure for us for
every environment Zinc supports.

In HELLO1.CPP, UI_APPLICATION saves us from having to write a lot
of code, specifically code for managing windows and events. For example,
the Window Manager, the part of HELLO1.CPP’s infrastructure that han-
dles incoming events from the Event Manager, comes from
UI_APPLICATION. Also, Control( ), the function that contains the main
event loop, comes from UI_APPLICATION. In short, UI-
_APPLICATION is a quick and easy way to create that infrastructure so we
don’t have to create our own—and the infrastructure we needn’t create is the
one that won’t break. If you want to know more about
UI_APPLICATION::Main( ), hang on—we’ll discuss it further in just a
moment.

Getting Started with Zinc Programming 119



“Hello, Universe!”

Creating a
window and
adding a text
field

The next step we took in HELLO1.CPP in UIl_APPLICATION::Main( )
was to create a new window. To do this, we used a function in the Zinc
UIW_WINDOW class.

UIW WINDOW *window = UIW WINDOW::Generic(2, 2, 40, 6,
"Hello Window");

UIW_WINDOW is Zinc’s class for working with windows and window
fields that we display on the screen. We've created a pointer to the
UIW_WINDOW class called window, then called the class’s member func-
tion Generic( ) with some parameters, and assigned the result to window.
When we called Generic( ) with those parameters and assigned the result to
window, in a short line of code we created a full-fledged window with a bor-
der, a maximize button, a minimize button, a system button, and a title.

The next thing we did was to put some text into our window. Notice how we
added a pointer to an instance of a UIW_TEXT class to window with the
overloaded + operator:

*window
+ new UIW TEXT(0, 0, 0, 0, "Hello, Universe!", 256,
WNF_NO FLAGS, WOF NON FIELD REGION);

The UIW_TEXT constructor contains more parameters, one of which is the
text, “Hello, Universe!,” that we’ve seen displayed inside the window. The
instance of UIW_TEXT also contains two flags, values that, when turned on
or off, affect the behavior of the object.

The first flag, WNF_NO_FLAGS, tells the object not to associate any special
flags with the text object. The second flag, WOF_NON_FIELD_REGION,
tells the object to ignore any parameters it receives concerning where to dis-
play itself and to use the remaining space in the window. If we hadn’t
included this flag, the object would display “Hello, Universe!” wherever the
positional parameters told it to.

The last thing we did with our window was attach it to the Window Manager.
*windowManager
+ window;

The Window Manager is Zinc’s method of managing how windows behave,
including their position and priority, and of accepting events from the Event
Manager and passing them in turn to the windows that need to respond to
those event. By attaching our window to the Window Manager, we placed
the window and its subobjects on the screen and gave it the ability to accept
events like “move the window.”

120

Getting Started with Zinc Programming



Responding to
events

Let’s take a step back from our code and look at a couple things. Notice that
we’ve followed a certain order when we worked with windows. We first cre-
ated the window, then we attached the text to the window, and after we fin-
ished taking care of the window we attached the whole concatenation to the
Window Manager. We followed this certain order because we wanted the
window to appear on the screen all at once, instead of a piece at a time. If we
hadn’t followed this certain order the window would have displayed itself in
a messy, semi-organized manner.

Next, notice that we didn’t explicitly create an instance of the Window Man-
ager, though we know one exists, since we added a window to it. We didn’t
have to create an instance; UI_APPLICATION::Main( ) did it for us.
Again, UI_APPLICATION::Main() has saved us code while writing
HELLO1.CPP.

The next step we took in HELLO1.CPP after creating a window and adding
a text field was to call a function called Control(). This function is the main
event loop, the central structure of HELLO1.CPP, which takes over the
application and waits for the user to create events.

Control();

When the user sends the “quit” event by closing the window or by pressing
the appropriate keys, the main event loop quits the program.

The main event loop is how Zinc gives us the ability to easily write event-
driven programs, one of Zinc’s major design goals—and by using the Con-
trol( ) function we’ll save time and code that we’d otherwise spend writing a
main event loop by hand. Once we call Control( ), we can sit back and let
UI_APPLICATION::Main( ) get the events from the queue and route them
to the window we just added to the Window Manager.

Under the hood of UI_APPLICATION::Main( )

A little while ago, we introduced the idea of UI_APPLICATION::Main( )
without saying much about it. Now let’s fill in the details of what’s going on
under the hood.

Getting Started with Zinc Programhwing 121



“Hello, Universe!”

What Ul_APP
does

Main()

Right after we declared the proper include file, we created the function

int UI_APPLICATION::Main(void)

Notice that this function has displaced the main( ) function we’d write in a
non-Zinc program. Also, it comes from the Zinc class, UI_APPLICATION.
How does UI_ APPLICATION::Main( ) work?

Every meaningful Zinc program includes a certain amount of infrastructure
to display information on the screen; respond to events from the mouse, key-
board, and the cursor; and manage window objects. What Zinc has given us
with UI_APPLICATION is a single function call to set up that infrastruc-
ture for use, giving us more time to write the core engine of our program.

The Programmer’s Reference tells us that the class initializes the standard
control objects. This means using the UI_APPLICATION class will initial-
ize:

the screen display;
the Event Manager; and
the Window Manager

In addition to setting up the infrastructure for us, UL_APPLICATION gives
us automatic portability between environments. Using UL_APPLICATION
lets us simply compile HELLO1.CPP to run under any environment with no
modifications because this class contains the code needed to compile under
all supported environments. If we didn’t use UL_APPLICATION::Main( ),
we’d have to duplicate Zinc’s efforts to compile our program under
Microsoft Windows or any other supported platform.

Now that we know more about what UL_ APPLICATION does for us, let’s
look up in the Programmer’s Reference the actual function we called from
the UI_APPLICATION class—Main( ). We'll find that Main( ) does two
things: it

sets up the initial application windows

calls or creates the main event loop.

Here’s why Main( ) takes the place of main( ) in our program. First, all
operating environments don’t support main( ) transparently—and every
C++ program ever written must have that function or it’ll refuse to compile.
For example, if you’ve written programs for Microsoft Windows, you’ll
know you need to start out your program with the function WinMain( ), not
main( ).

122

Getting Started with Zinc Programming



When we write a Windows program, we must include some special
Microsoft libraries that, among other things, provide a main( ) function,
which then call an undefined function called WinMain( ), which, of course,
we define ourselves. This satisfies the requirement of C++, and therefore
your program will compile.

When we use UI_APPLICATION::Main( ) in a Zinc program, we're doing
something conceptually similar to what we just discussed. We’re abstracting
the idea of main( ) and WinMain( ) and generalizing the code required to
handle those functions in multiple environments. Obviously, Zinc has done
us a good turn by giving us one function for handling the Main( ) function in
programs that run under multiple operating systems.

Event flow and Control( )

One of the key concepts of HELLO1.CPP, and of Zinc applications in gen-
eral is that all Zinc applications are by design event driven. Zinc programs
wait for the user to create an event by pressing a key on the keyboard, or
manipulating the mouse—and when the user creates an event, the program
reacts by calling the appropriate function. This program flow that consists of
reacting to user input is the essence of Zinc’s event-driven architecture.

If we wanted, we could get events and route them by hand—Iater we’ll learn
how. But the UI_APPLICATION class allows us to include in
HELLO1.CPP a function called Control( ) that automatically gets and
routes events for us. All we must do is call Control( ) inside the Main( )
curly braces.

But Control( ) may still seem a little mysterious. Here’s what’s going on
inside the main event loop Control( ) creates:

1. First, the user creates an event by pressing a keyboard key or by manipu-
lating the mouse.

2. Next, the loop gets the event from the Event Manager and sends it to the
Window Manager. The the Window Manager sends that information to
the “Hello, Universe!” window. For example, if we click on the system
button, the button that closes the window, we would create a “close”
event. In turn, the Event Manager would get this event, and pass it to the
Window Manager.

Getting Started with Zinc Programming 123



“Hello, Universe!”

3. Last, the Control( ) function examines the Window Manager's return
code. If it sees the “quit” event or if it sees that there are no more win-
dows attached to the Window Manager, it will quit the program. Other-
wise it will return to the first step—and start the main event loop all over
again.

HELLOI1.CPP without UI_APPLICATION

The Event
Manager

If you looked through the source code to UL_APPLICATION, you’d find
that Zinc has written a huge amount of code to set up the display, the Event
Manager, and the Window Manager for every platform it supports. If we
didn’t use UI_APPLICATION, we’d have to write a significant amount of
code to

set up the display by hand for each environment under which we wanted
to run HELLO1.CPP;

add by hand the keyboard, mouse, and cursor to the Event Manager;
create by hand the Window Manager; and

write a main event loop for routing events to the Window Manager.

Not only would we have to do these things by hand, we’d have to do some of
them once for each environment under which we planned to run
HELLO1.CPP. Like we said before, using UL_APPLICATION gives us
automatic portability between environments.

Writing a program without UL_ APPLICATION::Main( ) means setting up
the Event Manager by hand and attaching input devices. Setting up the Event
Manager by hand requires we use one parameter, display, which directs the
input devices to display information on the screen. We tell the Event Man-
ager it can accept input from three devices, the keyboard, mouse, and cursor,
or we could derive our own input device and add it as well.

HELLO1.CPP only has one window, and so the Window Manager will
route all events to that window. In other programs we’ll write, however, the
Window Manager will route events to the current window. This happens
transparently, with or without UI_APPLICATION::Main( ), and is a major
advantage to Zinc over other environments.

124

Getting Started with Zinc Programming



Shutting down
HELLO1.CPP

Without UL_APPLICATION::Main( ), we’d have to take care of one more
thing by hand—deleting the Window Manager, Event Manager, and display
to free up memory. We’d use the following code to delete the Window Man-
ager, Event Manager, and display:

// Clean up.

delete windowManager;

delete eventManager;
delete display;

Notice that we delete the Window Manager, Event Manager, and the display
in the reverse order of their construction. Since the Window Manager main-
tains pointers to the Event Manager and to the display; if we didn’t delete it
first, it would have valid pointers pointing to deleted objects. Also, we’d
have to delete the Event Manager before the display, since the Event Man-
ager maintains a pointer to the display. One thing we don t have to delete are
objects attached to the event or window managers—the input devices, and
the “Hello, Universe!” window, for example, are automatically destroyed
when their respective manager is destroyed.

Conclusion

Writing HELLO1.CPP using UI_APPLICATION::Main( ) does a lot of
things for us. Zinc recommends that we use this function in our Zinc pro-
grams to save us time setting up Zinc’s infrastructure, increase reliability by
eliminating unneeded code, and making it easy to set up a main event loop.

In the next chapter, we’re going to expand HELLO1.CPP to include other
objects, including a help system and an error system.

Getting Started with Zinc Programming 125



“Hello, Universe!”

126 Getting Started with Zinc Programming



- Help and Error
Systems

In the last chapter, we learned how to create a window using Zinc. In this
chapter, we’ll extend HELLO1.CPP by adding windowed help and error
systems, an exit function, and a “Universe Information” window.

Getting Started with Zinc Programming 127



Help and Error Systems

The code is located in \ZINC\TUTOR\HELLO\HELLO2.CPP. When we
compile the program and run the executable, we see a screen like this:

=l Hello Window F]=

Hello, Universe!

= Universe Information Window B

Age: [Really old. ]
Weight: lReaIIy heavy. _]
Size: |Really big. ]
The Answer: |42 l

The universe is very complicated and not very well | ¥
understood [at least not by this programmer). The
above statistics should therefore be taken as
approximations. The answer given above is generally
thought to be cormrect. The problem, of course, is that
nobody knows what the question is.

The help system The help system displays a window containing help information when the
user asks for help. Zinc does not use the UI_HELP_SYSTEM unless we
specifically ask for it. This way, we don’t have to have the help system mod-
ules linked into our executables unless we tell Zinc to include it.

128 Getting Started with Zinc Programming -



The following figure is an example of a help system window:

= Universe Information Help 1 '1

F

This window contains information about the universe. It uses the
following window objects:

UIW_WINDOW
UIw_BORDER
UIwW_MAXIMIZE_BUTTON
UIW_MINIMIZE_BUTTON
UIW SYSTEM_BUTTON
UIW_TITLE
UIwW_PROMPT
UIW_STRING
UIW_INTEGER
UIwW_SCROLL_BAR
UIW_TEXT

We include the help system in HELLO2.CPP by creating a new instance of

UI_HELP_SYSTEM with three parameters.

UI_WINDOW OBJECT::helpSystem = new UI_ HELP_SYSTEM('"hello.dat",

windowManager, HELP GENERAL);

Getting Started with Zinc Pro_c;ramh'ling

129




Help and Error Systems

Here’s an explanation of the parameters we use to create a new help system.

HELLO.DAT is the name of the binary help file that the Designer gener-
ates from a text file.

windowManager is a pointer to the Window Manager. This argument
allows the help system to display information if it encounters an error
while initializing the help system.

HELP_GENERAL is the default help context the Window Manager will
use if no context-specific help is available when requested. If we were
creating a help system with more than one help context, we’d need to
specify the name of the help context we wanted to use.

Notice that when we created a UI_HELP_SYSTEM object, we assigned it
to the static member variable of UI_WINDOW_OBJECT called helpSys-
tem. The reason we do this is that all of Zinc’s window and window objects
derive from UI_WINDOW_OBJECT, and since helpSystem is a static
member variable, all windows and window objects we’ll create will point to
the same help system.

We explained earlier in the chapter that the help system displays a window
containing help information when the user asks for help. Here are the steps
our window takes when the user requests help.

1.

The user sends a message asking for help from an object, which receives
the message and, in turn, calls the help system with two arguments.

EVENT TYPE UI_WINDOW_OBJECT: :Event(const UI_EVENT &event)
£

case L HELP:
// Display help for the current window.
helpSystem->DisplayHelp(windowManager, helpContext);
break;

The two arguments the message uses are
* windowManager, a pointer to the Window Manager; and

* helpContext, the help context that specifies the text to display.

130 Getting Started with Zinc Progral;1ming



2. Next, the help system attaches its help window to the Window Manager,
which displays it:

void UI_HELP SYSTEM::DisplayHelp(UI WINDOW MANAGER *windowManager,
HELP_CONTEXT helpContext)
{

*windowManager + helpWindow;

If the help window is already on the screen, the Window Manager
updates its title and help text to current help information.

Where does the help information come from? HELLO2.CPP stores help
text in the HELLO.TXT file, which resides on disk. Here’s the help infor-
mation text:

—--- HELP_GENERAL

General Help

The second "Hello, Universe!" tutorial shows you
how to create two windows using Zinc Application
Framework and how to initialize the help and error
systems.

For more information about one of the windows
presented in this application press <F1> while

the window is at the front of the display.

--- HELP HELLO UNIVERSE

Hello Universe Help

This window simply has a greeting. It uses

the following window objects:
UIW_WINDOW \
UIW_BORDER \
UIW _MAXIMIZE BUTTON \
UIW_MINIMIZE BUTTON \
UIW_SYSTEM BUTTON \
UIW_TITLE \
UIW_TEXT \

——— HELP_UNIVERSE INFORMATION
Universe Information Help
This window contains information about the universe.
It uses the following window objects:

UIW_WINDOW \

UIW_BORDER \

UIW_MAXIMIZE BUTTON \

UIW MINIMIZE BUTTON N\

UIW_SYSTEM BUTTON  \

UIW_TITLE X

UIW_PROMPT \

UIW_STRING \

Getting Started with Zinc Pf;gramming 131



Help and Error Systems

UIW_SCROLL BAR \
UIW_SCROLL BAR \
UIW_TEXT \

However, the help system doesn’t directly retrieve this text; rather, it
retrieves a binary file that we must generate by running the text through the
Help Editor in the Designer.

When we convert HELLO.TXT, we get the following.

HELLO.DAT, which contains the help information and help contexts.
This file is stored in binary form and should not be modified by the pro-
grammer. It is the only file HELLO2.CPP will use, except, of course,
the executable itself.

HELLO.HPP. This file contains the C++ definitions for the help con-
texts.

Each help context has some elements in common. They are:

Help context name. This name is converted to a C++ constant and speci-
fies the help context index referenced in your code. This name must be
preceded by “---”, which is used as a parsing token. The first help context
name in HELLO.TXT is HELP_GENERAL.

Help context title. The text in the help window’s title bar. It should
describe the help context; our first help context title is “General Help,”
describing help for the entire application.

Help information. The text displayed in the help window. It should con-
tain all the information to help the user with what he is doing.

The HELLO.HPP file generated is shown below:

#ifdef USE HELP CONTEXTS

const UI HELP CONTEXT HELP_GENERAL = 0x0001;
// General Help

const UI_HELP CONTEXT HELP HELLO UNIVERSE = 0x0002;
// Hello Universe Help

const UI_HELP CONTEXT HELP UNIVERSE INFORMATION = 0x0003;

// Universe Information Help
#endif

We must include the .HPP file in all our programs that use help indexes.
Here’s the include statement in HELLO2.CPP:

#include <ui_win.hpp>
#define USE_HELP_CONTEXTS
#include "hello.hpp"

132

Getting Started with Zinc Programming



The error system

The error system resembles the help system in that Zinc doesn’t include it
unless we specifically ask for it. Below is one of HELLO2.CPP’s error win-
dows:

=| Error

0 The number 44 is not in the range 42..42.

ICancel

We can create an error system by setting the value of the
UIL_WINDOW_OBJECT::errorSystem variable in the same way we did
with the help system:

UI_WINDOW OBJECT::errorSystem = new UI_ERROR SYSTEM;

Control flow of Here’s what happens when the user creates an error condition:

the error system 1. A window object calls the error system. In the example shown above,

UIW_INTEGER is the window object that calls the error system with
an error message from its error message table.

int UIW _DATE::Validate(int processError)
{

ZIL ICHAR *errStr = myLanguage->GetMessage(errorCode);
if (errStr)
{
WOS_STATUS _woStatus = woStatus;
woStatus |= WOS_INTERNAL ACTION;
UIS_STATUS errorStatus =
errorSystem->ReportError (windowManager,
WOS_INVALID, errStr, stringNumber, rBuffer);
if (!FlagSet(_woStatus, WOS_INTERNAL ACTION))
woStatus &= ~WOS_INTERNAL ACTION;
if (errorStatus == WOS_INVALID)
return (-1);// This will cause the number to be
// restored.
woStatus |= WOS_INVALID;

Getting Started with Zinc Programming 133



Help and Error Systems

Exit function

2. The error system attaches a modal error window to the screen display:

UIS STATUS UI_ERROR SYSTEM: :ReportError (UI_WINDOW MANAGER
*windowManager, UIS_STATUS errorStatus, ZIL ICHAR *format,
..)

*windowManager + window;

Modal windows prevent the user from interacting with any window other
than the current window—in this case the error window—until the win-
dow is closed. Since the error window is modal, it will receive all event
information until the user acknowledges the error and closes the window
by selecting OK or Cancel.

3. Once the user closes the window by selecting OK or Cancel, the error
system destroys the error window.

4. The object that sent the error request processes the error response and
program flow continues.

When a program is about to quit, sometimes we may want to call special
functions—cleanup functions for example—or perhaps merely inform the
user that the program will exit. Zinc has provided a way for us to do so. UI_-
WINDOW_MANAGER has a special member variable, exitFunction,
which is a function called when the user attempts to exit the program, or,
more precisely, when the Window Manager receives an L_EXIT or
L_EXIT FUNCTION message. The exit function can have any function
name, but must have the following declaration:

static EVENT TYPE ExitFunction(UI_DISPLAY *display,
UI EVENT MANAGER *eventManager, UL WINDOW MANAGER *windowManager)

This declaration gives the exit function pointers to the current display, Event
Manager, and Window Manager, which the function can use to draw to the
screen, post events, or display windows.

The example above displays a message window with an OK button and a
Cancel button. When the user presses the OK button, the program places an
L_EXIT message on the event queue, and the application ends. Otherwise,
the program simply removes the message window and continues. The fol-
lowing code shows the implementation of this exit function:
static EVENT TYPE ExitFunction(UI DISPLAY *display, UL EVENT MANAGER *,
UI_WINDOW MANAGER *windowManager)

{
ZAF_MESSAGE WINDOW *window =

134

Getting Started with Zinc Programming



Multiple
windows

new ZAF_MESSAGE_WINDOW("Hello Universe Tutorial",
UIW_ICON::_ asteriskIconName, ZIL MSG OK | ZIL MSG CANCEL,
ZIL MSG OK,
"This will close the Hello Universe application.");

EVENT TYPE ccode = S_CONTINUE;

// Get user response.

if (window->Control() == ZIL DLG OK)
ccode = L_EXIT;

// Control() removes window from the Window Manager but doesn't

// delete it.

delete window;

return (ccode);

In the last chapter, we created this window with the accompanying code:

=l Hello Window B
Hello. Universel

UIW WINDOW *window = UIW WINDOW::Generic(2, 2, 40, 6,
"Hello Window");
*window
+ new UIW TEXT(0, 0, 0, 0, "Hello, Universe!", 256,
WNF_NO_FLAGS, WOF _NON FIELD REGION);

To simplify this window’s code, we’ll use Generic( ) static functions. Two
Zinc objects have a Generic() function: UIW_WINDOW and UIW-
_SYSTEM_BUTTON. The UIW_WINDOW::Generic() member func-
tion automatically creates a window with a border, maximize button, mini-
mize button, system button, and title. The following function shows how we
can replace this code:

static UIW_WINDOW *HelloWorldWindowl ()
{

// Create the standard Hello World! window.

UIW WINDOW *window = UIW_WINDOW::Generic(2, 2, 40, 6,
"Hello World Window", NULL, WOF NO FLAGS, WOAF NO FLAGS,
HELP HELLO WORLD);

// Add the window objects to the window.

*window
+ new UIW TEXT(0, 0, 0, 0, "Hello World!", 256,

WNF_NO_FLAGS, WOF_NON_FIELD REGION);

Getting Started with Zinc Programming 135



Help and Error Systems

// Return a pointer to the window.
return (window);

}

Using this method, the new operator is not required for window creation.
The UIW_WINDOW::Generic( ) function actually calls the new operator
for the UIW_WINDOW object, as well as for all the default objects
attached to the window. It then returns a pointer to the UIW_WINDOW
class object.

The window created above contains a nonfield region text object. This
means that the text object occupies all of the remaining space of the window
not taken by the previously added window objects, the border, buttons, and
title. Under normal circumstances, a nonfield region object takes up the
entire remaining window space, and will cover up any field region objects.
However, more than one nonfield region object may reside with field region
objects within a single window.

Our Universe Information window is an example of a window that uses field
window objects to display information. This window and its code implemen-
tation is shown below:

=| Universe Information Window [+]~
Age: ||Rea||y old. l
Weight: |Really heavy. l
Size: |Really big. [
The Answer: [42 J

The uni is very ted and not very well | %
understood (at least not by this programmer). The
above statistics should therefore be taken as
approximations. The answer given above is generally
thought to be correct. The problem, of course, is that
nobody knows what the question is.

static UIW _WINDOW *HelloWindow2 (void)
{

// Create the universe information window.

UIW WINDOW *window = UIW WINDOW::Generic(5, 5, 52, 12,
"Universe Information Window", ZIL_NULLP(UI_WINDOW_OBJECT),
WOF_NO FLAGS, WOAF NO SIZE, HELP UNIVERSE INFORMATION);

int answerValue = 42;

// BAdd the window objects to the window.

*window
+ new UIW PROMPT(2, 1, "Age:")

136 Getting Started with Zinc Programming



new UIW STRING(14, 1, 35, "Really old.", 50)
new UIW PROMPT(2, 2, "Weight:")
new UIW_STRING(14, 2, 35, "Really heavy.", 50)
new UIW PROMPT(2, 3, "Size:")
new UIW_STRING(14, 3, 35, "Really big.", 50)
new UIW PROMPT(2, 4, "The Answer:")
new UIW_INTEGER(14, 4, 35, &answerValue, "42..42")

+ &(*new UIW TEXT(2, 6, 47, 4,
"The universe is very complicated and not very well understood "
"(at least not by this programmer). The above statistics should"
"therefore be taken as approximations. The answer given above "
"is generally thought to be correct. The problem, of course, is"
"that nobody knows what the question is.",

2048, WNF_NO FLAGS, WOF BORDER)

+ new UIW SCROLL BAR(0, 0, 0, 0, SBF VERTICAL));
// Return a pointer to the window.
return (window);

+ 4+ o+ + o+ o+ o+

Notice the difference between the code to create the text object in the first
window . . .

new UIW TEXT(0, 0, 0, 0, "Hello, Universe!", 256,
WNF_NO_FLAGS, WOF_NON FIELD REGION);

... and the code to create the text object in the second window.

new UIW TEXT(2, 6, 47, 4,
"The universe is very complicated and not very well understood "
"(at least not by this programmer). The above statistics should"
"therefore be taken as approximations. The answer given above "
"is generally thought to be correct. The problem, of course, is"
"that nobody knows what the question is.",

2048, WNF_NO FLAGS, WOF BORDER)

Getting Started with Zinc Programming | 137



Help and Error Systems

Program flow

The second code sample defines a position and size indicator, and does not
set the WOF_NON_FIELD_REGION flag. Instead, it uses WOF_BORDER
to display the boundaries of the field's region.

Notice that this program flow is the same as that discussed in the previous
tutorial, except that there are two windows on the screen instead of one. This
flow remains unchanged until an error occurs or until the user requests help,
when the help or error system adds its window to the Window Manager—
and then the program may display up to four windows.

Cleanup Since we created new help and error systems, we must destroy them at the
end of the application. Although they are members of UL_ WINDOW_-
OBJECT, they must be destroyed explicitly since they are static.
// Clean up.
delete UI_WINDOW_OBJECT::defaultStorage;
delete UI_WINDOW OBJECT::helpSystem;
delete UI_WINDOW_OBJECT::errorSystem;
Conclusion
In this chapter, we learned how to create a user interface programmatically,
and to use a help and error system in a Zinc application. In the next chapter,
we’ll create the same user interface using Zinc Designer, an interactive tool
for creating user interfaces visually.
138 Getting Started with Zinc Programming



«en USING the Designer

In the last tutorial, we created a user interface programmatically. In this
tutorial, we’ll create the same window in a manner of minutes and with a
single line of code using Zinc Designer.

The code for this tutorial is in \ZINC\TUTOR\HELLO\HELLO3.CPP.

Key

Concepts

Getting Started with Zinc Programming 139



Using the Designer

- Whaf we’ll dQ

We’ll use Zinc Designer to accomplish nearly all of the steps in this tutorial.

1. Using the Designer, create a new persistent object file.
2. Using the Designer, create a window and edit its information.

3. Using the Designer, create a window object and edit its information.

Once the application is running, we should see the following on the screen:

= Hello Window ==

Hello. Universe!

= Universe Information Window BB
L Age: Beally old. |
Weight: |Heally heavy. J
Size: IReaIIy big. ]
The Answer: BZ J

The universe is very complicated and not very well *
understood (at least not by this programmer). The
above statistics should therefore be taken as
approximations. The answer given above is generally
thought to be correct. The problem, of course. is that
nobody knows what the question is.

140 Getting Started with Zinc Programming



Using the Designer

Creating a file Follow these steps to create a persistent object that will store the “Hello,
Universe!” windows:

1. Select File from the main control menu. This displays the following menu:

=] 1SO - Window Editor - <no file> =1~
Eile Edit Window Object Help
New... =) = Y EIEE]
g:s: = =l E N E EE
gave As...
Close =] pos: f_~‘—*— ] place object:
Delete...  size: | f
Preferences...
Exit

2. Select New.. from the pop-up menu. After you select this item a new win-
dow appears:

=| File, New...

Filename: Directories:
| | cnzilaoo
e t*

Bzi00
3 bin
7 demo
] design

example fd

List Files of Type: Drives:

*.dat I_%‘ ’7 e H

4l

3. Enter the file name by typing

hello
in the field adjacent to the Filename prompt. This is the file name the
Designer calls our file when we save it to disk.
4. Create the file by selecting the OK button. Now Zinc Designer does the
following:
Creates a HELLO.DAT file that will store the “Hello, Universe!”
windows;

Removes the New.. window from the screen;

Getting Started with Zinc Progfamming | 141



Using the Designer

+ Updates the control window's title to reflect the active HELLO.DAT
file.

Creating a .We created a window and its window objects in the last chapter by writing
window some code. Now we’re going to create the same window and window objects
with Zinc Designer by following these steps.

1. Select Window from the main control menu. Selecting this option causes
the following pop-up menu to be displayed:

e 1SO - Window Editor - <no file> =]~
File Edit Window Object Help

= [= Import... e =] e—
- Export...
L= El=lE
ws=sq Create

5 ; Load...

object:  [UN gyoyc = (2310
stinglD: [<ul Store As... | }50,?
Clear
Clear All
Delete...

Test...

2. Select Create from the pop-up window. Now a generic window appears
on the screen:

=] <untitled> [~]=

3. Size the window to a size that looks about right. You can adjust the size
later if necessary. You should make the window large enough to handle
the new title information and default “Hello, Universe!” text.

142 Getting Started with Zinc Programming



4. Enter an identification for the window by selecting Edit | Object from
the main control menu or by double clicking the left mouse button on the
window. Selecting this option causes the window editor to be displayed:

e

UIW_WINDOW - <untitled>

General |  SubObjects |  Poson |  Geomety |  Advanced |
----- Support Features ----- X
4] B4 Border

(] Maximize Button
H [ Minimize Button
[ System Button

Title: |<untitled>|

Minlcon: l [None)

Name: [<UNTITLED> 4] [] Geometry Management
Help: I[None] !ﬂ [] Vertical Scroll-Bar
: [] Horizontal Scroll-Bar
_____ Type -

7.

T T T ;

Enter

Hello Window
in the Title: field.

Enter the window identification by typing HELLO_UNIVERSE _-
WINDOW in the Name: field.

Save the identification by selecting the OK button.

The window should now look like this:

Hello Window [+]~

Getting Started with Zinc Programming

143



Using the Designer

Creating a We create the “Hello, Universe!” text the same way we created the window
window object in the last few steps:

1.

Select the Text object button from the main control window’s toolbar or
select Object | Input | Text from the main control menu.

Place the text object in the middle of the “Hello, Universe!” window. The
window should now have a text field within its border:

Hello Window [+]=~

text b

3. Change the text object’s default information by

- calling the text object editor by double-clicking the left mouse button

on the text object

typing
Hello, Universe!

in the field adjacent to the Text: prompt

* typing

256
in the field adjacent to the Length: prompt

* turning off the vertical scroll bar option
* turning off the Don’t wrap text option

* turning on the nonfield region option in the Advanced options

144

Getting Started with Zinc Programrh;wg



Creating
additional
windows

The universe information window that we created programmatically in the
last chapter looked like this:

=| Universe Information Window [~]~
Age: “Really old. _]
Weight: IE"-V heavy. |
Size: IReaIIy big. |
|

The Answer: l42

-

The universe is very complicated and not very well
understood (at least not by this programmer). The
above statistics should therefore be taken as
approximations. The answer given above is generally
thought to be comrect. The problem, of course, is that

nobody knows what the question is.

Follow these steps to create this window in the Designer:

1.

Create the window by selecting Window | Create from the control menu.
Make sure the window is large enough so that the accompanying field
information fits within the window's border.

Use the window editor to change the window title to read
Universe Information Window

Change the window identification by calling the window editor and
entering UNIVERSE_INFORMATION_WINDOW as the Name.

Select Ok to exit the window editor.

Create the age prompt by selecting the Prompt button from the toolbar or
selecting Object | Static | Prompt from the control menu and place the
field at the left-top corner of the window. Call the prompt editor by dou-
ble-clicking on it with the mouse or by selecting Edit | Object from the
control menu and enter

Age:

as the prompt's text.

Create the age string field and place it next to the age prompt. Enter
50

as the default length for the string field, and enter
Really old.

as the string's text.

Getting Started with Zinc Programming 145



Using the Designer

7. Create the weight prompt and place it under the Age prompt. Change the
prompt's text to

Weight:.

“How do | create an icon in the Designer, create a
window in code, and have the window minimize to the
icon?”

First, create an icon in the Image Editor of the Designer and save
it to a .DAT file. You must save the icon in the Image Editor, and
save the file opened in the Designer.

Next, assign UI_WINDOW_OBJECT::defaultStorage to point to
the .DAT file containing the icon image.

After that, create the window in code. Create a UIW_ICON object
with the saved image and set the icon object's
ICF_MINIMIZE_OBJECT and WOF_SUPPORT_OBJECT flags.
Add the icon object to the window. Add the window to the Window
Manager.

To test your handiwork, minimize the window to see the icon with
its assigned image.

8. Create the weight string field and place it next to the weight prompt.
Enter

50
as the default length for the string, and enter
Really heavy.
as the string's text.
9. Create the size prompt and place it under the weight prompt. Enter
Size:
as the prompt's text.

10. Create the size string and place it next to the size prompt. Set the length
for this object to

50
and enter

146 Getting Started with Zinc Programming



Saving the file

Really big.
as the string's text.

11. Create the Universe Information text field and place it under the size
prompt. Set the length to

256
and the default text to

The universe is very complicated and not very well understood
(at least not by this programmer). The above statistics should
therefore be taken as approximations. The answer given above is
generally thought to be correct. The problem, of course, is that
nobody knows what the question is.
To add a vertical scroll bar to the text field, check the Vertical Scroll Bar
checkbox.

12. Select the OK button to complete the changes to the window.

Now we’re finished creating the Universe Information window.

The “Hello, Universe!” windows are saved when we select File | Save from
the control menu. Here’s what Zinc Designer does when the windows are
saved:

Updates the HELLO.DAT file. Contains the binary information associated
with the objects saved during the design session. Help contexts and window
objects like those in this and the last chapter live in the same .DAT file.

Creates the HELLO.CPP file. Contains the definition for the objectlable.
This structure provides read access points for objects saved to disk. The
entries inside this table depend on the types of objects that were created in
the Designer.

Creates the HELLO.HPP file. Contains the numeric identifications, which
are IDs associated with those strings we entered next to the stringID prompt
and the help context definitions. The string identification for each field
within a window is unique. Items within subwindows, combo boxes, or list
boxes have unique numeric identifications within that scope.

Getting Started with Zinc Programming 7 147



Using the Designer

Window access

The code used in this tutorial has the same initialization process as each pre-
ceding tutorial in that they all follow the same three steps:

Create the display
Create the Event Manager and add input devices

Create the Window Manager

After the Window Manager is created, however, the program adds the two
universe information windows to the Window Manager:

// Add the two windows to the window manager.
UI_WINDOW OBJECT *windowl =

UI_WINDOW OBJECT::New('"hello.dat~HELLO UNIVERSE WINDOW");
UI_WINDOW OBJECT *window2 =

UI_WINDOW OBJECT::New( "hello.dat~UNIVERSE INFORMATION WINDOW");
*windowManager

+ windowl

+ window2;

In the code above, we retrieve HELLO_UNIVERSE_WINDOW and
UNIVERSE_INFORMATION_WINDOW from the HELLO.DAT data
file, then add them to the Window Manager.

An alternative way of reading the objects from disk is shown below:

*windowManager
+ UI_WINDOW OBJECT: :New("hello.dat HELLO UNIVERSE WINDOW")
+
UI_WINDOW_OBJECT: :New("hello.dat UNIVERSE INFORMATION WINDOW");

This method allows for error correction. For example, if one of the windows
was not found in the file, New( ) will return a NULL value. When a NULL
value is added to the Window Manager, no change is made.

As we mentioned before, Zinc Designer created a HELLO.CPP code file.
This file must be compiled and linked with the HELLO3 executable. It con-
tains an object table, used by window object constructors to read class infor-
mation from the data file.

Run time The persistent window objects contain all the information necessary to

features ensure that the application runs as if we created the object programmatically,
as we did in the previous tutorial.

148 Getting Started with Zinc Programming



Conclusion

In this chapter we learned how to create a window in the Designer that we
created earlier programmatically. The Designer is a major benefit, since cre-
ating windows and window objects becomes easier when we can manipulate
them on screen the same way we would work with them while running an
application.

In the next chapter, we’ll learn more about writing Zinc applications that use
events in both top-down and bottom-up operating environments.

Getting Started with Zinc Programming 149



Using the Designer

150 Getting Started with Zinc Programming



Chapter 12 Event ﬂOW

This tutorial demonstrates how Zinc handles system events in top-down
and bottom-up operating environments. When we’re finished, we should
understand how window objects display information and receive input from
the user; how to check data entry with user functions; and how to write a
main event loop. Here we’ll examine a dictionary program called
WORD2.EXE.

Key

Concepts

Getting Started with Zinc Programming 151



Event flow

What we’ll do

Here are the steps we’ll take in writing WORD2.CPP.

1. Create the DICTIONARY_WINDOW class and all its member func-
tions.

2. Create an instance of the DICTIONARY_WINDOW and add it to the
Window Manager.

3. The DICTIONARY_WINDOW creates a DICTIONARY, which loads
the data from disk.

4. When the user types a word and hits <Enter> we’ll look the word up in
the dictionary.

Running the To use the dictionary program, compile and run the application

program WORD2.EXE. This program only knows the word good, bad, begin, and
end. To look up a word, type it in the Enter a word field and press <Enter>.
If the word is in the dictionary, the program will display the definition, ant-
onyms, and synonyms. If the word is not in the dictionary, it will display the
error message, ‘“That word was not found in the dictionary.” When you are
finished using the dictionary, exit the program by closing the window.

Source code The source code for this program is located in \ZINC\TUTOR\WORD, and
contains the following files:

WORD2.CPP. Contains UI_APPLICATION::Main( ), as well as the
implementation of the DICTIONARY_WINDOW, DICTIONARY,
and D_WORD classes.

WORD2.HPP. Contains the declarations for the DICTIONARY _-
WINDOW, DICTIONARY, D_WORD, and _"WORD classes.

WORD.DCT. Contains the dictionary database file.

* DEF, *.RC. Contains the environment-specific definitions and
resources for compiling Zinc programs for environments other than
DOS.

* MAK. Contains the compiler-dependent makefiles associated with the
Word program. Consult “Appendix A—Compiler Considerations” for
information on compiling for each Zinc-supported platform.

152 ” 7 Getting Started with Zinc Programming



Class definitions  The dictionary window is implemented in a class called
DICTIONARY_WINDOW. Here’s its definition:

class DICTIONARY WINDOW : public UIW_WINDOW

{
public:
DICTIONARY WINDOW(void);
~DICTIONARY WINDOW(void);
int dictionaryOpened;
private:
DICTIONARY *dictionary;
UIW_STRING *inputField;
UIW_TEXT *definitionField;
UIW_STRING *antonymField;
UIW_STRING *synonymField;
static EVENT TYPE LookUpWord(UI_WINDOW OBJECT *string,
UI_EVENT &event, EVENT TYPE ccode);

}i
DICTIONARY_WINDOW uses the following member variables:

dictionaryOpened, which indicates if the data file was successfully
opened. Since constructors cannot return values, we must set a flag to
denote the dictionary status. This value is public so that the controlling
program can verify that the dictionary was created.

dictionary, the pointer to the dictionary that is created in the constructor
for DICTIONARY_WINDOW. This variable is used only by the
DICTIONARY_WINDOW class and therefore is private.

inputField, a pointer to the UIW_STRING field that is used to collect
the input word from the user. This variable is only used by the
DICTIONARY_WINDOW class and therefore is made private.
definitionField, a pointer to the UIW_TEXT field that is used to display
the definition for the input word. This variable is only used by the
DICTIONARY_WINDOW class and therefore is made private.
antonymField, a pointer to the UIW_STRING field that is used to dis-
play the antonyms for the input word. This variable is only used by the
DICTIONARY_WINDOW class and therefore is made private.
synonymField, a pointer to the UIW_STRING field that is used to dis-

play the synonyms for the input word. This variable is only used by the
DICTIONARY_WINDOW class and therefore is made private.

Getting Started with Zinc Programmihg 153



Event flow

Below is the definition for the DICTIONARY:

class DICTIONARY : public UI LIST
{
public:
int opened;
DICTIONARY (char *name);
static int FindWord(void *element, void *matchData);
D WORD *First(void);
D _WORD *Get(const char *word);
}i

DICTIONARY uses the following member variables:

opened, which tells if the dictionary was successfully opened. Since con-
structors cannot return values, we must set a flag to denote the dictionary
status. This value is public so that the controlling program can verify that
the dictionary was created.

D_WORD is the dictionary class that contains the words in the dictionary.
Below is the definition for the D_WORD class:

class D_WORD : public UI_ELEMENT
{
public:
char *string;
char *definition;
UI_LIST antonymList;
UI LIST synonymList;
D WORD(FILE *file);
~D_WORD(void);
D WORD *Next(void);
}i

D_WORD uses the following member variables:
string, which contains the actual word entry in the dictionary.
definition, which contains the definition string of the word.
antonymlList, a list of antonyms that apply to the dictionary entry.

synonymlList, a list of synonyms that apply to the dictionary entry.

_WORD is a support class used to hold the words in the antonym and syn-
onym lists:

class _WORD : public UI_ELEMENT
{
public:

char *string;

154 Getting Started with Zinc Programming



_WORD(const char *_string);
~_ WORD(void);
_WORD *Next(void);
bi
_WORD uses the following member variable:

string, a character string that contains a word.

Creating the window

We start out by deriving our DICTIONARY_WINDOW class from the
Zinc class UIW_WINDOW. Instead of using an instance of the existing
UIW_WINDOW class, our derived class will also handle input from and
output to the window fields and communicate with our dictionary.

When our program calls the DICTIONARY_WINDOW constructor, it cre-
ates the dictionary window. The DICTIONARY_WINDOW creates each
of the fields and adds them to the window using the C++ reserved word this
and the overloaded + operator. The DICTIONARY_WINDOW constructor
is shown below:

DICTIONARY WINDOW::DICTIONARY WINDOW(void) : UIW WINDOW(16, 6, 41, 14)
{

if (dictionaryOpened)
{

// Create the window fields.

inputField = new UIW_STRING(17, 1, 20, "", 40,
STF_NO_FLAGS, WOF_BORDER | WOF AUTO CLEAR,
DICTIONARY WINDOW: :LookUpWord) ;

definitionField = new UIW TEXT(17, 3, 20, 4,"", 100,
TXF_NO_FLAGS, WOF_BORDER);

antonymField = new UIW STRING(17, 8, 20, ““, 50, TXF_NO_FLAGS,

WOF_BORDER) ;

synonymField = new UIW STRING(17, 10, 20, "", 50,
TXF _NO_FLAGS, WOF_BORDER) ;

*this

+ new UIW_BORDER

+ new UIW MAXIMIZE BUTTON
+ new UIW MINIMIZE BUTTON
+ new UIW_SYSTEM BUTTON

Getting Started with Zinc Programming 155



Event flow

+ new UIW TITLE("Dictionary")
+ new UIW PROMPT(2, 1, "Enter a word:")
+ inputField
+ new UIW _PROMPT(2, 3, "Definition:")
+ definitionField
+ new UIW _PROMPT(2, 8, "Antonyms:")
+ antonymField
+ new UIW _PROMPT(2, 10, "Synonyms:")
+ synonymField;
}

We add the objects in our dictionary window to the window inside the con-
structor so that when we create our DICTIONARY_WINDOW object, we
only have to write a few lines of code to display it on the screen. Here’s the
code taken from the UI_APPLICATION::Main() function in the
WORD2.CPP file:

// Create the dictionary window.
DICTIONARY WINDOW *dictionary = new DICTIONARY WINDOW();

// I1If the dictionary was opened, add it to the window manager.
if (dictionary->dictionaryOpened)

*windowManager + dictionary;
else

{
dictionary->errorSystem->ReportError (windowManager, -1,
"The dictionary file 'WORD.DCT' was not found.");
delete dictionary;

}

If we add the objects, not in the constructor, but when we create an instance
of the DICTIONARY_WINDOW class, then we would duplicate code
each time we created an instance of that class. Adding the objects inside the
constructor lets us write less code and provides a stronger encapsulation of
data and code.

156

Getting Started with Zinc Programming



The user
function

Through the object's constructor, we can assign user functions to a string; the
string calls the user function when the string becomes current or noncurrent,
or when the user presses <ENTER>. Our user function compares the data in
the object's field to the words in the dictionary, and will display either the
word's definition and antonyms and synonyms for the word, or it will display
an error message that says the word was not found. Let’s look at how we
assign the user function::

inputField = new UIW STRING(17, 1, 20, "", 40, STF NO FLAGS,
WOF_BORDER | WOF_AUTO CLEAR, DICTIONARY WINDOW: :LookUpWord);

When the UIW_STRING field is constructed, the last parameter,
DICTIONARY_WINDOW::LookUpWord, tells our class instances about
the user function. In order for the compiler to generate an address for a user
function, we must declare our user functions as static. The user function
LookUpWord( ) has the following parameters that Zinc requires of all user
functions:

returnValue, is the value returned from the operation, and most often ccode

is the value returned. However, if the operation returns -/, the calling win-
dow object will be informed that some error occurred and the text will be
restored to its previous value.

object;; is a UL_WINDOW_OBJECT pointer to the object that invoked this
function. In this case, the calling object is a UIW_STRING field whose par-
ent is a DICTIONARY_WINDOW object.

event;, is the event that caused this function to be called.

ccode, is the logical interpretation of the event that caused this function to
be called.

Here’s how we write LookUpWord( ):

EVENT TYPE DICTIONARY WINDOW: :LookUpWord (
UI_WINDOW OBJECT *object, UI_EVENT &event, EVENT TYPE ccode)

{

}

Since the string field calls the user function when it receives the
S_CURRENT, S_NON_CURRENT, or L_SELECT messages, the first step is
to determine if the ccode is S_CURRENT. In the dictionary tutorial, unless
the input string is selected, the function returns without doing anything.

Getting Started with Zinc Progréfhming 157



Event flow

Here’s the initial check in LookUpWord( ):

// Return if just entering.
if (ccode != L_SELECT)
return errorCode;

As the user function calls the dictionary to verify the input word, it must
have a pointer to the current dictionary object. Since the input string is
attached to the DICTIONARY_WINDOW, we can access the dictionary
window using the string’s parent pointer. Here’s how we get a pointer to the
correct instance:

DICTIONARY WINDOW *dictionaryWindow =
(DICTIONARY WINDOW *)object->parent;

Now that our user function has the dictionaryWindow pointer, we have
access to the public variables and functions of the
DICTIONARY_WINDOW class, including the variable dictionary, and it
can proceed with calling the dictionary to verify the input word. Now the
user function calls the function DICTIONARY::Get( ) through the dictio-
naryWindow pointer. This function will return a NULL if the word is not
found, or, if it is found, will return a pointer to a D_WORD structure that
contains the input word and its associated information; if the return value is a
valid pointer, DICTIONARY::Get( ) writes the word and its antonyms and
synonyms to the appropriate window fields by calling each field's DataSet( )
function. If the word isn’t in the dictionary, our program will display an error
message and return a -1. Otherwise, we return a 0.

Following events

Now that we understand how the program operates, let's follow how events
flow through the system. We can begin by following the event that’s created
when the user presses the “G” key on the keyboard. Though we’ll study our
Zinc dictionary running under DOS and Windows, our program running in
other operating environments will pass messages in the same way as they do
in the DOS and Windows examples, though event messages and their mean-
ings differ.

158

Getting Started with Zinc Programming;



Event flow—DOS

When the user presses the “G” key, the computer places the character in the
computer's keyboard buffer. Here’s the code in our dictionary program that
actually gets the event from the buffer.

EVENT TYPE ccode;
UI EVENT event;

do

{

// Get input from the user.
eventManager->Get (event) ;
// Send event information to the window manager.
ccode = windowManager->Event (event);

} while (ccode != L EXIT && ccode != S NO OBJECT);

As eventManager->Get( ) executes, it polls each of the devices attached to
the Event Manager. If the keyboard or another device has placed an event in
its buffer, Zinc creates a UI_EVENT structure, fills it with the event, and
puts on the end of the event queue.

Let's assume that there were no other events on the queue when the program
placed the “G” key event on the queue. The Get( ) function takes the event
variable and fills it with the “G” event. When program control returns from
the Get() function, the call to windowManager->Event() passes the “G”
event to the Window Manager.

“How can | intercept an event that is filtered?”

If the message is environment-specific, you must trap it in your derived
object's Event( ). If you want to convert the message to a logical event,
you must place in the event map table assigned to the derived object a
mapping for the message

Let’s take a look at what happens when the Window Manager receives the
“G” key, or any other event under DOS. First, the Window Manager sends
the event to the current window object. If the Window Manager can process
it, it does. Otherwise it passes it to its current child, which attempts to pro-
cess it. If it can’t, it passes it down, and so forth. This is top-down process-
ing.

Getting Started with Zinc l-:'rograinming 159



Event flow

Event flow—
Windows

If the event carries a specified region like a mouse click, the Window Man-
ager checks to see if another object should become current. If so, the Win-
dow Manager makes that object current, and passes the event to that object.
If no window can handle the event, the Window Manager just returns an
S_UNKNOWN message to the system, and the event is ignored.

Now back to our dictionary program. When the user presses the “G” key, the
Window Manager's current object is the dictionary window. The window
receives the event and sends it to its own current object, the UIW_STRING
field. The string's Event( ) function receives the event from the window, and
calls UL_WINDOW_OBJECT::LogicalEvent( ) to look for a logical map-
ping of the event. Once the LogicalEvent( ) function determines the event is
a “G” keystroke, the character is copied into the string's memory buffer and
the string is updated on the screen. A control code is then returned to the
object's parent and finally to the Window Manager which returns to the main
do loop, where the sequence starts over again.

The Microsoft Windows version of Zinc is simpler than the DOS version. In
contrast to DOS, which simply dumps user input in a buffer to wait for a pro-
gram to use it, Windows handles all the input from the user. This means Zinc
need only interpret the messages, and need not handle the events.

When a UIW_STRING field is created, Zinc creates an actual Windows
string object. In the Windows version, Zinc serves as a layer between the
existing Windows system and the user application that was written using
Zinc. This model allows programs to be ported easily to any environment
Zinc supports.

In order to follow an event through the Zinc system while running under
Windows, we must revisit how Windows passes messages. Windows puts
messages on a Windows message queue, which can dispatch those messages
directly to the current field on the current object. Messages are passed to an
object with a special member function known as a “callback™ function,
which is the Windows equivalent of Zinc’s Event( ) function.

Now consider the example of the “G” key being pressed while a
UIW_STRING field is current. Look at the “do” loop in the function
UI_APPLICATION::Main( ):

EVENT TYPE ccode;
UI_EVENT event;
do

{

// Get input from the user.

160

Getting Started with Zinc Programming



eventManager->Get (event) ;
// Send event information to the window manager.
ccode = windowManager->Event (event);

} while (ccode != L EXIT && ccode != S_NO_OBJECT);

At some point in the execution of the program, Windows creates a message
and puts it on the Windows message queue. When eventManager->Get( ) is
called, it doesn't return until Windows has created a message and had put it
on the Windows message queue. Once eventManager->Get( ) returns, the
call to windowManager->Event( ) instructs Windows to dispatch the mes-
sage. When Windows dispatches the message, Windows calls the current
window object's event function, UIW_STRING::Event( ) in this case, say-
ing that the user pressed the character “G.” When the current window
object’s event function receives the “G” message, just as in DOS, it deter-
mines whether or not it can interpret the event. If it can, it does so, and then
passes it back to Windows so that the “G” character may be painted on the
screen. If it cannot, it returns an S_UNKNOWN and the event goes unproc-
essed. This is bottom-up processing.

Conclusion

In this chapter, we’ve seen how objects display information and receive
input from the user, how we can use user functions to check data entry, and
we’ve seen more about how Zinc handles events. Further, now that we know
how our dictionary application works, we’ll find it easier to use in the next
chapter, where we’ll write a program to store and retrieve data in the Zinc
data file.

Getting Started with Zinc Programming 161



Event flow

162 Getting Started with Zinc Programming



-wes 1 he Zinc Data File

In the last chapter, we learned how events flow by watching how our dic-
tionary program responded to events. In this tutorial, we’ll use a modified
version of the dictionary program to learn how to use the Zinc data file to
store data on disk and retrieve it later. To do so, we’ll use as a springboard
the dictionary program we used in the last chapter. Then we’ll modify it to
allow us to create and delete our own entries, modify them, and save them to
a file on the disk.

Key

Concepts

Getting Started with Zinc Programming 163



The Zinc Data File

Running the

What we’ll do

Here are the steps we’ll take in writing WORD3.CPP.

1. Load the window from the .DAT file and create the dictionary. Once
we’ve loaded the window, assign each button the same static user func-
tion.

2. Create the member functions.

3. Create an instance of the DICTIONARY_WINDOW and add it to the
Window Manager.

4. Process user updates and queries.

5. If the user quits the application, commit the data file to disk, close the
temporary file, and then free up the memory the program used.

Compile the source code and run the executable. You should see the follow-

program ing window on the screen:
= Dictionary [+~
Enter a word: J
Definition:
Antonyms: [7 j
Synonyms: h j
[Lookup | [ save | [ DELETE |
At this point, the dictionary database will be empty. To add words to the dic-
tionary, simply type the word, its definition, and an antonym and synonym in
the appropriate fields, and press the Save button at the bottom of the win-
dow. To look up a word you have entered, type it in the Enter a word: field
and press the Lookup button. To delete a word, type it in the Enter a word:
field and press the Delete button When finished using the dictionary, select
Close from the system button's pop-up menu and exit the program.
164 Getting Started with Zinc Programming



Source code

Program flow

The source code for our tutorial is located in \ZINC\TUTOR\WORD, and
contains the following files:

WORD23.CPP. Contains the main event loop inside UI_APPLI-
CATION::Main( ), as well as the implementation of the DIC-
TIONARY_WINDOW, and D_ENTRY classes.

WORD3.HPP. The declarations for the DICTIONARY_WINDOW,
DICTIONARY, and D_ENTRY classes.

WORD_WIN.CPP. The object table for the objects we created in the
Designer.

WORD_WIN.DAT. The data file created in the Designer. Contains the
data for creating the dictionary window and its fields.

WORD_WIN.HPP. The header information for WORD_WIN.DAT and
its help file.

*.DEF, *.RC. The definition and resource files when compiling for dif-
ferent environments.

* MAK. The compiler-dependent makefiles.

Using UI_APPLICATION::Main( )’s built-in main event loop, help sys-
tem, and error handling, our program flow is simple. The first step is to cre-
ate a new error system. Next we create the DICTIONARY_WINDOW,
which creates a new dictionary. Once created, we attach the dictionary win-
dow to the Window Manager if the load goes well; if the load fails, we ask
the error system to report an error to the user. Once we’ve set these things
up, we can turn over event handling to Zinc with UI_APPLICA-
TION::Control( ). And when the program flow falls through Control( ), we
delete the error system we’ve created.

Here’s the code we used to set up UI_APPLICATION::Main( ).

int UI_APPLICATION::Main(void)
{
// The UI APPLICATION constructor automatically initializes the
// display, eventManager, and windowManager variables.
// This line fixes linkers that don't look for main in the .LIBs.
UI APPLICATION::LinkMain();
// Initialize the error system.
UI_WINDOW_OBJECT::errorSystem = new UI_ERROR SYSTEM;
// Create the dictionary window.
DICTIONARY WINDOW *dictionary = new DICTIONARY WINDOW("word.dat");
if (!FlagSet(dictionary->woStatus, WOS READ ERROR))
*windowManager + dictionary;
else

Getting Started with Zinc Programming




The Zinc Data File

Class definitions

{

UI_WINDOW OBJECT: :errorSystem->ReportError (windowManager,

WOS_NO_STATUS,

"An error was encountered trying to open word win.dat");

return (1);
}
// Process user responses.
UI_APPLICATION: :Control();
// Clean up.
delete UI_WINDOW OBJECT::errorSystem;
return (0);

The dictionary window is implemented in
DICTIONARY_WINDOW. Here’s its definition:

a class

class EXPORT DICTIONARY WINDOW : public UIW WINDOW

{
public:
DICTIONARY WINDOW(char *dictionaryName);
~DICTIONARY WINDOW(void);
EVENT TYPE Event(const UI_EVENT &event);
private:
DICTIONARY *dictionary;
UIW STRING *inputField;
UIW TEXT *definitionField;
UIW_STRING *antonymField;
UIW_STRING *synonymField;

static EVENT TYPE ButtonFunction(UI_WINDOW OBJECT *item,

UI EVENT &event, EVENT TYPE ccode);
}i

called

DICTIONARY_WINDOW contains the input, definition, antonym, and
synonym fields, as well as the lookup, save, and delete buttons. This class
uses private member variables, accessible only to itself. They are:

dictionary, the pointer to the dictionary itself. The dictionary is created in

the constructor for DICTIONARY_WINDOW.

* inputField, a pointer to the UIW_STRING field. Collects input from the

user.

definitionField, a pointer to the UIW_TEXT field. Displays the defini-

tion of the input word.

* antonymField, a pointer to the UIW_STRING field. Displays antonyms

of the input word.

synonymField, a pointer to the UIW_STRING field. Displays synonyms

for the input word.

166

Getting Started with Zinc Programming



It also includes a static user function, ButtonFunction( ), that is called when
the button is selected. It accepts the following parameters:

object, an object of class U_WINDOW_OBJECT,
event, a structure of type UI_EVENT, and

ccode, the event type.

The D_ENTRY is the entry in the data file that contains the data we enter in
DICTIONARY_WINDOW’s fields. Here’s the definition for the
D _ENTRY class:

class D_ENTRY
{
public:
int wasLoaded;
char *word;
char *definition;
char *antonym;
char *synonym;
D _ENTRY(const char *name, ZIL STORAGE *file,
UIS FLAGS sFlags = UIS READ);
~D_ENTRY () ;
static D _ENTRY *New(const char *name, ZIL STORAGE *file,
UIS_FLAGS sFlags = UIS_READ);
void Save();
private:
ZIL_STORAGE OBJECT *object;
}i

D_ENTRY uses the following member variables:
wasLoaded, a flag that denotes whether or not the entry was loaded.
word, a string that contains the entry in the dictionary.
definition, a string that contains the definition string for the word.
antonym, a list of antonyms that apply to the dictionary entry.

synonym, a list of synonyms that apply to the dictionary entry.

DICTIONARY derives from ZIL_STORAGE, which contains methods for
saving and loading data to and from a data file.

DICTIONARY has the following parameter:

name, which is the name of the .DAT file being used as the dictionary
data file.

Getting Started with Zinc Pro?;;'amming 167



The Zinc Data File

Creating the user interface

Using the The first thing we’ll do is use Zinc Designer to recreate the main window
Designer to and save it in the file WORD_WIN.DAT. Follow these steps:

create the . i = , .

window 1. First, create a new file in the Designer. Select File | New, and then type

WORD_WIN.DAT for the filename. Click the OK button to create the
file.

2. Then create a new window by selecting Window | Create. Select the
string object icon, located at the upper left of the Designer tool bar. Then
drag and drop four string fields on the window.

The Designer gives each string field a default string ID of the form
FIELD_1, FIELD_2, and so forth. In order to access a particular field
programmatically, we need to specify that string’s ID. But the defaults
don’t help us remember which field is which, so let’s change the string
IDs to something we can remember.

3. To change each string ID, bring up one at a time the edit window of each
string field by double-clicking on the background of the window. Select
the notebook tab called Sub-Objects, which will bring up a vertical list
of all the subobjects in the window. Find the ones marked FIELD 1,
FIELD_2, and so forth. In the vertical list, double-click on the first one,
and a new window will pop up that contains several fields for informa-
tion related to that subobject. Enter the appropriate string ID in each
Name field—use DCT_INPUT for the first one, then change the string
IDs of the other fields to DCT_DEFINITION, DCT_ANTONYM, and
DCT _SYNONYM.

4. Create some buttons and change the string IDs of our buttons. To change
the Lookup button's stringID, double-click on the window’s background,
click on the Sub-Objects notebook tab, and select the first button in the
list. Enter DCT_LOOKUP_BUTTON in the Name field. Likewise,
change the Save button’s string ID to DCT_SAVE_BUTTON, and the
Delete’s button to DCT_DELETE_BUTTON.

168 Getting Started with Zinc Programming;



DICTIONARY_WINDOW

Wiring up the
interface

The Event()
function

Now that we’ve set up the window, the next step is to “wire up” the interface
so that we can get data in and out of the fields and cause each button to call
the static user function. We dec this in the implementation of
DICTIONARY_WINDOW by setting up pointers to the string fields so we
can access their contents programmatically, and by assigning each button the
same static user function.

Here’s how we wire up the interface.

1. First, we create a pointer to each string field. Then we call the window's
Information( ) function with the I_GET_STRINGID_OBJECT request
that tells the Information( ) function to return a pointer to the object
whose stringID matches the stringID passed in the second parameter of
the Information( ) function call. We also use the string ID of each field
so the Information( ) function knows from which field to get the text.

// Set up the pointers to the window fields.

inputField = (UIW_STRING *)Information(I_GET STRINGID OBJECT,
"DCT_INPUT");

definitionField = (UIW_TEXT *)Information(I_GET STRINGID OBJECT,
"DCT_DEFINITION");

antonymField = (UIW STRING *)Information(I_GET STRINGID OBJECT,
"DCT_ANTONYM") ;

synonymField = (UIW_STRING *)Information(I_GET STRINGID OBJECT,
"DCT_SYNONYM");

The next thing is to connect the buttons to the static user function.
2. Create a pointer to a button.

3. Then call the window's Get( ) function with the numberID assigned to
the Lookup button, which is DCT_LOOKUP_BUTTON. The Get( )
function will return a pointer to a UIW_BUTTON object.

// Set the user functions to the buttons.

UIW_BUTTON *button;

button = (UIW_BUTTON *)Get (DCT_LOOKUP_BUTTON) ;
button->userFunction = DICTIONARY WINDOW::ButtonFunction;
button = (UIW_BUTTON *)Get(DCT SAVE BUTTON);
button->userFunction = DICTIONARY WINDOW::ButtonFunction;
button = (UIW _BUTTON *)Get(DCT DELETE BUTTON);
button->userFunction = DICTIONARY WINDOW::ButtonFunction;

The Event( ) function is where all the action takes place in our tutorial. It
traps the events generated when the user selects a button and performs the
appropriate action.

Getting Started with Zinc Programming 169



The Zinc Data File

The D_ENTRY class

ZIL_STORAGE_
OBJECT

The constructor

The dictionary entry is an instance of the D_ENTRY class, which encapsu-
lates the data in the dictionary and provides methods for creating a new entry
and saving an existing entry to a file.

The D_ENTRY class contains a private member variable called object, of
type ZIL_STORAGE_OBJECT that can be stored in the data file. We’ll
use it in conjunction with DICTIONARY, which derives from
ZIL_STORAGE, to load and store data in the file.

Although D_ENTRY contains a ZIL_STORAGE_OBJECT member vari-
able, we must set up two functions in order for it to access the data file.
These functions are New( ) and Save( ).

The constructor for the D_ENTRY class takes the following three parame-
ters:

name, the name of the storage object.

file, the file containing the object. If the object is not found in the file, the
member wasLoaded is set to FALSE. Otherwise, wasLoaded is set to TRUE
and the constructor retrieves the object from the data file.

flags, which indicates whether the object is to be loaded or created. If the
program finds the entry, and if we set the UIS_CREATE flag, it will delete
the existing entry so the program can save the new entry.

When the program finds an existing entry in the data file, it loads the word,
its definition, its antonyms, and its synonyms.

The New When the program looks up a word in the dictionary and reads in the entry
function from the data file, it calls the function D_ENTRY::New( ), which creates a
new object. (New( ) is a static member function of D_ENTRY, not the new
operator of C++.) The reason for having a static New( ) function is so the
function can return a value indicating if the object was created successfully
or not.
The Save The purpose of the Save( ) function is to save the object into a file. The fol-
function lowing listing shows how the function stores the words:
void D_ENTRY::Save(void)
{
// Store the field information.
170 Getting Started with Zinc Programming



object->Store(word) ;
object->Store(definition);
object->Store(antonym) ;
object->Store(synonym) ;

}

When Save( ) is called, object->Store( ) writes the data to storage. UI_-
STORAGE actually writes the data to a temporary file and not to the actual
data file; that work is done in UI_STORAGE::Save( ), found in the destruc-
tor for the DICTIONARY class. The destructor is called after the user sends
us the “quit” event, and the Control( ) function returns control to us.

The DICTIONARY class

The dictionary class handles the tasks of saving and loading the data to and
from the data file. To do so, DICTIONARY derives from ZIL_STORAGE,
which reads and writes Zinc data files.

We can think of ZIL_STORAGE, and therefore DICTIONARY as well, as
a file system that can change directories, make new directories, and add and
delete resources. The main difference between a ZIL_STORAGE class and
aregular file system is that ZIL_STORAGE lets us save and retrieve persis-
tent objects as well as items or objects of different types.

DICTIONARY doesn’t actually save the data file when we press the Save
button; as we learned previously, instead it caches it in a temporary file until
the program falls through the Control( ) function. Then the destructor saves
the data file using the Save( ) function it inherited from ZIL_STORAGE.
Using the Save( ) function is easy. We gave the function the name of the file
to save in the constructor when we loaded the .DAT file; therefore we only
need to call the function with the parameter /. This tells the function to save
the data file.

Getting Started with Zinc Programming 171



The Zinc Data File

Conclusion

In this chapter, we learned how to use the Zinc data file, and how to add
objects to it. This chapter also gave us some more practice on how to use
windows created in the Designer, and how to connect code to an interface. In
the next chapter, we’ll learn how to extend an existing Zinc object with new
functionality.

172

Getting Started with Zinc Programming



Chapter 14

Virtual List

Displaying records from a database is a common programming task,
often complicated by the fact that the database may have many more records
than can fit in memory at once. So, to display many records a virtual list is
needed. A virtual list does not attempt to load all the records at once. Instead,
it only loads those that are visible at any given time. In this chapter we will
learn how to use a Zinc object, UIW_TABLE, to create a virtual list.

Getting Started with Zinc Programming 173



Virtual List

What we ‘Il do

Here are the steps we’ll take in writing VLIST.CPP.

1. Create a UIW_TABLE. The UIW_TABLE class has built in virtual
capability, so no new functionality is required on our part.

2. Create the UIW_TABLE_HEADERS that are used to label the columns
and the rows.

3. Create the UIW_TABLE_RECORDs that are used to display the infor-
mation in the headers and in the table. Add all fields to the table records.

4. Create the user functions that the table records will call when they need
to update their data.

Running the Compile the source code and run the executable. You should see the follow-
program ing window on the screen:
= Dictionary [-]-
Word Definition
Bad Not achieving an adequate standard. 1
Bell
Hollow object which rings.
Benefit
Help ived, charity entertai
Bq“i’ Reveal wanted information; deceive.
Bilious
Bad-tempered: relating to bile.
Bind
Tie together; unite: wrap; obligate. *
The table is a nonfield region so it occupies the entire window. The table has
three headers: a column header that contains a label identifying the defini-
tion column; a corner header that contains a label identifying the word col-
umn; and the row header, which contains the words. The definitions appear
as records in the table. Each definition record contains a multi-line text
object.
All movement is handled by the table. We can scroll the table up and down
using either the scroll bar or the keyboard. Table keystrokes are native to
each environment, but typically are the equivalent of <Ctrl+Up Arrow> and
<Ctrl+Down Arrow>.
174 Getting Started with Zinc Programming



Source code

Analyzing the
source code

The application retrieves the necessary data from disk whenever a new
record scrolls into view.

All fields in this tutorial are view only, so you won’t be able to edit any
information.

VLIST.CPP. Contains all the source code for the virtual list. This
includes the following functions..

LoadRecord()

RecordFunction()

RowHeaderFunction()

UI_APPLICATION::Main()
VLIST.TXT. Contains 100 records that are dynamically read from disk
when needed by the virtual list.

*DEF, *.RC. The environment specific definition and resource files
required when compiling for environments Zinc supports.

* MAK. The compiler-dependent makefiles used to build VLIST.CPP.

The first section in the source file, VLIST.CPP, contains some pre-compiler
variable  definitions and some global variable declarations.
RECORD_LENGTH is the length of each record in the data file. In our appli-
cation we are using fixed-length records. RECORD_LENGTH is different
across environments due to how each environment handles the end-of-line
character.

file is the file handle of the data file, VLIST.TXT.
maxRecords is the number of records in the data file.

The next section of the source file contains the definitions of the support
functions used in our application. The LoadRecord() function loads a
record from the data file. It takes three parameters. The first parameter is the
record number to load. The second parameter is a text buffer where the func-
tion is to place the word. The third parameter is a text buffer where the func-
tion is to place the definition.

RecordFunction() is a user function associated with the
UIW_TABLE_RECORD used to display the definitions. This function is
called by the UIW_TABLE_RECORD just as any user function is, when
the object becomes current, is selected, or becomes noncurrent. In addition

Getting Started with Zinc Prog;f;amming 175



Virtual List

to being called at these times, however, a table record user function is also
called when the record needs to load its data. We will discuss this in further
detail below, where we discuss how the table operates.

RowHeaderFunction() is a user function associated with the
UIW_TABLE_RECORD used to display the words.

The last section in the source file contains the UI_APPLICATION-
::Main( ) function definition:

int UI_APPLICATION::Main()
{

UI APPLICATION::LinkMain();

maxRecords = 100;

file = fopen("vlist.txt", "rb");

UIW WINDOW *window = UIW WINDOW::Generic(3, 2, 53, 13,
"Dictionary");

UI_WINDOW OBJECT *rowPrompt, *definition;

UIW _TABLE *table = new UIW TABLE(1l, 1, 40, 10, 1, 0, 100,
7IL, NULLP(void), 100, TBLF NO FLAGS, WOF NON FIELD REGION |
WOF_NO_ALLOCATE DATA) ;

UIW TABLE HEADER *cornerHeader = new
UIW_TABLE HEADER(THF CORNER HEADER);

UIW _TABLE HEADER *colHeader = new
UIW TABLE HEADER(THF COLUMN HEADER);

UIW_TABLE HEADER *rowHeader = new
UIW_TABLE HEADER(THF ROW HEADER);

*cornerHeader
+ &(*new UIW TABLE RECORD(8, 1)

+ new UIW _PROMPT(1, 0, "Word"));

*colHeader
+ &(*new UIW TABLE RECORD(40, 1)

+ new UIW PROMPT(1, 0, "Definition"));

*rowHeader
+ &(*new UIW TABLE RECORD(12, 2, RowHeaderFunc)
+ (rowPrompt = new UIW _PROMPT(1, 0, "")));
*table
+ new UIW SCROLL BAR(O, 0, 0, 0, SBF _CORNER)
+ new UIW SCROLL BAR(O, 0, 0, 0, SBF_VERTICAL)
+ new UIW_SCROLL BAR(O, 0, 0, 0, SBF_HORIZONTAL)
+ cornerHeader
+ colHeader
+ rowHeader
+ &(*new UIW_TABLE RECORD(37, 2, RecordFunction)
+ (definition = new UIW TEXT(1, 0, 35, 2, "", 80,

WNF_NO FLAGS, WOF_VIEW ONLY)));
rowPrompt->StringID("ROW_PROMPT");
definition->StringID("DEFINITION");
*window

176 Getting Started with Zinc Programming



Program flow

+ table;
*windowManager

+ window;
// Process user responses.
UI_APPLICATION::Control();
fclose(file);
return (0);

}

This is where we set up the application by opening the data file, creating the
window, the table, and all the subobjects of the table, and processing the user
events.

When the application starts, it creates a window, places a table on the win-
dow, and adds the window to the Window Manager. As the table is display-
ing a record for the first time—for example, when the table is first coming
up or as a new record is scrolled into view—the table record’s user function
is called to load the data. All events are handled by the table and its subob-
jects.

Using the UIW_TABLE object

Table structure

In keeping with the philosophy of Zinc, the UIW_TABLE object offers us a
good deal of flexibility—a record can consist of a single field, as it does in
this application, or it can be made up of many different fields. The table can
have a single column, or it can be made up of dozens of columns, as a
spreadsheet might be. The table can handle memory allocation for you, or
you can take care of it yourself.

Along with all this flexibility, however, comes a certain amount of complex-
ity. So we’re going to devote the rest of this chapter to a discussion of the
basics of using the UIW_TABLE.

When we break it down, we find that a table consists of records of data and
some labels identifying each field in the data records. The
UIW_TABLE_RECORD class displays records, and the UIW_TABLE_-

Getting Started with Zinc Programming 177



Virtual List

header

HEADER class displays the column and row labels. All data manipulation
is handled at the table record level. And lastly, standard Zinc window objects
comprise data and label fields. Here’s a representation of a table object:

record header

AN ~

Pobject 0 ) Obiect 1 1 Obiect

record object

The table record

The table header

N

header

A table record, similar to a window, is simply a collection of fields that are in
some way related. In fact, the UUW_TABLE_RECORD class derives from
UIW_WINDOW, and we create and add fields to the table record just as
would add window objects to a window. When creating a table record we
specify its height and width and associate a user function with it. We will
talk about the user function later when we discuss how we get data into a
record.

The table header is like a small table that appears in a special area of the
table. Instead of being used to input and output data, though, the header only
displays information, usually describing the contents of the column or row

178

Getting Started with Zinc Programhiihgi




Adding records
to the list

Adding fields to
the records

with which it is associated. The header appears down the left edge of the
table, in the upper-left corner of the table, or across the top of the table,
depending on the table header’s flag setting. Often, several fields are needed
in a header, typically because the data being described by the header consists
of several fields. For this reason, we add each label field to a table record and
add the table record to the header. The table header is, in turn, added to the
table. Our application only uses one field in the header, but we can see this
hierarchy of additions in the code:

UIW_TABLE HEADER *rowHeader = new
UIW_TABLE HEADER(THF ROW_HEADER);

*rowHeader

+ &(*new UIW TABLE RECORD(12, 2, RowHeaderFunc)
+ (rowPrompt = new UIW_PROMPT(1l, 0, "")));
*table

+ rowHeader

You may have noticed that only one UIW_TABLE_RECORD was added to
the table and to each of the table headers.

*table

+ &(*new UIW_TABLE RECORD(37, 2, RecordFunction)
+ (definition = new UIW TEXT(1l, 0, 35, 2, "", 80,
WNF_NO_FLAGS, WOF_VIEW ONLY)));

If the dictionary we displayed in our application has 100 records, and if there
were typically 5 or more records displayed at any given time, how did the
one record become 100? The answer lies in one of the most useful features
of the table object, its built-in virtual capability. We only add one record, but
the table makes it look as if there are many records. The details of how it
does this are not relevant to our discussion, but in a nutshell it makes a copy
of the record we add and then uses that copy to draw images of all the
records except the current one.

Each field of data, whether it is a label on a header or a part of a data record,
is created using a window object. If we place the object in a header, using a
UIW_PROMPT is usually sufficient, since this data can never be edited.
The fields in a data record, however, will often both display information and
collect information from the user. These fields can be just about any window
object.

Getting Started with Zinc Programhwing 179



Virtual List

Getting the data
into the fields

To set the fields in a record, simply create them and add them to the table
record just as you would add them to a window. Their size and position
parameters are used to place the object within the region of the table record,
and their other flag settings will affect their operation and appearance. Let’s
look at our definition record:

+ &(*new UIW TABLE RECORD(37, 2, RecordFunction)
+ (definition = new UIW TEXT(1, 0, 35, 2, "", 80,
WNF_NO FLAGS, WOF_VIEW ONLY)));

The definition record only contains a UIW_TEXT object. We can see from
the parameters that it is placed one cell from the left of the table record, is 35
cells wide and two cells tall. It has a maximum length of 80 characters, is
view only, and has no border.

If we look at the header used to label the definition record we will see how
the two are related:

*colHeader
+ &(*new UIW_TABLE RECORD(37, 1)
+ new UIW PROMPT(1l, 0, "Definition"));

The label is created using a UIW_PROMPT that is placed one cell from the
left of the table record, so it aligns with the text of the definition field.

So, if most of the data we see is actually only an image of the fields, and if
we only add one table record to the table or header, how does the data get
there?

There are several ways to place data into the table. One way is to pass the
data in to the UIW_TABLE constructor. This, of course, won’t work if there
is more data than can fit in memory at one time. This also only provides data
for the data in the table, but not for the headers. We wanted all of our data to
come from the data file so we didn’t give the table any memory and we set
its WOF_NO_ALLOCATE_DATA flag so that it would not attempt to allo-
cate memory for our data. We can see this in the call to the UIW_TABLE
constructor:
UIW_TABLE *table = new UIW_TABLE(1l, 1, 40, 10, 1, 0, 100,
ZIL_NULLP(void), 100, TBLF NO FLAGS, WOF_NON FIELD REGION |
WOF_NO_ALLOCATE_DATA) ;

If we wanted to initialize some data at the beginning, we could have passed
in a data block—for example, an array of structures, each containing data for
a single record—and indicated how many records of data that block con-
tained.

180

Getting Started with Zin;Programming



Another way to get data into the records is by using user functions with the
table records. This is the method we used in VLIST. Whenever a table
record needs to have its data set, it calls the user function. Let’s look at the
definition field’s user function, RecordFunction( ):

EVENT TYPE RecordFunction(UI_WINDOW OBJECT *object,
UI_EVENT &event, EVENT TYPE ccode)
{
if (ccode == S SET DATA)
{
ZIL ICHAR definition[80];
LoadRecord(event.rawCode, ZIL NULLP(ZIL ICHAR), definition);
object->Get ("DEFINITION")->Information(I_SET TEXT,
definition);
}

return (ccode);

}

As we mentioned earlier, in addition to the usual times that a user function is
called, a user function associated with a table record is called when the table
record needs its data set. In our user function we check to see if the ccode is
S_SET_DATA, the message we’ll get when we need to set the record’s data.
If it is, we call LoadRecord( ) to load the record from disk. The record num-
ber is passed in event.rawCode. If the table record had any memory allocated
for its data—VLIST does not, since we neither passed any to the table con-
structor, nor set the WOF_NO_ALLOCATE_DATA flag for the table—the
pointer to this data would be passed in event.data. After we get the definition
back from LoadRecord() we get a pointer to the text object in the table
record that displays the definition and set its data with our definition. And
the table takes care of the rest. If we wanted to, we could use this user func-
tion to save data whenever the object was becoming noncurrent or perform
some other action if the object is selected.

A third way of updating a record’s data is similar to using the user function.
Instead of the user function, however, we could derive our own table record
class and trap the S_SET_DATA event in its Event( ) function.

Getting Started with Zinc Programming 181



Virtual List

Conclusion

Now that we’ve learned how to write a virtual list and how to use event
map tables, we’ll learn about deriving our own custom device classes. This
will give us the ability to write programs that respond to user input in ways
we can define.

182 7 Getting Started with Zinc Programming



Chapter 15

Deriving a Device

In this chapter, we’ll learn how to derive our own device. We’ll create a
macro device that will watch the events flowing through the system to see if
the user presses certain macro keys. If the user does press a macro key, the
device will enter some text into a text object.

Getting Started with Zinc Programming 183



Deriving a Device

What we’ll do

Source code The source code for this program is located in the \ZINC\TUTOR\MACRO
subdirectory, and contains the following files:

MACRO.CPP. This file contains the macro device member functions
MACRO_HANDLER::Event( ) and MACRO_HANDLER::Poll( ),
as well as the main program loop inside UI_APPLICATION::Main( ).

* DEF, *.RC. The environment specific definition and resource files.

* MAK. The compiler-dependent makefiles. See “Appendix A—Com-
piler Considerations” for information on compiling for each Zinc-sup-

ported platform.
Program Let's begin by looking at how the keyboard macro works. To do this, com-
execution pile and run the application MACRO.EXE. The following window should
appear on the screen:
=] 3 Text Window [+]~
|
=

+

.|

The current object in the window is a text object, which, in this case, is a
nonfield region that takes up the entire region within the window. In addition
to a text object, this program has four macro keys.

TABLE 12. Macro keys and their function

Keys Function

<F5> Enters the text “Macro #1.” into the text window.
<F6> Enters the text “Macro #2.” into the text window.
<F7> Enters the text “Macro #3.” into the text window.
<F8> Enters the text “Macro #4.” into the text window.

184 Getting Started with Zinc Programming



Class definitions  The macro device is implemented in a class called MACRO_HANDLER.
Here’s its definition:

const EVENT TYPE E_MACRO = 89;
struct MACRO_PAIR

{
RAW _CODE rawCode;
char *macro;
bi
class MACRO_HANDLER : public UI_DEVICE
{
public:
MACRO HANDLER(MACRO PATIR * macroTlable);
EVENT TYPE Event(const UI_EVENT &event);
private:
MACRO_PAIR *macroTable;
MACRO_PAIR *currentMacro;
int offset;
void Poll(void);
bi

MACRO_HANDLER uses the following definitions and member vari-
ables:

E_MACRO, a constant value that uniquely identifies the macro device.
Zinc predefines the values for the keyboard, mouse, and cursor devices,
but leaves other values open for input devices that we design ourselves.
We’ll discuss later in this chapter the significance of the value 89.

MACRO_PAIR, a structure that allows us to define a keyboard/macro
equivalent pair. Below is the definition of the four macro keys we will
use in our sample program:

MACRO_PAIR macroTable[] =

{
{ F5, "Macro #1l." },
{ F6, "Macro #2." },
{ F7, "Macro #3." },
{ F8, "Macro #4." },
{ 0, NULL }

}i

Getting S—t_égd with Zinc Programming 185



Deriving a Device

The entry { O, NULL } is an end-of-array indicator. In addition, F5, F6,
F7 and F8 in the array above requires us to define a constant value called
USE_RAW_KEYS. This definition allows us to have access to the raw
scan codes defined in UI_MAP.HPP.

macroTable, a pointer to the table that contains the rawCode/macro pairs
to be matched.

currentMacro, a pointer to the current, or active, macro. This value is
reset whenever a new macro key is pressed.

offset, a value that gives the position within the currentMacro->macro
character array. We use this when the macro device places a keyboard
event into the Event Manager's event queue.

Program flow The code sample and the corresponding steps show how the macro device
works after we attach it to the Event Manager.

1.

When the programmer calls eventManager->Get( ), it calls the device’s
Poll( ) function. The first thing the Poll( ) function does is get the next
event waiting to be processed from the event queue so it can determine if
it is a macro key. The code for this step is shown below.

void MACRO HANDLER::Poll(void)
{

// See if any events are in the event manager's event queue.
UI_EVENT event;
static int emptyQueue = TRUE;
if (emptyQueue)
emptyQueue = eventManager->Get(event,
Q NO_POLL | Q NO BLOCK | Q NO DESTROY | Q BEGIN);

When calling eventManager->Get( ), we need to ensure we don’t disrupt
normal event handling; we do this by calling Get( ) with four parameters,
Q_NO_POLL, Q_NO_BLOCK, Q_NO_DESTROY, and Q_BEGIN.

The O_NO_POLL flag prevents the Event Manager from polling any
other input devices. Since we are receiving user input while in a function
of an input device, we must be careful to not poll input devices, causing
unwanted recursion.

The Q_NO_BLOCK flag protects against stopping program execution
until an event is detected. We set this since we only want to check the
event queue to see if an event is available. If there is an event in the
queue, the function returns a value of 0. Otherwise, it returns a negative
value.

186 Getting Started with Zinc Programming



The Q_NO_DESTROY flag prevents the Get( ) function from destroying
the contents of the queue merely by looking for special keyboard events.
This flag allows us to examine the events without removing them from
the queue.

Q_BEGIN lets our function get events from the beginning, rather than the
end, of the queue.

2. The second step is to check for events specific to a particular environ-
ment. If our program receives these types of events, they are mapped to
the generic Zinc event format for processing. Here’s an example of how
our program maps events for some operating systems.

// Check for environment-specific keyboard events.
#if defined (ZIL_MSWINDOWS)

if (state = D OFF && !emptyQueue && event.type = E MSWINDOWS &&
event.message.message == WM_KEYDOWN)

{

#elif defined (ZIL_0S2)
if (!emptyQueue && event.type == E_0S2 &&
event.message.msg == WM CHAR)
{

#elif defined (ZIL_MOTIF)
if (!emptyQueue && event.type == E MOTIF &&
event.message.type == KeyPress)

{

#endif

}

3. This step determines if a macro key was pressed, and if so, which one.
The program only executes this step if the device is not already process-
ing a macro key. If the user has pressed a valid macro key, the program
shuts off all other input devices, so they won't feed more information into
the queue while we are putting into the queue our macro events.

Next, the original macro key is removed from the Event Manager's event
queue and the macro device is enabled.

4. The program only executes the fourth step if the macro device is enabled.
Once the macro device is enabled, it feeds one event into the event queue
each time its Poll( ) routine is called, but only if there are no other events
waiting to be processed by the Event Manager. Once the macro device

Getting Started with Zinc Programming 187



Deriving a Device

Base class
initialization

runs out of input information, it changes its state to D_OFF. This pre-
vents the fourth step from being executed until another macro key is
pressed.

// Put macro information into the event queue.

if (state == D _ON && emptyQueue)

4

¥
5. The main program loop processes all event information, including the
macro key expansions, by calling windowManager->Event( ). The main
program loop exits if the L_EXIT message is received, or it returns to the
first step to get the next event.

The MACRO_HANDLER class constructor is an inline function.

class MACRO HANDLER : public UI DEVICE

{
public:
MACRO_HANDLER (MACRO PATR * macroTable) : UL DEVICE(E MACRO, D OFF),
macroTable( macroTable) { installed = TRUE; }

We call UI_DEVICE’s class constructor before any we set any class-spe-

cific information. It requires the specification of the device's type,
E_MACRO, and its initial state, D_OFF.

The Event Manager uses the input device fype to determine the device's
order in the list. Input devices are arranged in the device list in ascending
type order. The order of the four input devices we attached to the Event Man-
ager is:
UID_KEYBOARD. Its value is 10, the number associated with the con-
stant variable E_KEY.

UID_MOUSE. Its value is 30, the number associated with the constant
variable E_MOUSE.

UID_CURSOR. Its value is 50, the number associated with the constant
variable E_CURSOR.

MACRO_HANDLER. We assigned it the value 89, so that it would be
the last device in the list.

Here’s why the macro handler should be the last device in the list. Its Poll( )
function must review any activity since the last call to
eventManager->Get( ).

188

Getting Started with Zinc Programming



Initializing
member
variables

For example, if the user presses <F5>, the keyboard's Poll( ) function will
put the character <F5> into the Event Manager's event queue.

Later, the macro device's Poll( ) function will be called. When it is, the
macro handler will find the <F5> value entered by the keyboard.

If we assign the macro handler a lower number than that assigned to the key-
board, the macro handler will always check the event queue before the key-
board feeds its information and will never see the <F5> key, and it will be
passed to the main control before the macro handler is called again.

The initial state of the macro device needs to be off so that the program
doesn't think macro information is being fed into the event queue. The Event
Manager does not look at the state of devices, but devices generally use the
information internally to determine what types of operations to perform. The
macro device can be either on or off.

1. D_OFF When the macro device is not placing events into the event
queue, it sets itself to this state.

2. D_ON. When the macro device places events into the event queue, it sets
itself to this state.

The Event Manager and UI_DEVICE set three other variables:

enabled, a second-level state indicator. UI_DEVICE sets this variable to be
TRUE, but the macro device ignores it.

display, a pointer to the screen display created in the main event loop. Not
set until the macro device is attached to the Event Manager. The macro
device does not use display.

eventManager, a pointer to the Event Manager where the macro device is
attached. The macro device uses this pointer to make queries on and place
events in the event queue.

The class member macroTable is initialized to point to the constructor argu-
ment _macroTable. This variable is the search table for keyboard/macro
expansions. The array specified in this argument must not be destroyed until
the class is destroyed by the Event Manager.

The last thing the class constructor does is override the base class member
installed. The value specified is TRUE. This value is not used by the Event
Manager, but it does provide consistency when checking for device installa-
tion.

Getting Started with Zinc Programhﬁng 189



Deriving a Device

The Poll function

g&a

The class members currentMacro and offset are not set until the state of the
device changes to D_ON.

We mentioned MACRO_HANDLER::Poll( ) function earlier in this chap-
ter. Poll( ) functions do the following:

1.

Feed information to or get information from the Event Manager's event
queue. The keyboard, mouse, cursor, and timer devices all have poll rou-
tines that feed information into the event queue.

Pass control to an object periodically. Some environments Zinc supports
don’t multitask, and so using a poll routine in those environments ensures
the program will poll all devices each time it calls the eventManager->
Get( ) function. The cursor device uses a poll routine to paint and remove
an XOR region to the screen, simulating a blinking cursor. It does this by
keeping track of time intervals and blinking the cursor at regular inter-
vals.

“How do | install hotkeys?”

Any prompt or selectable object such as a button or menu item
can have a hot key. If the object is attached to a window added to
the window manager, all you need to do is place the ‘&’ before the
desired hotkey in the object’s text. If you want the object to
respond to special characters, such as ‘#,” you may need to copy
the library's hotKeyMapTable and add entries for the special char-
acters. The library's hotKeyMapTable is defined in G_WIN.CPP.

If you want to place the hot key object in a group, list, or child win-
dow, pass HOT_KEY_SUB_WINDOW to the parent object’s
HotKey( ) function. This tells the parent window to search its sub-
objects for a match on the hot key. For more details, see
Ul_WINDOW_OBJECT::HotKey( ) in the Programmer's Refer-
ence, Volume 1.

The macro device feeds information to and gets information from the Event
Manager. When the device is on, it feeds information into the event queue
and checks the input when it is off.

190

Getting Started with Zinc Programt;iing



Responding to
events

Enhancements

The MACRO_HANDLER::Event( ) function is defined below:

class MACRO HANDLER : public UI_DEVICE

{
public:
EVENT TYPE Event(const UI_EVENT &event);

This routine must be declared by the macro device since the base
UI_DEVICE declares it a virtual function.

class UI _DEVICE : public UI_ELEMENT

{
public:
virtual EVENT TYPE Event(const UI_EVENT &event) = 0;

Generally, we use Event( ) functions to change the state of an input device.

Now that we have discussed the design and implementation of a macro
device, let's look at some variations we could implement to make the class
more powerful.

1. Stuff the input buffer all at once, rather than one character at a time. This
could be accomplished by modifying the Poll( ) routine to put all macro
characters into the event queue in one step. The benefits of this method
are that it simplifies the process of the macro device and that it prevents
the need for disabling all other input devices. The problem with this
implementation is twofold.

First, the macro may fill the input buffer, in which case we will have to
write code to wait until the buffer is not full. Second, the macro may
itself contain a character that is a macro key. This would require modifi-
cation to our member variables and may cause recursion of macro events.

2. Modify the static variables UIW_STRING::pasteBuffer and UIW-
_STRING::pasteLength to contain the macro, then send an L_PASTE
message through the system. This implementation’s only drawbacks
would be wiping out the old information in the global paste buffer and
that the receiving object may not be a simple text field, like the window
created in our application.

3. Extend the macro device to enable the addition or deletion of macro
pairs. This could be accomplished by overloading the + and — operators
for the MACRO_HANDLER class.

4. Extend the macro pair to handle logical, system, or normal keyboard
information. In this implementation, we would modify the definition of
MACRO_PAIR.macro to support UI_EVENT information, rather than

Getting Started with Zinc Programming ” 191



Deriving a Device

simple character values. In addition, we would probably want to write an
editor so that the macro could be edited and modified easily. This would
require setting up an edit window using the UIW_WINDOW class that
contained the macro key, a list of mapping events, and menu items or but-
tons that would let us add to, delete from, or modify the contents of the
list.

Conclusion

N ow that we’ve learned how the keyboard macro device works, we’ll
learn to derive our own custom display classes. This will give us the ability
to write displays built around third-party graphics libraries and will teach us
more about the display class.

192

Getting Started with Zinc Programmihg



wmee CUStomized Displays

In order to display information on the screen under each of the operating
environments Zinc supports, we use a display object to handle drawing
chores. Writing display classes from scratch would consume a great amount
of time, so Zinc designed UI_DISPLAY, which is an abstract class that
describes basic behaviors of drawing but leaves the implementation up to us.
Here we will use UI_DISPLAY to derive a display class for a specific
graphics library, UI_BGI_DISPLAY.

the basics of designing of a display class
initializing the display class and its base class
giving a display class custom behavior

Getting Started with Zinc Programming 193



Customized Displays

What we’ll do

Using the class

Source code

All display classes derive from UI_DISPLAY, which handles the details of
the display. But UI_DISPLAY doesn’t automatically know what those
details are; we need to define those behaviors in our derived display,
UI_BGI_DISPLAY. To tell UI_DISPLAY about those details, we must take
three steps.

1. Decide which virtual functions contained in UL_DISPLAY we’ll imple-
ment in our derived display, UL_BGI_DISPLAY.

2. Determine the coordinate system. This depends on whether the display is
running in text or graphics modes. The coordinate system is always left-
top, zero-based, where {0,0} is the coordinate of the left-top corner of the
screen, and where the type of display and the mode in which it is running
determines the right-bottom coordinates.

3. Define clip regions, or identifying rectangular regions of the screen
where windows overlap. For example, if two windows were attached to
the screen, the display would contain several rectangular regions with
different identifications. Most environments handle drawing routines as
well as clipping.

A display class defines some methods for drawing on the screen. We begin
defining those methods by deciding basic properties of the screen like the
types of fonts, the number of columns and lines, and whether the display is
color or monochrome. Then we declare the behaviors we want our display
class to use, behaviors like starting up the display, and others like drawing
lines, polygons, or rectangles.

The source code for this example is located in \ZINC\TUTOR\DISPLAY,
and contains:

TEST.CPP, a test program.
BORLAND.MAK, the makefile associated with the test program.

D_BGIDSP.CPP, located in \ZINC\SOURCE, contains the BGI class
constructor, destructor, and associated display member functions.

To derive the UI_BGI_DISPLAY class, we need the graphics display
library GRAPHICS.LIB, and its BGI files, EGAVGA.BGI, CGA.BGI, and
HERC.BGI, provided with the Borland compiler. Even if we’re not using

194

Getting Started with Zinc Programming



the Borland compiler, or even if we won’t derive our own display later on,
we can still learn the design and implementation of display classes by study-
ing this chapter.

Besides setting up information needed for working with screens,
UI_DISPLAY initializes the following member variables:

installed, which tells whether the display has been installed. By default,
UI_DISPLAY sets it to FALSE. We need to tell our derived display con-
structor to set this variable to be TRUE if the graphics display installs
correctly.

isMono, which tells whether the display is operating in monochrome
mode.

cellWidth and cellHeight, the width and height values of a cell coordi-
nate. If the program is running in text mode, cellWidth and cellHeight are
1. Otherwise, the values of cellWidth and cell Height are determined by
the graphics mode and default font size. For example, the
UI_BGI_DISPLAY class constructor sets cellWidth to 7 and cellHeight
to 23.

columns and lines, the columns or lines the display contains. The follow-
ing table shows BGI’s values for columns and lines:

TABLE 13. BGI display values

Display Columns Lines

Text 80 25
40 25
80 43
80 50
CGA 320 200
MCGA 320 200
EGA 350 480
VGA 640 480

preSpace denotes the size in pixels of the white space between the top
border of a string field and the tallest character. By default, preSpace is
set to 2.

postSpace denotes the size in pixels of the white space between the bot-
tom border of a string field and the lowest character. By default,
postSpace is set to 2.

Getting Started with Zinc Programming 195



Customized Displays

Initializing the
base class

miniNumeratorX and miniDenominatorX determine the width of a mini-
cell. miniNumeratorX is set to 1 and miniDenominatorX is set to 10.
These values default to 1/10th of a cellwidth. Mini-cells provide for more
precise positioning of objects and are available in graphics modes only.

miniNumeratorY and miniDenominatorY determine the height of a mini-
cell. miniNumeratorY is set to 1 and miniDenominatorY is set to 10.
These values default to 1/10th of a cellheight. Mini-cells provide for
more precise positioning of objects and are available in graphics modes
only.

backgroundPalette is a pointer to the background color palette. When ini-
tialized, this static pointer points to the UI_PALETTE structure,
_backgroundPalette, contained in G_DSP.CPP.

xorPalette is a pointer to the XOR color palette. When initialized, this
static pointer points to the UI_PALETTE structure, ___xorPalette, con-
tained in G_DSP.CPP.

colorMap is a pointer to the normal color palette. When initialized, this
static pointer points to the UI_PALETTE structure, __colorMap, con-
tained in G_DSP.CPP.

 Writing UL_BGI_DISPLAY

Since our derived display uses UI_DISPLAY’s methods, we must first ini-
tialize UIL_DISPLAY before we initialize UIl_BGI_DISPLAY. To initialize
it, we call inside of UI_BGI_DISPLAY the UI_DISPLAY constructor with

three arguments, isText, _operatingSystem, and _windowingSystem.
UI_DISPLAY(FALSE, _operatingSystem, _windowingSystem)

When we call this function, UL_DISPLAY sets up then information needed
for working with screens. To be able to write display classes, we need not
understand what UI_DISPLAY does—we can treat UI_DISPLAY as a
black box.

This black box notion is a benefit of Zinc and of object orientation in gen-
eral. It allows us to use the functionality of another class without having to
understand how it works. All we need to know is how to pass parameters and

196

Getting Started with Zinc Programming 7



Initializing
Ul_BGI_DISPLAY

arguments into the class and let it do our work for us. If not for Zinc’s true
object orientation, writing our own display class would mean duplicating
much of the work Zinc has already done.

Here’s where we pass parameters and arguments into UI_DISPLAY’s con-
structor. isText is the first variable in the constructor, which tells whether a
text display will be created—since we’re creating a graphics display, this
value is FALSE. We’ll already know the values for the _operatingSystem and
windowingSystem variables before we write the class.

After initializing UI_DISPLAY to use its methods for working with screens,
we have to initialize UI_BGI_DISPLAY’s member variables. Below are the
steps UL_BGI_DISPLAY’s constructor follows to initialize them.

1. Register the system, dialog, and small fonts contained in the .CHR files
in \ZINC\SOURCE. We can modify these fonts with the Borland font
editor, and we must compile them with the Borland utility
BGI20BJ.EXE, which translates them to .OBJ files. Once translated,
the fonts are linked automatically into the program.

// Register the system, dialog and small fonts linked in.
BGIFONT BGIFont = {O, O, 1, 1, 1, 1, 0, O };
BGIFont.font = registerfarbgifont(SmallFont);
if (BGIFont.font >= 0)

{
BGIFont.charSize 03
BGIFont.maxWidth 10;
BGIFont.maxHeight = 11;
UI_BGI_DISPLAY::fontTable[FNT SMALL FONT] = BGIFont;
}
BGIFont.font = registerfarbgifont(DialogFont);
if (BGIFont.font >= 0)
{
BGIFont.charSize = 0;
BGIFont.maxwidth = 11;
BGIFont.maxHeight = 11;
UI_BGI_DISPLAY::fontTable[FNT DIALOG FONT] = BGIFont;
}
BGIFont.font = registerfarbgifont(SystemFont);
if (BGIFont.font >= 0)
{
BGIFont.charSize = 0;
BGIFont.maxWidth = 11;
BGIFont.maxHeight = 13;
UI_BGI DISPLAY::fontTable[FNT SYSTEM FONT] = BGIFont;

7 Getting Started with Zinc Progrémming 197



Customized Displays

2. Determine the type of display. In the Borland graphics library we can

determine the type of display by calling detectgraph( ). The driver and
mode arguments of the constructor allow us to override this default detec-
tion.

// Find the type of display and initialize the driver.
if (driver == DETECT)
detectgraph(&driver, &mode);
int tDriver, tMode;

Find the display’s graphics driver. The current working directory is the
first place we look, and the second is the originating directory of the pro-
gram. If these fail, we use the UI_PATH object to search the directories
specified by the environment variable PATH. If the driver cannot be
found, the installed flag remains FALSE, and we drop out of the initial-
ization process.

// Use temporary path if not installed in main().
int pathInstalled = searchPath ? TRUE : FALSE;
if (!pathInstalled)
searchPath = new UI_PATH;
const char *pathName = searchPath->FirstPathName();
do
{
tDriver = driver;
tMode = mode;
initgraph(&tDriver, &tMode, pathName);
pathName = searchPath->NextPathName();
} while (tDriver == -3 && pathName);
if (tDriver < 0)
return;
driver = tDriver;
mode = tMode;

// Delete path if it was installed temporarily.
if (!pathInstalled)
{

delete searchPath;

searchPath = NULL;

}

4. Set up columns, lines, and maxColors variables that we discussed earlier.

columns = getmaxx() + 1;
lines = getmaxy() + 1;
maxColors = getmaxcolor() + 1;

198

Getting Started with Zinc Pl;ogramming



Display
destructor

5. Set up the default font, initialize cellWidth and cellHeight, fill the back-
ground screen, and define the new display region, which is, in our case,
the entire screen. Since the display was successfully installed, the con-
structor sets installed to TRUE.

// Fill the screen according to the specified palette.

SetFont (FNT_DIALOG FONT);

cellWidth = (fontTable[FNT DIALOG FONT].font == DEFAULT FONT) ?
TextWidth("M", ID SCREEN, FNT DIALOG FONT) : // Bitmap font.
TextWidth("M", ID SCREEN, FNT DIALOG FONT) - 2; // Stroked font.

cellHeight = TextHeight(NULL, ID SCREEN, FNT DIALOG FONT) +
preSpace + postSpace + 4 + 4; // 4 above and 4 below the text.

SetPattern(backgroundPalette, FALSE);

setviewport(0, 0, columns - 1, lines - 1, TRUE);

bar(0, 0, columns - 1, lines - 1);

// Define the screen display region.

Add(NULL, new UI_REGION ELEMENT(ID SCREEN, 0, 0, columns - 1,
lines - 1));

installed = TRUE;

}

The class destructor for UL_BGI_DISPLAY only has to do a small amount
of work—it need only restore the display by calling closegraph( ), which
restores the screen.

UI_BGI_DISPLAY:: UI BGI DISPLAY(void)

{
// Restore the display.
if (installed)
closegraph();

The Rectangle( ) function

Drawing on the
screen

To show how to draw on the screen, let’s examine the
UI_BGI_DISPLAY::Rectangle() function. All drawing functions,
Rectangle( ) included, work similarly—first we set up a draw region, then
we draw inside of it. Here are the steps this function, or a rectangle function
for any other display class, will take.

Getting Started with Zinc Programming 199



Customized Displays

Set up the desired draw region. In our Rectangle( ) function, we’ve spec-
ified two regions. The first region is where we draw the rectangle, other-
wise called the fill region. We define this region with four coordinates:
left, top, right, and bottom. The second region is specified by clipRegion,
which describes where the drawing should be clipped. The clip region
associates the screen identifications of window objects with a window. A
window may contain several different window objects, such as buttons,
title bar, and borders, but all the objects share the same identification,
which ensures that one window object does not draw over another.

The way we ensure that window objects don’t draw over one another is to
specify a clipRegion that is the true coordinates of the object that wants

to draw to the screen. The object's true screen coordinates are contained

in the public UI_WINDOW_OBJECT::true.

// Assign the rectangle to the region structure.

UI_REGION region, tRegion;

if (!RegionInitialize(region, clipRegion, left, top, right, bottom))
return;

// Draw the rectangle on the display
int changedScreen = FALSE;

Identify. Determine which areas of the screen have the same identifica-
tion as that passed down by the screenlD argument. To do this, our pro-
gram walks through the list of region elements and checks their
identifications with screenID’s. If the IDs match, and if the screen region
and the region specified overlap, the program executes the third step.

for (UI_REGION ELEMENT *dRegion = First();
dRegion;
dRegion = dRegion->Next())
if (screenID == ID DIRECT ||
(screenID == dRegion->screenID &&
dRegion->region.Overlap(region, tRegion)))
{
if (screenID == ID DIRECT)
tRegion = region;
if (!changedScreen)
{
changedScreen = VirtualGet(screenID, region.left,
region.top, region.right, region.bottom);
SetPattern(palette, xor);
}

3. Clip. The best way would be to set up all the clip regions at once and then

draw the image. Unfortunately, the BGI graphics library does not support
multiple clip regions, and so we must walk through the list of regions and

200

Getting Started with Zinc Programming



display the image each time we find an overlapping region. Note that for
operating systems that associate a handle with a window object, screenlD
is set to the window handle.

setviewport(tRegion.left, tRegion.top, tRegion.right,
tRegion.bottom, TRUE);
if (fill && xor)// Patch for Borland bar() xor bug.
{
for (int i = 0; i < tRegion.right - tRegion.left; i++)
line(i, top - tRegion.top, i, bottom - tRegion.top);
}
else if (fill)
bar(left - tRegion.left, top - tRegion.top,
right - tRegion.left, bottom - tRegion.top);
for (int i = 0; i < width; i++)
rectangle(left - (tRegion.left - i), top -
(tRegion.top - i), right - (tRegion.left + i),
bottom - (tRegion.top + 1i));
if (screenID == ID_DIRECT)
break;

}
4. Draw. The low-level display calls depend on the type of function, such as
Rectangle( ), Ellipse( ), Polygon( ), and whether the fill parameter is
TRUE or FALSE.

void UI BGI DISPLAY::Rectangle(SCREENID screenID, int left, int top,
int right, int bottam, const UL PAIETTE *palette, int width, int fill,
int xor, const UI REGION *clipRegion)

{

5. Update the screen quickly with VirtualGet( ) and VirtualPut( ). Briefly,
these functions allow us to optimize repetitive drawing tasks by copying
part of the display into a buffer, draw into the buffer, and then copy the
modified data out of the buffer and onto the screen. For more details, see
“UI_BGI_DISPLAY" in the Programmer's Reference.

// Update the screen.
if (changedScreen)
VirtualPut (screenID);

}
Information The display has two information functions. TextHeight( ), gets the maxi-
meml_)er mum height of a string using a specific font. If the font parameter, logical-
functions Font, has an entry in the font table, its associated value is returned.

Otherwise, the Borland textheight( ) function is called. TextWidth( ) gets
the width of the text displayed in the current font. Its operation is similar to
that of TextHeight( ).

Getting Started with Zinc Programming 201



Customized Displays

int UI_BGI_DISPLAY::TextHeight(const char *string, SCREENID,
LOGICAL FONT logicalFont)
{
logicalFont &= 0xOFFF;
SetFont (logicalFont);
if (fontTable[logicalFont].maxHeight)
return (fontTable[logicalFont].maxHeight);
else if (string && *string)
return (textheight((char *)string));
else
return (textheight("Mg"));
}

int UI_BGI_DISPLAY::TextWidth(const char *string, SCREENID,
LOGICAL FONT logicalFont)
{

if (!string || !(*string))
return (0);
SetFont(logicalFont & OxOFFF);
int length = textwidth((char *)string);

return (length);

}

Graphic display information functions must return the width and height of a
string in pixel values. In addition, the text width or height should be
returned, not the cell height and cell width defined by the ce/[lWidth and cell-
Height values.

Conclusion

In this chapter, we learned how to derive a display class from
UI_DISPLAY, for a specific graphics library, UIl_BGI_DISPLAY. If we had
had to write UI_BGI_DISPLAY from scratch, we would have spent a lot
more time. In the next chapter, we’ll learn how to use Zinc’s ability to detect
language and locale at run time and change the locale of an object according
to user input.

202

Getting Started with Zinc bfogramming



Chapter 17 USing Locales

In this chapter we will begin our discussion of how to globalize a Zinc
application. We start by learning how to work with locales.

In this tutorial, we learn how to write a program for a department of Interpol,
which maintains offices in France, Germany, and the United States, and
whose responsibility is to track bank robberies in those countries. The Inter-
pol MIS director asks us to write an Incident Report program that allows
Interpol agents to record the date of the crime, the institution robbed, and the
amount stolen. Since the program might be deployed in any of the Interpol
international offices, and since the agents will record robberies in those
countries, they must be able to record the type of currency stolen with the
appropriate currency symbol.

Key

Concepts

Getting Started with Zinc Programming 203



Using Locales

What we’ll do

Running the

Here are the steps we’ll take in writing INTRPOL1.CPP.
1. Load the report window from the .DAT file.

2. Determine what the system’s default locale is and update the window
accordingly.

3. Display the window.

4. If the user selects a different locale for the amount field, update the
field’s locale information and exchange the value for the new setting.

Compile the source code and run the executable. You should see the follow-

program ing window on the screen:
=| Report Window [+]~
Incident Date:
Institution: [:\
Amount
E|
By default, the date and the currency symbol use the system’s locale. So if
the Interpol agent is running the application in Germany on a computer with
a German configuration, the date will appear in the normal German fashion,
and the amount will use the deutschemarks currency symbol. But if the Ger-
man Interpol agent records a robbery that took place in France, the program
will allow him to update the amount field with the currency symbol for
francs. Note that the date field remains in the format specified by the sys-
tem’s configuration.
204 Getting Started with Zinc Programming



Source code

Analyzing the
source code

The source code for our tutorial is located in \ZINC\TUTOR\GLOBAL,
and contains the following files:

INTRPOLI1.CPP. Contains the main event loop inside
UI_APPLICATION::Main( ), as well as the implementation of the
REPORT_WINDOW class.

INTRPOL1.HPP. Contains the declaration for the REPORT _-
WINDOW class and application constants and events.
IPOLWINI1.CPP. The object table for the objects we created in the
Designer.

IPOLWINI1.DAT. The data file created in the Designer. Contains the
data for creating the report window and its fields.

IPOLWIN1.HPP. The header information for the window and its fields
that we created in the Designer.

*DEF, *.RC. The definition and resource files when compiling for dif-
ferent environments.

* MAK. The compiler-dependent makefiles.

The header file has three sections, INTRPOL1.HPP. The first section
defines the following country identifiers:
const int GERMANY = 0;

const int UNITED STATES = 1;
const int FRANCE 2

These country name constants are used to locate the proper exchange rate
data when switching locales. We’ll talk more about these constants later.

The next section contains some definitions for events specific to this applica-
tion:

const ZIL_USER EVENT LOCALE FIRST = 10000;
const ZIL USER EVENT GERMAN LOC = 10000;
const ZIL USER EVENT US_LOC = 10001;
const ZIL USER EVENT FRANCE LOC = 10002;
const ZIL USER EVENT LOCALE LAST = 10010;

The program places these user-defined events on the event queue when the
user changes locales by selecting an option from the combo box. We will
trap these events in the REPORT_WINDOW::Event( ) function.

Getting Started with Zinc Programming 205



Using Locales

The third section contains the definition for REPORT_WINDOW, the class
used to display our reports. REPORT_WINDOW maintains a pointer to the
amount field and the current locale name, since they are used fairly often. It
also contains the Event( ) function and a ConvertAmount( ) function which
is used to update the amount field when the user selects a new locale. Here’s
the definition for the REPORT_WINDOW class:

class REPORT WINDOW : public UIW WINDOW

{
public:

REPORT WINDOW(ZIL ICHAR *name);

~REPORT WINDOW(void);

EVENT TYPE Event(const UI_EVENT &event);
protected:

void ConvertAmount (EVENT TYPE ccode);
private:

UI_WINDOW OBJECT *amountField;

ZIL ICHAR *currentLocaleName;

}i

REPORT_WINDOW uses the following member variables:

amountField, a pointer to the UIW_BIGNUM used to display the
amount.

currentLocaleName, a string pointer that contains the two-letter ISO
locale name currently displayed.

The main source file, INTRPOL1.CPP, contains four sections. The first
section includes the header files:
#include <ui_win.hpp>

#include "intrpoll.hpp"
#include "ipolwinl.hpp"

Note that we included the header file generated by the Designer as well as
the header file that has our application-specific code.

The second section sets up data:

// Create static strings used in application.

static ZIL ICHAR _USLocaleString[] = { 'U','S', 0 };
static ZIL ICHAR _DELocaleString] ] { 'D","E', 0 };
static ZIL ICHAR _FRLocaleString] ] { 'F','R', 0 };

1]

static ZIL ICHAR _amountFieldName[] = {

M et T N e, R T R D e O
static ZIL ICHAR convertBoxName[] = {

‘¢, 'or, Nt e, B, 'R, S, 'T 0N, TN, NS, 0 B
static ZIL ICHAR fileName[] = {

'i','p','o','l','w','i‘,'n','l','.',‘d','a','t', 0 };

206

Getting Started with Zinc Programming>



static ZIL ICHAR _windowName[] = {

RGBT, TP, O R N D 0 W, 0 R

// Table for exchange rates and to identify locales.
static struct EXCHANGE
{
int country;
ZIL ICHAR *ISOLocaleName;
ZIL_RBIGNUM exchangeRate;
}_exchange[] =

{
{ GERMANY, _DELocaleString, 1.5 ¥+
{ UNITED STATES, _USLocaleString, 1.0 },
{ FRANCE, _FRLocaleString, 0:5 }x
{ -1, 2IL NULLP(ZIL ICHAR), 1.0 }

i

int UI_APPLICATION::Main(void)

The first part of this data initialization creates Unicode-compatible strings
for use in the application. The second part creates a structure that is used to
look up exchange rates and identify locales.

The third part of the main source code file contains the definitions for the
REPORT_WINDOW member functions. We will discuss the important
parts of these functions when we look at the interface, below.

The fourth section is the definition of the UI_APPLICATION::Main( )
function:

{
// The UI_APPLICATION constructor automatically initializes the
// display, eventManager, and windowManager variables.
// This line fixes linkers that don't look for main in the
// .LIBs.
UI_APPLICATION::LinkMain( );
// Create derived window.
UI_WINDOW_OBJECT::defaultStorage = new
ZI1, STORAGE READ ONLY( fileName);
UIW _WINDOW *window = new REPORT WINDOW(_ windowName);
// Bdd window to the window manager.
*windowManager
+ window;
// Process user responses.
UI_APPLICATION::Control( );
// Clean up.
delete UI_WINDOW OBJECT::defaultStorage;
return (0);
)

Getting Started with Zinc P;bgramfﬁing

207



Using Locales

Program flow

We create a UI_STORAGE_READ_ONLY object to which we assign the
UI_WINDOW_OBJECT::defaultStorage. This is the .DAT file that con-
tains the Report Window. We won’t describe the creation of the window
using the Designer—if you need to review this process, see “Using the
Designer” on page 139. UI_APPLICATION::Main( ) also creates the
Report Window and adds it to the Window Manager. The rest of this func-
tion you should be familiar with by now.

Using UI_APPLICATION::Main( )’s built-in main event loop, our pro-
gram flow is simple. We load the report window from the .DAT file and add
it to the Window Manager. The report window determines what the system’s
locale is and updates its combo box accordingly. If the user selects a differ-
ent locale from the combo box, the combo box option places a message on
the event queue, which the REPORT_WINDOW::Event( ) function uses.
Then the  event  function updates the amount  field.
REPORT_WINDOW::Event( ) passes all other events back to its base
class, UIW_WINDOW::Event( ).

REPORT WINDOW

Wiring up the
interface

Once we’ve created the window, the next step is to “wire up” the interface so
that we can trap user events and change the amount field’s locale when the
user requests it. In the constructor for REPORT_WINDOW we get a
pointer to the amount field so that we can change its locale and value. We
then get the initial locale being used by the system by inspecting localeMan-
agerdefaultName. localeManager 1s a global, static instance of
ZIL._LOCALE_MANAGER. This object maintains all the application’s
locales.

Once we determine the system locale, the constructor determines if the
application supports the locale by looking for the locale name in the
_exchange structure. If the application does not support that locale, we set
the application’s locale to be the first entry in the structure as a default.

208

Getting Started with Zinc Proéramming



Changing
locales

After we have a valid locale for the field, we update the combo box so when
the application comes up, its selection matches the contents of the amount
field by inspecting each object attached to the combo box, comparing its
value to the current locale. Once we find the proper selection, we simply re-
add it to the combo box. This makes it the current selection.

The REPORT_WINDOW::Event( ) function is the heart of the application.
While it doesn’t have much code in it, all our functionality really exists
there.

Whenever the user selects a locale option from the combo box, a message is
put on the event queue because the combo box options are UITW_BUTTONs
with the BTF_SEND_MESSAGE flag set. The event that is put on the queue
is one of the events that we defined in the header file. After that event is
pulled off the queue and sent to the Window Manager by the
UI_APPLICATION::Control( ) function, the Window Manager will route
the event to the Report Window. We trap for those messages in the Event( )
function:

EVENT TYPE REPORT WINDOW::Event(const UI_EVENT &event)

{

// Get the logical event.

EVENT TYPE ccode = LogicalEvent(event);

// Check to see if the event is one of ours.

if (ccode >= LOCALE FIRST && ccode <= LOCALE LAST)
ConvertAmount (ccode) ;

// If it's not our event, pass it to the UIW WINDOW base class.

else
ccode = UIW_WINDOW: :Event(event);

return (ccode);

}

Any other messages are passed to the base class’s Event( ) function so that
the object can process them properly.

When we get a message to change the locale, we call
REPORT_WINDOW::ConvertAmount( ), passing it the message we
received. The most important thing ConvertAmount( ) does is set the locale
for the amount field. It does this by getting a pointer to the ZIL_BIGNUM
used by the UIW_BIGNUM object, and then calling the ZIL_BIGNUM’s
SetLocale( S) function:

// Set the new locale.
amount->SetLocale(_exchange[newLocale].ISOLocaleName) ;

Getting Started with Zinc Prografﬁming 209



Using Locales

The rest of the code in ConvertAmount( ) is related to changing the mone-
tary value using the exchange rates, and so we won’t discuss that here.

Conclusion

In this chapter, we learned how to detect which locale the system is using
and how to set which locale a particular instance of an object is using. We
also learned how to set a combo box entry. In the next chapter we will extend
this tutorial and learn how to switch languages at run time.

210

Getting Started with Zinc Prograr}wming



aee USING Languages

In the last chapter we began a discussion of globalizing applications by
learning how to use locales. In this chapter we will continue by learning how
to work with languages in our application. We will continue with the Interpol
example we began in the last chapter and expand it to allow switching of lan-
guages at run time.

Key

Concepts

Getting Started with Zinc Programming 21



Using Languages

What we’ll do

Here are the steps we’ll take in writing INTRPOL2.CPP.

1. Determine what the system’s default language is and load the proper win-
dow.

2. Display the window.

3. If the user selects a different language for the application, load the new
window and delete the old window.

Running the Compile the source code and run the executable. You should see this win-
program dow:
=l Report Window - English ] vI =
Language
Incident Date:
Institution: :]
£
Notice that this window is the same as the one we saw in the last chapter,
except that this window has a pull-down menu. By default, the window uses
the language used by the system if our program supports that language. So if
the Interpol agent happens to work in Germany on a computer with a Ger-
man configuration, the program will detect that and bring up a German win-
dow will appear. If the user selects a new language from the pull-down
menu, a the program will load a new window in that language and the dis-
card the old window.
212 Getting Started with Zinc Programming



Source code

Analyzing the
source code

The source code for our tutorial is located in \ZINC\TUTOR\GLOBAL,
and contains the following files:

INTRPOL2.CPP. Contains the main event loop inside
UI_APPLICATION::Main( ), as well as the implementation of the
REPORT_WINDOW class.

INTRPOL2.HPP. Contains the declaration for the REPORT _-
WINDOW class and application constants and events..
IPOLWIN2.CPP. The object table for the objects we created in the
Designer.

IPOLWIN2.EN, IPOLWIN2.DE, IPOLWIN2.FR. The data files cre-
ated in the Designer. Each contains the data for creating the report win-
dow and its fields for the language identified by the file’s extension.

IPOLWIN2.HPP. The header information for the window and its fields
that we created in the Designer.

*DEF, *.RC. The definition and resource files when compiling for dif-
ferent environments.

* MAK. The compiler-dependent makefiles.

We’ve defined several new events to allow INTRPOL2.HPP to changing
languages:

const ZIL_USER EVENT LANGUAGE FIRST = 10020;
const ZIL USER _EVENT GERMAN LANG = 10020;
const ZIL USER EVENT ENGLISH LANG = 10021;
const ZIL USER EVENT FRENCH LANG = 10022;
const ZIL USER EVENT LANGUAGE LAST = 10030;
const ZIL USER EVENT DELETE OBJECT = 10040;

The first five user-defined events are those the program places on the event
queue when the user changes languages by selecting an option from the pull-
down menu. We will trap these events in the
REPORT_WINDOW::Event( ) function.

The last event is used to delete the old window when a new language is
selected. We trap this event in the REPORT_WINDOW::Event( ) function,
as well.

We added several new strings to INTRPOL2.CPP to accommodate differ-
ent languages:

static ZIL_ICHAR _enLanguageString[] = { 'e','n', 0 };
static ZIL ICHAR _deLanguageString[] = { 'd','e"', 0 };

Getting Started with Zinc Programming 213



Using Languages

static ZIL ICHAR _frLanguageString[] = { 'f','r', 0 };

The _fileName string changed slightly to reflect the different .DAT files
being used.

The _exchange structure expanded to include an entry for the language:

// Table for exchange rates and to identify locales.
static struct EXCHANGE
{
int country;

ZIL ICHAR *ISOLocaleName;

ZIL ICHAR *ISOLanguageName;

ZIL RBIGNUM exchangeRate;
}_exchange[] =
f

{ GERMANY, _DELocaleString, _deLanguageString, 1.5 },

{ UNITED_STATES, _USLocaleString, _enLanguageString, 1.0 },

{ FRANCE, _FRLocaleString, _frLanguageString, 0.5 },

{ -1, ZIL NULLP(ZIL ICHAR), ZIL NULLP(ZIL ICHAR), 1.0 }
bi

A new global function, CreateWindow( ), was added to the application.
This function takes an identifier which specifies which entry in the
_exchange table corresponds to the language in use. The function then
obtains the language name from the table, creates a new default storage, and
loads the proper Report Window.

The REPORT_WINDOW::Event( ) function is the only member function
that changed for this application. We added two sections to the function: one
to change languages and the other to handle the deletion of the old Report
Window. We will discuss how these are accomplished when we talk about
the interface below.

The last section that changed in INTRPOL2.CPP is the
UI_APPLICATION::Main( ) function, which we updated to check for the
system’s language and then to load an appropriate window:

// Get default system language name. languageManager is a
// global library variable that contains all the ZIL LANGUAGE
// objects.
ZIL_ ICHAR *currentLanguageName = languageManager.defaultName;
// Locate the entry in the EXCHANGE structure for the default
// language.
int currentLanguage = -1;
for (int i = 0; _exchange[i].ISOLocaleName; ++i)
{

if (strcmp(_exchange[i].ISOLanguageName,

currentLanguageName) == 0)

214 Getting Started with Zinc Programming



Program flow

currentlLanguage = i;

}

// 1f system language doesn't correspond to one supported by the
// application, then use a default language.
if (currentLanguage == -1)

currentLanguage = 0;

// BAdd window to the window manager.
*windowManager
+ CreateWindow(currentLanguage);

If the system’s language is not supported by the application, we assign a default
language and load the window. We will discuss this later on in the chapter.

Using UI_APPLICATION::Main( )’s built-in main event loop, our pro-
gram flow is simple. We first determine the system’s language and load the
proper Report Window from the .DAT file and add it to the Window Man-
ager. If the user selects a different language from the pull-down menu, the
menu item places a message on the event queue which is routed to the
REPORT_WINDOW::Event() function. The proper window is then
loaded and displayed and the old window deleted. All other events that we
don’t handle are passed by REPORT_WINDOW::Event( ) back to the base
class UIW_WINDOW::Event( ).

REPORT_WINDOW

Wiring up the
interface

Once we’ve created the window, the next step is to “wire up” the interface so
that we can trap user events and change the application’s language when the
user requests it In UI_APPLICATION::Main( ), we look at the system’s
language and determine if it is one that the application supports. To get the
language we simply inspect languageManager.defaultName. languageMan-
ager is a global, static instance of ZIL_LANGUAGE_MANAGER. All
languages used by the application are maintained by this object. We deter-
mine if the application supports the language by looking for the language
name in the _exchange structure. If the application dos not support that lan-
guage, we set the language to be the first entry in the structure as a default.
We then load the proper window.

Getting Started with Zinc Programming 215



Using Languages

Changing
languages

Whenever the user selects a language option from the pull-down menu, a
message is put on the event queue because the pop-up items options have the
MNIF_SEND_MESSAGE flag set. The event that is put on the queue is one
of the events that we defined in the header file. After that event is pulled off
the queue and sent to the Window Manager by the
UI_APPLICATION::Control( ) function, the Window Manager will route
the event to the Report Window. We trap those messages in the Event( )
function:

// Change language.

else if (ccode >= LANGUAGE FIRST && ccode <= LANGUAGE LAST)

{
// Delete old default storage.
delete UI_WINDOW OBJECT::defaultStorage;
// Determine language to load.

int currentLanguage = -1;
for (int i = 0; _exchange[i].ISOLocaleName; ++i)
{

if (_exchange[i].country + LANGUAGE FIRST == ccode)
currentLanguage = i;
}
// Change the application's default language.
languageManager .LoadDefaultLanguage (
_exchange[currentLanguage] . ISOLanguageName) ;
// Create new window.
*windowManager
+ CreateWindow(currentLanguage);

// Cause current window to be subtracted.
UI_EVENT tEvent;

tEvent.type = S_SUBTRACT OBJECT;
tEvent.data = this;

eventManager->Put (tEvent);

// Cause current window to be deleted.
tEvent.type = DELETE OBJECT;
tEvent.windowObject = this;
eventManager->Put (tEvent);

}

When a message to change languages arrives, the first thing the function
does is delete the old default storage. It then locates the proper entry in the
_exchange table for the new language. To set the application’s language it
calls languageManager.L.oadDefaultLanguage( ). This will cause all
library strings to be displayed in the new language. After setting the applica-
tion’s language we call CreateWindow( ), which loads the new window.

216

Getting Started with Zinc Programming



The Event( ) function then puts two messages on the event queue to remove
the old language window. We can’t simply delete the window because the
program is running in an instance of the window. Nor can we simply place
an S_CLOSE message on the event queue, because by the time the program
will processed it, the current window will be the new language window. So
we have to subtract and delete the window ourselves.

The first event we place on the event queue is S_SUBTRACT_OBJECT. This
event is processed by the Window Manager when it receives it from the
UI_APPLICATION::Control( ) function. The second message placed on
the queue is DELETE_OBJECT, which is one that we defined for this appli-
cation. It will be handled by the new Report Window’s Event( ) function.

The section that handles the DELETE_OBJECT message is the second new
part of the Event( ) function:

// Delete old window.
else if (ccode == DELETE_ OBJECT)
delete event.windowObject;

As usual, any events that we don’t handle are passed to the base class
Event( ) function.

Conclusion

In this chapter, we learned how to detect which language the system is
using and how to set which language the application is using. We also
learned one technique for switching windows at run time. In the next chap-
ter, we’ll learn about the design of a large, complex Zinc application.

Getting Started with Zinc Programming 217



Using Languages

218 Getting Started with Zinc Programming



Chapter 19

Program Design

In this chapter, we’ll learn how to write a complex program using Zinc.
Our program, called ZincApp, contains several objects that perform special-
ized tasks, and communicate with the main control window by sending mes-
sages. The main control window then responds to these messages by calling
certain member functions.

Getting Started with Zinc Programming 219



Program Design

What we’ll do

Source code

220

Here’s what we’ll do in this chapter.

1. Discuss ZincApp’s design and implementation.

2. Examine what happens when the user selects each option.

ZincApp source is located in ZINC\TUTOR\ZINCAPP. Here’s a list of
ZincApp’s source code components and what each contains:

ZINCAPP.CPP. The main program loop, and the main( ) or WinMain( )
function.

ZINCAPP.HPP. Definition of the display, window, event, and help mes-
sages that pass through the system when the user selects a pop-up item
from the main control window. Also contains the declarations for the
ZINCAPP_WINDOW_MANAGER, CONTROL_WINDOW, and
EVENT_MONITOR classes.

CONTROL.CPP. Contains member functions which we’ll use to create
the main control menu and to handle all main control throughout the pro-
gram. Here are those member functions:

CONTROL_WINDOW::CONTROL_WINDOW(),
CONTROL_WINDOW::Event( ),
CONTROL_WINDOW::Message( ),
ZINCAPP_WINDOW_MANAGER::Event( ),
ZINCAPP_WINDOW_MANAGER::ExitFunction( )

SUPPORT.CPP. The object table that must be compiled with the pro-
gram since persistent window objects are to be used.

SUPPORT.DAT. The binary data file created by Zinc Designer, which
contains the help context and persistent window object information.

SUPPORT.HPP. The help context constant information used to associate
a help context with a window. It also contains the persistent object identi-
fication values entered as the szringID field for each object in the .DAT
file.

DISPLAY.CPP. Contains the CONTROL_WINDOW::Option_Display( )
member function. Changes the type of display.

ﬂiGetting Started with Zinc Programminé



Program
specification

EVENT.CPP. Contains the CONTROL_WINDOW::Option_Event( ) and
EVENT_MONITOR( ) member functions. Process all the messages that
are produced when an Event menu item is selected from the main control
window.

HELP.CPP. Contains the CONTROL_WINDOW::OptionHelp( )
member function. It processes all of the messages that are produced when
a Help menu item is selected from the main control window.

WINDOW.CPP. Contains the
CONTROL_WINDOW::OptionWindow( ) member function. This
function invokes the proper window that was selected from the main con-
trol window by processing all the messages that are produced when a
menu item is selected.

* DEF, *.RC. The environment-specific definition and resource files
required when compiling for other environments..

*MAK. The compiler-dependent makefiles associated with ZincApp.

ZincApp provides a single control window, with pull-down items in a pull-
down menu displaying selections. This control window gives the user easy
access to all functions. We could write ZincApp with multiple windows, but
then it might suffer from a common malady of graphical user interfaces
called “windowitis,” where the application’s functionality is spread over too
many windows.

= Zinc Application [+]~
Control Window Event Help

Getting Started with Zinc Programming 221



Program Design

The control window controls the pull-down items, which in turn control
items within their scope. For example, the control window may pass control
to a pull-down item that handles screen functionality. In turn, this pop-up
item may send a message through the system, requesting that some other

object perform some action.
program
management
general screen window . event help
control features objects information context

each item has a call function or a send message function

Design and implementation

ZincApp consists of several parts:

the Event Manager, which contains the event queue;

the ZincApp window manager class, derived from the Zinc Window
Manager;

the event monitor, which receives events from the ZincApp Window
Manager and displays them;

various pull-down menu options, which place a message on the queue
when selected;

and the Control Window, which contains the member functions that
allow ZincApp to respond to user input.

Here’s what happens when we launch ZincApp.

1. The CONTROL_WINDOW constructor sets up the window and menu
items. Here’s a partial listing of the constructor:

CONTROL_WINDOW: : CONTROL WINDOW(void) : UIW WINDOW(0, 0, 76, 6,
WOF NO FLAGS, WOAF LOCKED)
il

222

Getting Started with Zinc Programmfhg



// Control menu items.
static UI_ITEM controlItems[] =
{
{ S_REDISPLAY,VOIDF (CONTROL WINDOW: :Message),
"sRefresh\tShift+F6", MNIF NO FLAGS },
{ 0,VOIDF(0),"" ,MNIF _NO_FLAGS },// item separator
{ L_EXIT FUNCTION,VOIDF(CONTROL WINDOW::Message),
"E&xit\tAlt+F4",MNIF#NO_FLAGS Y7
{0, 0, 0, 0 }// End of array.
}i

// Attach the sub-window objects to the control window.

*this
+ new UIW BORDER

new UIW _MAXIMIZE BUTTON

new UIW_MINIMIZE_ BUTTON

new UIW _SYSTEM BUTTON(SYF_GENERIC)

new UIW TITLE("Zinc Application")

&(*new UIW_PULL DOWN MENU

+ new UIW PULL DOWN ITEM("&Control", WNF_NO_FLAGS,
controlItems)

+ new UIW PULL_DOWN_ITEM("&Display", WNF_NO FLAGS,
displayItems)

+ &(*new UIW_PULL DOWN_ITEM("&Window", WNF_NO FLAGS)
+ controlObjects
+ inputObjects
+ selectObjects)

+ new UIW_PULL DOWN_ITEM("&Event", WNF NO FLAGS, eventItems)

+ new UIW PULL DOWN ITEM("&Help", WNF NO FIAGS, helpItems));

+ + + + o+

}
Part of the task of the control window’s constructor is to initialize the
UL_ITEM array contained in each pull-down item in the control win-
dow’s menu bar. This array contains:

The message. The first field in the UI_ITEM structure. For example, the
first Control menu item, Refresh, contains the message S_REDISPLAY,
which will pass through the system whenever the user selects the Con-
trol | Refresh menu item.

The user function. Called when the user selects a menu item. All menu
items specify CONTROL_WINDOW::Message( ) as their user func-
tion.

The string information. The text displayed on the screen. The string for
the Refresh menu item is “&Refresh\tShift+F6.” We’ll discuss the
“Shift+F6” portion of the string later in this chapter. Note that this hotkey
only works in DOS.

Getting Started with Zinc Programm}ng 223



Program Design

The menu item flags. These control how the menu items look and act. For
example, MNIF_CHECK_MARK tells the menu item to display a check
mark to the left of the menu item's text when selected.

2. When the user selects an option, two events are generated. The first is the
system event, handled top down or bottom up, according to the type of
operating environment. The second is the event that a pull-down menu
will place on the event queue for retrieval by the control window.

The control window responds to events by overriding the Event( ) virtual
function in the base UITW_WINDOW class. Here it is:

class CONTROL_WINDOW : public UIW WINDOW
{
public:
CONTROL_WINDOW(void);
virtual EVENT TYPE Event(const UI_EVENT &event);
Then member functions inside the control window then call the appropri-
ate member function, passing the event.type of the event as a parameter:

class CONTROL_WINDOW : public UIW WINDOW

{
protected:

void OptionDisplay(EVENT TYPE item);

void OptionEvent (EVENT TYPE item);

void OptionHelp(EVENT TYPE item);

void OptionWindow(EVENT TYPE item);

bi

Depending on the circumstances, however, one member function of the
control window will send a message through the system, whereas another
may call another member function. For example, OptionDisplay( )
doesn’t reset the display, but sends a message through the system instead.
Conversely, OptionEvent( ) creates an event monitor object with a mem-
ber function without creating an additional message.

The control window will receive four types of messages:

Display option messages. Generated when a Display menu item has
been selected from the main control window. They are processed by
the OptionDisplay( ) member function.

Window option messages. Generated when a Window menu item has
been selected from the main control window. Processed by the
OptionWindow( ) member function.

Event option messages. Generated when an Event menu item has
been selected from the main control window. Processed by the
OptionEvent( ) member function.

224 Getting Started with Zinc Programming



Accelerator keys

* Help option messages. Generated when a Help menu item has been
selected from the main control window. Processed by the
OptionHelp( ) member function.

The UIW_WINDOW::Event( ) member function processes all other
messages. Note that the Window Manager automatically processes the
control option messages, since they represent operations handled by the
Window Manager.

ZincApp uses two accelerator keys:

<Shift+F6>. Causes the Window Manager to clear the screen and to redis-
play each window attached to the Window Manager's list of window objects.

<Alt+F4>. Causes the exit application window to appear on the screen.

The CONTROL_WINDOW::Event( ) function contains the implementa-
tion of the accelerator keys.

EVENT TYPE CONTROL WINDOW::Event (const UI_EVENT &event)
{
// Check for an accelerator key.
EVENT TYPE ccode = event.type;
if (ccode == L_EXIT FUNCTION)
eventManager->Put (UI_EVENT(L_EXIT FUNCTION));
if (ccode == E_KEY)
{
// Define the set of accelerator keys.
static struct ACCELERATOR_ PAIR
{
RAW_CODE rawCode;
LOGICAL EVENT logicalType;
} acceleratorTable[] =
{
{ SHIFT F6,S REDISPLAY },
{ ALT F4,L_EXIT FUNCTION },
{ 0, 0 }// End of array.
}i
for (int i = 0; acceleratorTable[i].rawCode; i++)
if (event.rawCode == acceleratorTable[i].rawCode)
{
UI_EVENT tEvent(acceleratorTable[i].logicalType);
eventManager->Put (tEvent);// Put the accelerator key
return (ccode);// into the system.
}
}
// Process the event according to its type.
if (ccode >= MSG HELP)

7a‘etting Started with Zinc P}Bgammiinig 225



Program Design

OptionHelp(event.type);// Help menu option selected.
else if (ccode >= MSG_EVENT)
OptionEvent (event.type);// Event menu option selected.
else if (ccode >= MSG _WINDOW)
OptionWindow(event.type);// Window menu option selected.
else if (ccode >= MSG DISPLAY)
OptionDisplay(event.type); // Display menu option selected.
else if (ccode >= MSG_CONTROL)
{
UI_EVENT tEvent(event.type);
eventManager->Put (tEvent);// Put the accelerator key
}
else
ccode = UIW _WINDOW::Event(event);// Unknown event.
// Return the control code.
return (ccode);

Here’s what happens when the user presses an accelerator key:

1z

2.

CONTROL_WINDOW::Event( ) receives the event from the Window
Manager.

If the event is a normal key, the control window searches its list of raw
code/logical type pairs.

If an accelerator key is detected, its logical value is placed into the Event
Manager. The Window Manager interprets its value when the main pro-
gram loop gets the next key using eventManager->Get( ). The definition
of the two accelerator keys is given by the acceleratorTable static array
shown above. Note that the accelerator keys are available only when the
main control window is the front window.

226

Ge?ting Started with Zinc P;Bgramminéﬁ




General What happens when the user selects one of the options in the menu bar?

program flow Though the Zinc window manager handles the Control option, the control
window handles the others in steps one through four. At the fifth step, how-
ever, the control window calls a different member function associated with
the option that the user selected.

I UI_EVENT_MANAGER Z} return

too - i\ |t

Main event loop

e <

ZINCAPP_WINDOW_MANAGER

CONTROL_WINDOW::MESSAGE

Getting Started with Zinc Programming 227




Program Design

1. After the user selects a menu item, the UIW_POP_UP_ITEM::Event( )
function calls the CONTROL_WINDOW::Message( ) function.

EVENT TYPE UIW_BUTTON::Event(const UI_EVENT &event)
{

case L SELECT:
case L END_ SELECT:
UI_EVENT tEvent = event;
if (userFunction)
(*userFunction) (this, tEvent, ccode);

The pop-up item’s Event( ) function passes some arguments to
Message( ). Those arguments are

+ apointer to the selected display option, this;

a copy of the event that caused the user function to be called, tEvent;
and

the logical interpretation, ccode, of the event that caused Event( ) to
be called. Notice the variable tEvent needs to be a copy of event,
since it’s a constant variable whose values cannot be modified.

2. The CONTROL_WINDOW::Message( ) function sends a request to
remove the temporary display options menu by sending an
S_CLOSE_TEMPORARY message to Event Manager and thereby
through the system. It then sends the display request through the system
by setting event.type to be the menu item's value, for example, to one of
the MSG_DISPLAY values defined in the displayOptions array, and send-
ing this message through the system.

EVENT TYPE CONTROL WINDOW: :Message(UI_WINDOW OBJECT *object,
UI_EVENT &event, EVENT TYPE ccode)
{
if (ccode == L_SELECT)
{
for (UI_WINDOW OBJECT *tObject =
object->windowManager->First();
tObject && FlagSet (tObject->woAdvancedFlags,
WOAF_TEMPORARY) ;
tObject = tObject->Next())
object->eventManager->Put (UI_EVENT(S_CLOSE_TEMPORARY) ) ;
event.type = ((UIW_POP _UP_ITEM *)object)->value;
object->eventManager->Put (event) ;
}

return (ccode);

}

228 | Getting Started with Zinc Programming -



3.

Control returns to the main event loop, first by exiting
CONTROL_WINDOW::Message( ), and then by exiting the Event( )
virtual functions of the UIW_POP_UP_ITEM,
CONTROL_WINDOW, and ZINCAPP_WINDOW_MANAGER
classes.

eventManager->Get( ) gets two messages that the program generates
from the event queue. The first message is S_CLOSE_TEMPORARY.
Responding to this message, the Window Manager removes the display
options menu from the screen.

The second message tells the control window which menu option the
user selected. In the following parts of this chapter, we’ll examine what
the control window does when it receives one of these messages.

Control

=

Zinc Application =1~

Control Window Event Help

Refresh Shift+FB

Exit Alt+F4

This item contains ZincApp’s control options, Refresh and Exit, which
refresh the screen and allow the user to exit the application. The
CONTROL_WINDOW constructor initializes these options here:

CONTROL_WINDOW::CONTROL_WINDOW(Void) : UIW _WINDOW(O, O,
76, 6, WOF_NO FLAGS, WOAF LOCKED)
{
// Control menu items.
static UI_ITEM controlItems[] =
{
{ S_REDISPLAY,VOIDF (Message),"&Refresh\tShift+F6",
MNIF NO FLAGS },
{ 0, VOIDF(0),"", 0 },// item separator
{ L_EXIT FUNCTION,VOIDF (Message),"E&xit\tAlt+F4",
MNIF _NO FLAGS },
{0, 0, 0, 0 }// End of array.
}i

' Getting Started with Zinc Prégramming 229



Program Design

// Attach the sub-window objects to the control window.

*this

+ new UIW BORDER

+ + + + +

=T

230

Getting

new UIW MAXIMIZE BUTTON

new UIW MINIMIZE BUTTON

new UIW _SYSTEM BUTTON(SYF GENERIC)
new UIW TITLE("Zinc Application")
&(*new UIW_PULL DOWN MENU

new UIW PULL DOWN ITEM("&Control", WNF_NO FLAGS,
controlItems)

new UIW_PULL DOWN_ ITEM("&Display", WNF_NO FLAGS,
displayItems)

&(*new UIW PULL DOWN ITEM("sWindow", WNF_NO FLAGS)
+ controlObjects

+ inputObjects

+ selectObjects)

new UIW PULL DOWN ITEM("&Event", WNF_NO FLAGS,
eventItems)

new UIW PULL DOWN ITEM("&Help", WNF_NO FLAGS,
helpItems));

'Sitarted> with Zinc F’_rogramming



Control program What happens when the user selects the Control option? First, the window
flow executes steps one through four of the general program flow. Then it exe-
cutes a fifth step.

UI_EVENT_MANAGER I Z% return

t 00 /v \g } oo

Maln event loop

ol 7

ZINCAPP_WINDOW_MANAGER

(40 50)

CONTROL_WINDOW

exit

CONTROL_WINDOW::Control

1. The UIW_POP_UP_ITEM::Event( ) function calls the
CONTROL_WINDOW::Message( ) function.

2. The CONTROL_WINDOW::Message( ) function sends a request to
remove the temporary display options menu by sending an
S_CLOSE_TEMPORARY message through the system.

3. Control returns to the main event loop.

Gettingistarted with ZinéiPlgéramming - 231



Program Design

4. eventManager->Get( ) gets two messages that the program generates.
The first message it gets is S_CLOSE_TEMPORARY.

5. The second message it gets is the value of the menu item from event.type,
which it passes to the Window Manager by calling
windowManager->Event( ). When the Window Manager receives the
following messages, it performs the corresponding actions:

* S_REDISPLAY—Clears the screen and redisplays each window in
the Window Manager's list of window objects.
* L_EXIT_FUNCTION—The Window Manager calls the

CONTROL_WINDOW::ExitFunction( ) function, which displays
an exit window on the screen.

=] Zinc Application
o This will close the ZincApp tutorial.
| 2 K l Cancel I

If the user selects OK, the Window Manager sends an L_EXIT message
through the system. The main program breaks from the main loop and
exit the application.

Note that in the Control option, the Window Manager and not the control
window responds to the message.

232 - &eﬂt;ing Started with Zinc Programming



Display options

Zinc Application [+]~

Control Display Window Ewvent Help

1-25x40 text mode
2-25x%80 text mode
3-(43/50)x80 text mode
4-Graphics mode

This menu item, available only under DOS, contains ZincApp’s display
options, initialized by the CONTROL_WINDOW constructor. Here’s that
part of the constructor.

static UI_ITEM displayItems[] =

{
#if defined (ZIL MSDOS)
{ MSG_25x40_MODE,Message,"&1-25x40 text mode",
MNIF NO FLAGS },
{ MSG_25x80_ MODE,Message,"&2-25x80 text mode",
MNIF NO FLAGS },
{ MSG_43x80_MODE,Message,"&3-(43/50)x80 text mode",
MNIF NO FLAGS },
{ MSG_GRAPHICS MODE,Message,"&4-Graphics mode" ,MNIF NO FLAGS },
{ MSG_WINDOWS_ MODE,Message,"&5-Windows 3.X mode",
MNIF NON_SELECTABLE },
#endif
{0, 0, 0, 0 }// End of array.

}i

// Attach the sub-window objects to the control window.

*this

A

+ + + + +

new UIW BORDER
new UIW MAXIMIZE BUTTON
new UIW MINIMIZE BUTTON
new UIW_SYSTEM BUTTON(SYF GENERIC)
new UIW TITLE("Zinc Application")
&(*new UIW_PULL_DOWN MENU
+ new UIW_PULL DOWN ITEM("&Control", WNF NO FLAGS, controlItems)
+ new UIW PULL DOWN ITEM("&Display", WNF_NO FLAGS, displayItems)
+ &(*new UIW PULL DOWN_ ITEM('"sWindow", WNF NO FLAGS)
+ controlObjects
+ inputObjects
+ selectObjects)
+ new UTW PULL DOWN ITEM("&Event", WNF NO FLAGS, eventItems)
+ new UIW_PULL DOWN ITEM('sHelp", WNF NO FLAGS, helpItems));

Getting Started with Zinc Programming 233



Program Design

Display program What happens when the user selects the Display option? First, the control
flow window executes steps one through four of the general program flow. At the
fifth step, however, it calls the OptionsDisplay( ) member function.

UI_EVENT_MANAGER 4& return

/7 ‘ event flow

@ Main event loop

ol Y

| ZINCAPP_WINDOW_MANAGER

CONTROL_WINDOW

graphics mode

CONTROL_WINDOW::OptionDisplay

1. The UIW_POP_UP_ITEM::Event( ) function calls the
CONTROL_WINDOW::Message( ) function.

2. The CONTROL_WINDOW::Message( ) function sends a request to
remove the temporary display options menu by sending an
S_CLOSE_TEMPORARY message through the system.

3. Control returns to the main event loop.

234 Getting Started with Zinc Programmihg



4. eventManager->Get( ) gets two messages that the program generates.
The first message it gets is S_CLOSE_TEMPORARY.

I UL_EVENT_MANAGER I Z%return

- u;w |t

Main event loop

7

zincapp_winoow_MANAGER | (€D

Y

CONTROL_WINDOW @

CONTROL_WINDOW::OptionDisplay o

5. The second message it receives is the display message determined by the
selected menu item. This message is passed by the main loop to the Win-
dow Manager, then is sent by the Window Manager to
CONTROL_WINDOW::Event( ) since the control window is the front
window on the screen. The control window evaluates event.type—in this
case a MSG_DISPLAY message—which results in calling the
OptionDisplay( ) member function.

EVENT TYPE CONTROL_WINDOW::Event(const UI_EVENT &event)
{

Getting Started with Zinc i’rogramming 235



Program Design

// Process the event according to its type.
if (ccode >= MSG HELP)

OptionHelp(event.type); // Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent (event.type); // Event menu option selected.
else if (ccode >= MSG_WINDOW)

OptionWindow(event.type); // Window menu option selected.
else if (ccode >= MSG DISPLAY)

OptionDisplay(event.type); // Display menu option selected.
else

ccode = UIW WINDOW::Event(event); // Unknown event.

// Return the control code.
return (ccode);

}

6. The OptionDisplay( ) member function evaluates the item's value,

which was passed down through the item argument, to determine which
type of display has been requested. At this stage, however, no display is
recreated. Instead, an S_RESET_DISPLAY is generated and passed
through the system. We must create and delete displays at the highest
level of the program, since that is where we initialized the display object,
and since that is where the program destroys the display when it goes out
of scope. The following code shows how this message is sent:

void CONTROL WINDOW::OptionDisplay(EVENT TYPE item)
{
#if defined (ZIL_MSDOS)

// Set up the default event.

UI_EVENT event(S RESET DISPLAY, TDM NONE);

// Decide on the new display type.

if (item == MSG_25x40_MODE)
event.rawCode = TDM 25x40;

else if (item == MSG_25x80_MODE)
event.rawCode = TDM 25x80;

else if (item == MSG_43x80_MODE)
event.rawCode = TDM 43x80;

// Send a message to reset the display.
// (Code resides in main program loop).
eventManager->Put (event);

#endif

}

236

Getting Started with Zinc Programming



UI_EVENT_MANAGER

/'i\e

Maln event loop

"

ZINCAPP_WINDOW_MANAGER

Control returns once again to the main event loop by exiting the associ-
ated Event( ) functions.

The main loop picks up the S_RESET_DISPLAY message by calling
eventManager->Get( ). This message causes the program to

+ tell the Event and window managers that the old display is about to
be deleted. This allows them to uninitialize any display dependent
information they may have.

+ construct the new display, the type of which is determined by
event.rawCode.

+After the display has been reset, we must set event.data to point to
the new display object, and call the Event and Window managers so
they can reinitialize themselves using the new display and coordinate
system.

// Wait for user response.

EVENT_TYPE ccode;

UI_EVENT event;

do

{
// Get input from the user.
eventManager->Get (event);
// Check for a screen reset message.
if (event.type == S _RESET DISPLAY)
{

Getting Started with Zinc Programming 237



Program Design

#if defined(ZIL MSDOS)
event.data = NULL;
// Tell the managers we changed the display.
windowManager->Event (event) ;
eventManager->Event (event) ;
delete display;
if (event.rawCode == TDM NONE)
{
display = new UI_GRAPHICS DISPLAY;
if (!display->installed)
{
delete display;
display = new UI_TEXT DISPLAY;
}
}

else
display = new UI_TEXT DISPLAY(event.rawCode);

// Tell the managers we changed the display.
event.data = display;
eventManager->Event (event) ;
ccode = windowManager->Event (event);
windowManager->screenID = window->screenlD;
#endif
}

else
ccode = windowManager->Event (event);
} while (ccode != L EXIT && ccode != S NO OBJECT);

If we examine the CONTROL_WINDOW::OptionDisplay() member
function and the code in the main event loop, we’ll find we could have
removed the OptionDisplay() function if we were to intercept all
MSG_DISPLAY messages in the main loop. The reason we did not put the
display code in the main loop is mainly an issue of consistency. Up until this
point, we have let the control window and associated member functions han-
dle the program specific messages. In this case we are generating a system
message from the display member function, then intercepting the request at
the main level before letting the Window Manager process it.

238 Getting Started with Zinc Programining



Window options

=] Zinc Application [~1~
Control Window Event Help

Control objects »

Input objects »

Selection objects  »

This item contains ZincApp’s window options, initialized by the
CONTROL_WINDOW constructor. Here’s that part of the constructor.

// Create the objects submenu.
UIW POP UP ITEM *controlObjects = new UIW POP UP ITEM("&Control objects");

*controlObjects
+ new UIW POP_UP_ITEM("s&Button window...", MNIF NO FLAGS, BIF NO FLAGS,
WOF_NO FLAGS, CONTROL, WINDOW: :Message, MSG BUTTON WINDOW)
"+ new UIW POP UP_ITEM("&Generic window...", MNIF NO FLAGS, BIF NO FLAGS,
WOF_NO FLAGS, CONTROL WINDOW: :Message, MSG GENERIC WINDOW)
+ new UIW POP_UP_ITEM("&Icon window...", MNIF NO FIAGS, BTF NO FIAGS,
WOF_NO FLAGS, CONTROL WINDOW::Message, MSG ICON WINDOW)
+ new UIW POP_UP_ITEM("&MDI window...", MNIF NO FLAGS, BIF NO FLAGS,

WOF_NO FLAGS, CONTROL WINDOW::Message, MSG MDI WINDOW);

UIW POP_UP ITEM *inputObjects = new UIW POP UP ITEM("&Input cbjects");

*inputObjects

+ new UIW POP_UP_ITEM("s&Date window...", MNIF NO FLAGS, BIF NO FLAGS,
WOF_NO FLAGS, CONTROL, WINDOW: :Message, MSG DATE WINDOW)

+ new UIW POP_UP_ITEM("&Number window...", MNIF NO FLAGS, BIF NO FLAGS,
WOF NO FTAGS, CONTROL WINDOW::Message, MSG NUMBER WINDOW)

+ new UIW POP UP_TTEM("&String window...", MNIF NO FLAGS, BIF NO FLAGS,
WOF_NO FLAGS, CONTROL WINDOW: :Message, MSG STRING WINDOW)

+ new UIW POP_UP_ITEM("&Text window...", MNIF NO FLAGS, BTF NO FIAGS,
WOF NO FIAGS, CONTROL WINDOW: :Message, MSG TEXT WINDOW)

+ new UTW_POP UP_ITEM("&Time window...", MNIF NO FLAGS, BTF NO FLAGS,

WOF NO FIAGS, CONTROL WINDOW::Message, MSG TIME WINDOW);

UIW POP UP TTEM *selectObjects = new UIW POP UP ITRM("sSelection cbjects");
*selectObjects
+ new UIW_POP_UP_ITEM("&Cambo Box window...", MNIF NO FLAGS,
BTF NO FLAGS, WOF NO FLAGS, CONTROL WINDOW::Message,
MSG_COMBO BOX WINDOW)
+ new UIW POP UP ITEM("sList window...", MNIF NO FLAGS, BTF NO FLAGS,
WOF _NO FLAGS, CONTROL WINDOW::Message, MSG LIST WINDOW)
+ new UIW POP_UP_ITEM("&Menu window...", MNIF NO FLAGS, BIF NO FLAGS,
WOF _NO FLAGS, CONTROL WINDOW::Message, MSG MENU WINDOW)
+ new UIW _POP_UP_ITEM("&Tool Bar window...", MNIF NO FLAGS,

Getting Started with Zinc Programming 239



Program Design

BTF_NO_FLAGS, WOF_NO FLAGS, CONTROL WINDOW::Message,
MSG_TOOL_BAR WINDOW) ;

// Attach the sub-window objects to the control window.
*this
new UIW_BORDER
new UIW MAXIMIZE BUTTON
new UIW MINIMIZE BUTTON
new UIW _SYSTEM BUTTON(SYF GENERIC)
new UIW TITLE("Zinc Application")
&(*new UIW_PULL DOWN_ MENU
+ new UIW PULL DOWN ITEM("&Control", WNF _NO FLAGS, controlItems)
+ new UIW_PULL DOWN ITEM('&Display", WNF_NO FLAGS, displayItems)
+ &(*new UIW_PULL_DOWN_ITEM("&Window", WNF_NO_FLAGS)
+ controlObjects
+ inputObjects
+ selectionObjects)
+ new UIW PULL DOWN ITEM('&Event", WNF_NO FLAGS, eventItems)
+ new UIW PULL DOWN ITEM('&Help", WNF_NO FLAGS, helpItems));

+ + 4+ + o+ o+

240 Getting Started with Zinc Progran;r;w_ihg



Window What happens when the user selects the Window option? First, the control
program flow window executes steps one through four of the general program flow. At the
fifth step, however, it calls the OptionsWindow( ) member function.

| Ul_EVENT_MANAGER Z% return

\
/V \& + event flow

@ Main event loop

ol %

ZINCAPP_WINDOW_MANAGER I

CONTROL_WINDOW
control objects

input objects

2 CONTROL_WINDOW::OptionWindow

1. The UIW_POP_UP_ITEM::Event( ) function calls the
CONTROL_WINDOW::Message( ) function.

2. The CONTROL_WINDOW::Message( ) function sends a request to
remove the temporary display options menu by sending an
S_CLOSE_TEMPORARY message through the system.

3. Control returns to the main event loop.

Getting Started with Zinc P}ograrrthvhii;g 241




Program Design

4. eventManager->Get( ) gets two messages that the program generates.
The first message it gets is S_CLOSE_TEMPORARY.

5. The second message it gets is the window request of the selected menu
item. This message is passed by the main loop to the Window Manager
and is then dispatched by the Window Manager to
CONTROL_WINDOW::Event( ) since the control window is the front
window on the screen. The control window evaluates event.type, which
is, in this case a MSG_WINDOW message—resulting in the
OptionWindow( ) member function being called.

EVENT TYPE CONTROL WINDOW::Event(const UI_EVENT &event)
{

// Process the event according to its type.
if (ccode >= MSG HELP)

OptionHelp(event.type); // Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent(event.type); // Event menu option selected.
else if (ccode >= MSG_WINDOW)

OptionWindow(event.type); // Window menu option selected.
else if (ccode >= MSG _DISPLAY)

OptionDisplay(event.type); // Display menu option selected.
else

ccode = UIW WINDOW::Event(event); // Unknown event.
// Return the control code.
return (ccode);

242

Getting Started with Zinc Programming



UI_EVENT_MANAGER Z} return

- i\w |t

Main event loop

7

ZINCAPP_WINDOW_MANAGER w

Y

CONTROL_WINDOW

CONTROL_WINDOW::OptionWindow e

6. The OptionWindow( ) member function evaluates the item's value,
passed down through the ifem argument, to determine which type of win-
dow the user has requested. Then it calls the member function that con-
structs the appropriate window. Finally, it attaches the window to the
Window Manager using the overloaded + operator. The following code
shows how:

void CONTROL WINDOW: :OptionWindow(EVENT TYPE item)
{

// Get the specified window.

UI_WINDOW OBJECT *object = NULL;

Getting Started with Zinc Programming 243



Program Design

switch(item)

{

case MSG_DATE WINDOW:
object = UIW_WINDOW: :New("support.dat~WINDOW DATE");
break;

case MSG_GENERIC_WINDOW:
object = UIW_WINDOW: :New("support.dat~WINDOW GENERIC");
break;

case MSG_ICON WINDOW:
object = UIW _WINDOW: :New("support.dat~WINDOW ICON");
break;

case MSG_LIST WINDOW:
object = UIW_WINDOW: :New("support.dat~WINDOW LIST");
break;

case MSG _COMBO_BOX WINDOW:
object = UIW _WINDOW: :New("support.dat~WINDOW COMBO BOX");
break;

case MSG MENU WINDOW:
object = UIW _WINDOW::New( "support.dat~WINDOW MENU");
break;

case MSG_NUMBER WINDOW:
object = UIW _WINDOW: :New("support.dat~WINDOW NUMBER");
break;

case MSG_STRING WINDOW:
object = UIW_WINDOW: :New( "support.dat~WINDOW STRING");
break;

case MSG_TEXT WINDOW:
object = UIW_WINDOW: :New("support.dat~WINDOW TEXT");
break;

case MSG_TIME WINDOW:
object = UIW_WINDOW: :New("support.dat~WINDOW TIME");
break;

case MSG_BUTTON WINDOW:
object = UIW_WINDOW: :New("support.dat~WINDOW BUTTON");
break;

case MSG_TOOL_BAR WINDOW:
object = UIW WINDOW: :New("support.dat~WINDOW TOOL BAR");
break;

case MSG_MDI WINDOW:
object = UIW WINDOW: :New("support.dat~WINDOW MDI");
break;

}

// Add the window object to the window manager.

if (object)
*windowManager + object;

244 Getting Started with Zinc Program'ming



The object variable is a UI_WINDOW_OBJECT pointer, not a
UIW_WINDOW pointer. This generic declaration allows us to expand the
program to attach other nonwindow objects, for example, an icon.

Now the new window becomes the front window, which processes all subse-
quent events until the user requests a change. A description of the types of
windows presented in this menu item follows:

Generic. This window shows the basic window objects that are usually pro-
vided as default objects to a window. These objects include:

the window's border (UIW_BORDER),

the maximize button (UIW_MAXIMIZE_BUTTON),

the minimize button (UIW_MINIMIZE_BUTTON),

the system button (UIW_SYSTEM_BUTTON), and

the title bar (UIW_TITLE).

Button. Shows standard buttons, radio buttons, check boxes, and bitmapped
buttons.

Combo box. Shows two combo box objects, one of which was implemented
with string objects, and the other with bitmapped buttons.

Date. Shows the many variations of the date class.

Icon. Shows several types of icons that we can attach either to a parent win-
dow or to the screen.

List. Shows a horizontal and vertical list.

Menu. Shows pull-down menus. The source code shows you how to create
and attach pull-down and pop-up items into pull-down menus.

Number. This window shows several UIW_BIGNUM objects.

String. This window shows several types of string objects that can be created
with Zinc Application Framework. These objects include the basic
UIW_STRING class, two types of UIW_FORMATTED_STRING class
objects, and a multi-line text field, UIW_TEXT, that only occupies part of
its parent window.

Text. This window shows a full-window implementation of a UIW_TEXT
object and an associated vertical scroll bar.

Getting Started with Zinc Programr;i;g 245



Program Design

Time. This window shows the many variations that can be used with the
ZIL._TIME class.

Tool bar. This window shows a tool bar object that contains various window

objects.

Event options

=| Zinc Application e
Control Window Ewvent Help

Event monitor

This item contains ZincApp’s event options, initialized by the
CONTROL_WINDOW constructor. Here’s that part of the constructor.

static UI_ITEM eventItems[] =
i
{ MSG_EVENT MONITOR,VOIDF (CONTROL WINDOW::Message),
"&Event monitor"MNIF NO FLAGS },
{0, 0, 0 }// end of array
}i

// Attach the sub-window objects to the control window.
*this
+ new UIW_BORDER
+ new UIW MAXIMIZE BUTTON
+ new UIW MINIMIZE BUTTON
+ new UIW_SYSTEM BUTTON(SYF GENERIC)
+ new UIW TITLE("Zinc Application")
+ &(*new UIW_PULL_ DOWN MENU
+ new UIW_PULL DOWN_ITEM("&Control", WNF_NO FLAGS, controlItems)
+ new UIW_PULL DOWN_ITEM("&Display", WNF_NO FLAGS, displayItems)
+ &(*new UIW PULL DOWN ITEM("&Window", WNF_NO FLAGS)
+ controlItems
+ inputItems
+ selectItems)
+ new UIW_PULL DOWN ITEM("&Event", WNF_NO FLAGS, eventItems)
+ new UIW_PULL DOWN_ITEM("s&Help", WNF_NO FLAGS, helpItems));

246 Getting Started with Zinc Probramming -



Event program What happens when the user selects the Event option? First, the control win-
flow dow executes steps one through four of the general program flow. At the
fifth step, however, it calls the OptionsEvent( ) member function.

UI_EVENT_MANAGER Z} return

e -

@ Main event loop

ol 7

ZINCAPP_WINDOW_MANAGER

CONTROL_WINDOW

event monitor

p CONTROL_WINDOW::OptionEvent

1. The UIW_POP_UP_ITEM::Event( ) function calls the
CONTROL_WINDOW::Message( ) function.

2. The CONTROL_WINDOW::Message( ) function sends a request to
remove the temporary display options menu by sending an
S_CLOSE_TEMPORARY message through the system.

3. Control returns to the main event loop.

7Gettingrsrtartea with Zinc Pfc)?éinming 247




Program Design

4. eventManager->Get( ) gets two messages that the program generates.
The first message it gets is S_CLOSE_TEMPORARY.

The second message received is MSG_EVENT, which the main loop
passes to the Window Manager, which in turn passes it to
CONTROL_WINDOW::Event( ), since the control window is the front
window on the screen. Then control window evaluates event.type—in
this case the MSG_EVENT message—and calls the OptionEvent( )
member function.

EVENT TYPE CONTROL_WINDOW::Event(const UI_EVENT &event)

q

// Process the event according to its type.
if (ccode >= MSG_HELP)
OptionHelp(event.type);// Help menu option selected.
else if (ccode >= MSG_EVENT)
OptionEvent (event.type);// Event menu option selected.
else if (ccode >= MSG WINDOW)
OptionWindow(event.type);// Window menu option selected.
else if (ccode >= MSG DISPLAY)
OptionDisplay(event.type);// Display menu option selected.
else
ccode = UIW_WINDOW: :Event (event);// Unknown event.
// Return the control code.
return (ccode);

248

Getting Started with Zinc Programming



UI_EVENT_MANAGER

- 190

Main event loop

7

Z} return

* event flow

ZINCAPP_WINDOW_MANAGER

Y

CONTROL_WINDOW

CONTROL_WINDOW::OptionEvent e

The OptionEvent( ) member function creates the event monitor window
and attaches it to the window manager. The following code shows how

this is done.

void CONTROL_WINDOW: :OptionEvent (EVENT TYPE item)

{

// Create the event monitor and attach it to the window manager.

*windowManager
+ new EVENT MONITOR;

Eett?g 7Started with Zinc?rrogrammingﬁ

249



Program Design

Monitoring
library events

250

At this point the event monitor, which we encounter in the next section,
becomes the front window of the application, and will process all subse-
quent events directly or indirectly.

In order to monitor events, we derived two classes, EVENT _MONITOR
and ZINCAPP_WINDOW_MANAGER.

Event Monitor. The event monitor shows which messages the library is pro-
cessing. The Windows version of the event monitor window has five sec-
tions:

Message. The hex value of the Windows message. We could have imple-
mented a translation table that displayed the message in human-readable
form.

* wParam. The event’s wParam value.
[Param. The event’s [Param value.
Position. The event’s Position value.

* Last event. The interpreted value of the last event. This can be any Zinc
event or logical event, or it could be a keyboard or mouse code.

The class EVENT_MONITOR contains the implementation of this win-
dow, and ZINCAPP.HPP contains the definition of EVENT_MONITOR.
Its members are shown below:

class EVENT MONITOR : public UIW WINDOW
{
public:
EVENT MONITOR(void);
EVENT TYPE Event(const UI_EVENT &event);
private:
#if defined(ZIL_MSDOS)
UIW _PROMPT *keyboard[3];
UI_EVENT kEvent;
UIW_PROMPT *mouse[3];
UI_EVENT mEvent;
#elif defined(ZIL_ MSWINDOWS)
UIW_PROMPT *windowsMessage[5];
MSG wMsg;
#elif defined(ZIL 0S2)
UIW_PROMPT *windowsMessage[5];
OMSG oMsg;
#elif defined(ZIL MOTIF)
UIW_PROMPT *motifMessage[3];
XEvent xEvt;

Getting Started with Zinc Programming



The event
monitor

#elif defined(ZIL MACINTOSH)
UIW_PROMPT *macintoshMessage[5];
EventRecord mEvent;

#endif
UIW_PROMPT *system;

UI EVENT sEvent;

b

The EVENT_MONITOR derives from the base class UIW_WINDOW,
therefore inheriting the ability to receive message information, and giving us
the ability to remove easily the event monitor window from the screen.
When we attach the event monitor window to ZincApp's window manager, it
receives all events that pass through the system—after the front window has
processed the event, allowing the front window to process the event nor-
mally.

If we were to derive the event monitor from UI_DEVICE as we did in the
MACRO_HANDLER tutorial, it would receive only raw input information.
By positioning ourselves in the window manager, we are able to see, not
only raw events, but how an object interprets raw events. This allows us to
see firsthand one of the benefits of Zinc, how Zinc objects handle events in
the context of what the object knows how to do.

=| Eventmonitor |~ |+
Message: 0200
wParam: 0000
IParam: 0000000c
Position: 16 35
Last event:  MSWindows

For example, pressing the mouse button on the title bar produces a series of
messages ending in “Move.” Pressing the mouse button in a text field, how-
ever, produces the message “Begin mark.” If we had derived
EVENT_MONITOR from UI_DEVICE, we would see only a “mouse
down” message.

The EVENT_MONITOR::Event() function can receive two types of
events . The first type is messages passed to the window during executioN.
These messages would be passed to the window if it were the front window

Gettihg Started with Zih_ci'F;égramming 251



Program Design

on the screen, or if a mouse message overlapped the window's screen region.
The second type of messages are sent to the event monitor after they have
been processed by the window manager. In addition, these special events are
packaged by the window manager into a new event, and in turn passed to the
member function. The window manager packages these events this way:

event.type is the logical event returned by the receiving object.

event.rawCode is always OxFFFF if the event has already been passed to
the front window. This special value lets us determine whether the origi-
nal message was intended for the event monitor window (if it is front
window on the screen) or whether the event has already been passed
through the system.

event.data is the original event that was passed through the system.

EVENT_MONITOR::Event( ) has four parts that check for normal, key-
board, mouse, and logical events, for all the environments ZincApp sup-
ports.

1.

The first part of EVENT_MONITOR::Event( ) sets up the event infor-
mation and determines whether the event window should interpret the
event, or whether it should pass the event to UIW_WINDOW.

EVENT TYPE EVENT MONITOR::Event(const UI_EVENT &event)
{

// See if it is a normal event.
if (event.rawCode != OxXFFFF)
return (UIW _WINDOW::Event(event));

In the second part, keyboard and kEvent, available only in DOS, contain
information about the last key that was pressed. kEvent keeps track of the
last event for optimization so that only those parts of the key that have
changed will be updated. When the program calls EVENT_MONITOR-
::Event( ) routine, it changes these variables to reflect the new event,
which it passes as an argument to the event monitor's Event( ) function.
The code responsible for this change is shown below:

EVENT TYPE EVENT MONITOR::Event(const UI_EVENT &event)
{

UI_EVENT *tEvent = (UI_EVENT *)event.data;

// Check for new keyboard event.
if (tEvent->type == E KEY)
{

char string[32];

252

Getting Started with Zinc Programming



3

if (kEvent.rawCode != tEvent->rawCode)

{
sprintf(string, "%04x", tEvent->rawCode);
keyboard[0]->Information(SET TEXT, string);

}
if (kEvent.key.shiftState != tEvent->key.shiftState)

{
sprintf(string, "%02x", tEvent->key.shiftState);
keyboard[1l]->Information(SET TEXT, string);

}

if (kEvent.key.value != tEvent->key.value)

s
sprintf(string, "%c", tEvent->key.value);
keyboard[2]->Information(SET TEXT, string);

}
kEvent = *tEvent;

}

In the third part, _mouse and mEvent, also available only in DOS, contain
information about the last mouse event. They work just like the keyboard
variables keyboard and kEvent, except that they maintain mouse informa-
tion. For optimization, mEvent keeps track of the last event, so that
EVENT_MONITOR::Event( ) will update only those parts of the mouse
event that have changed. When the program calls EVENT_MONITOR::-
Event( ), it passes as an argument the changes in the event. Below is the
code that does this:

EVENT TYPE EVENT MONITOR::Event(const UI_EVENT &event)

{
UI_EVENT *tEvent = (UI_EVENT *)event.data;

// Check for new mouse event.
else if (tEvent->type == E MOUSE)
{
char string[32];
if (mEvent.rawCode != tEvent->rawCode)
{
sprintf(string, "$%$04x", tEvent->rawCode);
mouse[0]->Information(SET TEXT, string);
}
if (mEvent.position.column != tEvent->position.column)
{
sprintf(string, "%03d", tEvent->position.column);
mouse[l]->Information(SET_TEXT, string);
}
if (mEvent.position.line != tEvent->position.line)
{
sprintf(string, "%03d", tEvent->position.line);
mouse[2]->Information(SET TEXT, string);

Getting Started with Zinc Programming | 253



Program Design

}
mEvent = *tEvent;

}

4. The fourth part of EVENT_MONITOR::Event( ) contains variables
that keep track of events that the event monitor window receives. The
difference between this part and the other parts is that this part can keep
track of events for each operating environment Zinc supports, whatever
that might be. For example, if the native operating environment is Win-
dows, it keeps track of Windows events; if the native operating environ-
ment is Macintosh, it keeps track of Macintosh events; and so forth. Here
are those variables:

windowsMessage and wMsg contain the information from the last
event that was received by the event monitor in the Windows envi-
ronment.

+ windowsMessage and oMsg contain the information from the last
event that was received by the event monitor in the OS/2 environ-
ment.

+ motifMessage and xEvt contain the information from the last event
that was received by the event monitor in the Motif environment.

* macintoshMessage and mEvent contain the information from the last
event that was received by the event monitor in the Motif environ-
ment.

For optimization reasons, still other variables, wMsg, oMsg, xEvt, and
mkEvent, keep track of the last event for optimization so that only those
parts of the event that have changed will be updated. When the program
calls the EVENT_MONITOR::Event( ) routine, it changes these vari-
ables to reflect the new event, which it passes as an argument to the event
monitor's Event( ) function. Below is the code responsible for this
change in Windows:

EVENT TYPE EVENT MONITOR::Event(const UI_EVENT &event)
#elif defined(ZIL MSWINDOWS)
if (tEvent->type == E_MSWINDOWS)
{
MSG msg = tEvent->message;
char string[32];
if (wMsg.message != msg.message)
{
sprintf(string, "%04x", msg.message);
windowsMessage[0]->Information(I_SET TEXT, string);
}

if (wMsg.wParam != msg.wParam)

254 Getting Started with Zinc Programming



5.

i
sprintf(string, "%04x", msg.wParam);
windowsMessage[1l]->Information(I_SET TEXT,
}
if (wMsg.lParam != msg.lParam)
1
sprintf(string, "%08x", msg.lParam);
windowsMessage[2]->Information(I_SET TEXT,
}
if (wMsg.pt.x != msg.pt.x)
{
sprintf(string, "%d", msg.pt.x);
windowsMessage[3]->Information(I_SET TEXT,
}
if (wMsg.pt.y != msg.pt.y)
{
sprintf(string, "%d", msg.pt.y);
windowsMessage[4 ]->Information(I_SET TEXT,
}
wMsg = msg;

}

string);

string);

string);

string);

_system and sEvent contain information about the last interpreted event
that was returned by the window object. These variables work just like
the mouse variables mouse and mEvent except that the information is
maintained for the logical or system event. The variable sEvent keeps
track of the last event for optimization so that only changes in the event
cause the event field to be updated. When program calls
EVENT_MONITOR::Event( ), it changes these variables to reflect the
new event, by passing it as an argument to the event monitor's Event( )
function. Below is a partial list of the event/string pair table:

EVENT TYPE EVENT MONITOR::Event(const UI_EVENT &event)

{
UI_EVENT *tEvent = (UI_EVENT *)event.data;

// Declare the event type/name pairs.
static struct EVENT PAIR

{
ZIL_LOGICAL EVENT type;
char *name;

} eventTable[] =

{
// Raw events.
{ E_MSWINDOWS, "MSWindows" },
{ E 0S2,"0s/2" },
{ E_MOTIF,"Motif" },
{ E_MACINTOSH, "Macintosh" },
{ E _KEY, "Key" },

Getting Started with Zinc Programming |

255



Program Design

The ZincApp
window manager

{ E_MOUSE, "Mouse" },

{ E_CURSOR, "Cursor" },

// System events.

{ S_ERROR,"Error" },

{ S_UNKNOWN, "Unmapped Event" },
{ S_NO OBJECT,"No object" },

// Logical events.
{ L_EXIT,"Exit" },
{ L _VIEW,"View" },
{ L_SELECT,"Select" },

The event monitor window we just described receives all interpreted mes-
sages by attaching itself to the Zinc Window Manager class, ZINCAPP_-
WINDOW_MANAGER. This class is the second part of what makes it
possible for us to intercept events without disrupting their normal flow.
ZINCAPPHPP contains the definition of the ZINCAPP-
_WINDOW_MANAGER class, shown below:

class ZINCAPP WINDOW MANAGER : public UI_WINDOW_ MANAGER
{
public:
ZINCAPP WINDOW MANAGER(UI_DISPLAY *display,
UI_EVENT MANAGER *eventManager) :
UI WINDOW MANAGER(display, eventManager,
ZINCAPP WINDOW MANAGER::ExitFunction) { }
virtual EVENT TYPE Event(const UI _EVENT &event);
private:
static EVENT TYPE ExitFunction(UI_DISPLAY *display,
UI_EVENT MANAGER *eventManager, UI_WINDOW MANAGER
*windowManager) ;

}i
Here some information about ZINCAPP_WINDOW_MANAGER.

UL WINDOW_MANAGER is the base class. This allows us to get all
interpreted messages before they pass to the main control loop, and to
send the event information to the event monitor window, if it exists.

ZINCAPP_WINDOW_MANAGER() is the ZincApp window man-
ager constructor. It calls the base UL_WINDOW_MANAGER with the
display and eventManager supplied by its arguments but also provides an
exitFunction pointer that is the ZINCAPP_WINDOW_MANAGER-
::ExitFunction( ) static member function. The ZincApp window man-

256

Getting Started with Zinc Programming



ager class is constructed in the main section of our program, just the way
a normal window manager would be constructed. The code below shows
how:

// Initialize the ZincApp window manager and add the control
window.
ZINCAPP_WINDOW MANAGER *windowManager =
new ZINCAPP WINDOW MANAGER(display, eventManager);
UI_WINDOW *window = new CONTROL WINDOW;
*windowManager
+ new window;

+ Event( ), which processes the event information, contains two major
parts. The first calls UL_WINDOW_MANAGER::Event( ), so that it
can dispatch the message to the proper window.

EVENT TYPE ZINCAPP WINDOW MANAGER::Event(const UI_EVENT &event)
{

// Allow the base window manager to process the event.
EVENT TYPE ccode = UI_WINDOW MANAGER::Event(event);

The second parts sends the interpreted message to the event monitor win-
dow, if it exists. It determines if it should by looking at the object's
userFlags. If EVENT_MONITOR::Event( ) has set the flag to
MSG_EVENT_MONITOR, and if the event type is not S_RESET _DIS-
PLAY, it modifies the event. When modified, event.type contains the logi-
cal code, event.rawCode contains the value OxFFFF, and event.data
points to the raw event. Then the event function sends the message to the
device.

// Send the event to any event monitor windows.
for (UI_WINDOW OBJECT *object = First(); object;
object = object->Next())
if (object->userFlags == MSG_EVENT MONITOR && event.type !=
S_RESET DISPLAY)
£
UI_EVENT tEvent(event.type, OXFFFF);
tEvent.data = (void *)&event;
object->Event (tEvent);
¥
// Return the control code.
return (ccode);

Getting Started with Zinc Programming 257




Program Design

ZINCAPP_WINDOW_MANAGER also provides a way to exit the pro-
gram through the static member function ExitFunction( ), which displays
the modal exit window we saw earlier in the chapter.

= Zinc Applicati
0 This will close the ZincApp tutorial.

If the user selects OK, an L_EXIT message passes through the system, and
program stops. Otherwise, the window manager removes the window from
the screen, and program flow continues normally.

Help options

=| Zinc Applicati =l
Control Window Event Help
Keyboard
Mouse
Commands
Procedures
Objects
Using help

About ...

This item contains ZincApp’s help options, initialized by the
CONTROL_WINDOW constructor. Here’s that part of the constructor.:

// Help menu items.
static UI_ITEM helpItems[] =
{
{ MSG_HELP KEYBOARD,ZIL VOIDF(Message),"&Keyboard",
MNIF NO FLAGS },
{ MSG_HELP MOUSE,ZIL VOIDF(Message),"&Mouse",
MNIF NO FLAGS },
{ MSG_HELP COMMANDS,ZIL VOIDF (Message),"&Commands",
MNIF _NO FLAGS },
MSG_HELP_PROCEDURES, ZIL VOIDF (Message),"&Procedures",
MNIF NO_FLAGS },
MSG_HELP_OBJECTS,ZIL_VOIDF (Message),"&0Objects",

-~

-~

258 Getting Started with Zinc Programming



Y

MNIF NO FLAGS },

{ MSG_HELP_ HELP,ZIL VOIDF(Message),"&Using help",
MNIF NO FLAGS },

{ 0, ZIL VOIDF(0),"",MNIF SEPARATOR },

{ MSG_HELP_ ZINCAPP,ZIL VOIDF(About),"sAbout ...",
MNIF NO FLAGS },

{0, 0, 0, 0}/ End of array.

// Attach the menu and support objects to the control window.

*this

#if

+ new UIW_BORDER
+ new UIW MAXIMIZE BUTTON
+ new UIW _MINIMIZE BUTTON
+ &(*new UIW_SYSTEM BUTTON(SYF GENERIC)
+ new UIW _POP_UP_ITEM('"About ZincApp...", MNIF NO FLAGS,
BTF_NO TOGGLE | BTF_NO 3D,
WOF_SUPPORT OBJECT, About, MSG_HELP ZINCAPP))
+ new UIW TITLE("Zinc Application")
+ &(*new UIW_PULL DOWN_MENU
+ new UIW PULL DOWN ITEM("&Control", WNF NO FLAGS,
controlItems)
defined(ZIL MSDOS)
+ new UIW PULL DOWN ITEM("&Display", WNF _NO FLAGS,
displayItems)

#endif

+ &(*new UIW PULL DOWN ITEM("&Window", WNF NO FLAGS)
+ controlObjects
+ inputObjects
+ selectObjects)
+ new UIW PULL DOWN_ITEM("&Event", WNF_NO FLAGS,
eventItems)
+ new UIW PULL DOWN_ITEM('"&Help", WNF_NO FLAGS,
helpItems))
+ new UIW _ICON(0, 0, "minIcon", "Zincapp",
ICF_MINIMIZE OBJECT);

Getting Started with Zinc Programming 259



Program Design

Help program What happens when the user selects the Help option? First, the control win-
flow dow executes steps one through four of the general program flow. At the
fifth step, however, it calls the OptionHelp( ) member function.

Ul EVENT MANAGER 4& el

1 /V \i‘ * t fl

@ Main event loop

ol 7

ZINCAPP_WINDOW_MANAGER

CONTROL_WINDOW
help

CONTROL_WINDOW::OptionHelp

1. The UIW_POP_UP_ITEM::Event( ) function calls the
CONTROL_WINDOW::Message( ) function.

2. The CONTROL_WINDOW::Message( ) function sends a request to
remove the temporary display options menu by sending an
S_CLOSE_TEMPORARY message through the system.

3. Control returns to the main event loop.

Getting Started with Zinc Programming



4. eventManager->Get( ) gets two messages that the program generates.
The first message it gets is S_CLOSE_TEMPORARY.

The second message received is the help message determined by the
selected menu item. This message is passed by the main loop to the Win-
dow Manager, then is dispatched by the Window Manager to CON-
TROL_WINDOW::Event( ) since the control window is the front win-
dow on the screen. The control window evaluates event.type—in this
case a MSG_HELP message—which results in the OptionHelp( ) mem-
ber function being called. The code responsible for this control is shown

below:

EVENT_TYPE CONTROL_WINDOW::Event(const UI_EVENT &event)

{

EVENT TYPE ccode = event.type;

// Process the event according to its type.
if (ccode >= MSG HELP)
OptionHelp(event.type);// Help option.
else if (ccode >= MSG_EVENT)
OptionEvent (event.type);// Event option.
else if (ccode >= MSG_WINDOW)
OptionWindow(event.type);// Window option.
else if (ccode >= MSG DISPLAY)
OptionDisplay(event.type);// Display option.
else
ccode = UIW WINDOW::Event(event);// Unknown event.
// Return the control code.
return (ccode);

Getting Started with Zinc P?ogran;nln; 261



Program Design

I UI_EVENT_MANAGER Z} return

g \t‘@@ | vt

Main event loop

7

ZINCAPP_WINDOW_MANAGER

Y

CONTROL_WINDOW @

L4050

CONTROL_WINDOW::OptionHelp e

6. The OptionHelp( ) member function evaluates the item's value (passed
down through the item argument) to determine which type of help con-
text has been requested. It then sends the help request to the help system
by calling DisplayHelp( ). The following code shows how this is done:

void CONTROL_WINDOW: :OptiOnHelp(EVENT_TYPE item)
{
// Declare the help message/context pairs.
static struct HELP PAIR
{
int itemValue;
USHORT helpContext;

262 Getting Started with Zinc Programmi@



} helpTable[] =

{

MSG_HELP KEYBOARD,HELP KEYBOARD },
MSG_HELP_MOUSE,HELP MOUSE },
MSG_HELP_COMMANDS ,HELP_COMMANDS },
MSG_HELP_PROCEDURES,HELP PROCEDURES },
MSG_HELP_OBJECTS,HELP OBJECTS },
MSG_HELP HELP,HELP HELP },

MSG_HELP ZINCAPP,HELP GENERAL },

0, 0 }// End of array.

B T e e

}i

// Get the help context then call the help system.
USHORT helpContext = NO_HELP_ CONTEXT;
for (int i = 0; helpTable[i].itemValue; i++)

if (item == helpTable[i].itemValue)

{
helpContext = helpTable[i].helpContext;
break;
}
helpSystem->DisplayHelp(windowManager, helpContext);

}
Once DisplayHelp( ) is called, it attaches the help window to the Win-
dow Manager. For example, the help request MSG_HELP_ZINCAPP
brings up a help window:

=| Zinc Application (=]~
Welcome to the Zinc Application program. This sample program +
provides an introduction to the vari ts found in the =

library. Use the mouse to select an item from the main menu or press -
the <Alt> key in combination with the first letter of the item.

Here the help window becomes the front window of the application, and
processes events until the user requests a new window.

The help window is a normal, not modal, window, and so the user can
select other windows while the help window is up. In addition, Zinc
defines only one help window for an application. If the help window is
already present, or if it has been moved and sized by a previous help
request, Zinc presents the window in its last position with the new help
information shown in its title and text fields.

Getting Started with Zinc Programming 263



Program Design

General library
help

In addition to the help information provided through the main control menu,
the user can access context sensitive help by pressing a help key during the
application. Each ZincApp window has a predefined help context, specified
when the window is constructed. For example, the help context of the main
control window is HELP_MAIN_CONTROL. The code below shows how:

CONTROL_WINDOW: : CONTROL WINDOW(void) :
UTW WINDOW(O, 0, 52, 13, WOF NO FLAGS, WOAF LOCKED,
HELP_MATN CONTROL)
{

i3

Generally, U_ WINDOW_OBJECT::Event( ) also provides access to the
help system in the same way. After the user presses the <F1> key, the Win-
dow Manager sends the message to the front window. If the window has a
help context, the Window Manager calls the help system with that help con-
text. If the user presses the <F1> key when the control window is active, the
Window Manager would request the HELP_MAIN_CONTROL help context.
Otherwise, the Window Manager can request general help by sending NO_-
HELP_CONTEXT to the helpSystem->DisplayHelp( ) function. The help
system receives this message and replaces it with the general help specified
at the time when the help system was constructed. In ZincApp, general help
context is HELP_GENERAL.

// Initialize the help and error systems.

UI_WINDOW OBJECT::errorSystem = new UI_ERROR SYSTEM;

UI_WINDOW OBJECT::helpSystem = new UI_HELP WINDOW SYSTEM('support",
windowManager, HELP_GENERAL);

Structured programming—in a word, don't

Some Zinc programmers use structured programming techniques. If we
rewrote ZincApp using those techniques, we would assign each menu item a
function, which the program would execute when the user selected an item.
This is a cumbersome and inefficient technique for writing programs in a
event-driven framework, for reasons we will learn in a moment.

264

Getting Started with Zinc Programming



In order to demonstrate that structured programming in an event-driven
environment has serious drawbacks, let’s hypothetically revise ZincApp. We
could rewrite the Help options in the CONTROL_WINDOW constructor
in a structured manner, so that each option would call specific help func-
tions, rather than pass an event to an object that contained a help member
function. Remember, ZincApp contains none of this code—this is merely a
conceptual alternative, designed to demonstrate a concept.

CONTROL_WINDOW: : CONTROL WINDOW(void)
UIW WINDOW(O, 0, 52, 13, WOF NO FLAGS, WOAF_ LOCKED)

extern EVENT TYPE HelpKeyboard(UL WINDOW OBJECT *item, UL EVENT &event,
EVENT TYPE ccode);

extern EVENT TYPE HelpMouse(UI WINDOW OBJECT *item, UI EVENT &event,
EVENT TYPE ccode);

extern EVENT TYPE HelpCommands(UL WINDOW OBJECT *item, UL EVENT &event,
EVENT TYPE ccode);

extern EVENT TYPE HelpProcedures(UI_WINDOW OBJECT *item,
UI _EVENT &event, EVENT TYPE ccode);

extern EVENT TYPE HelpHelp(UI WINDOW OBJECT *item, UI EVENT &event,
EVENT TYPE ccode);

extern EVENT TYPE HelpZincApp(UL WINDOW OBJECT *item, UL EVENT &event,
EVENT TYPE ccode);

static UI_ITEM helpItems[] =

{
{ MSG_HELP_KEYBOARD, VOIDF(CONTROL WINDOW::Message),
"&Keyboard", MNIF_NO FLAGS },
{ MSG_HELP_MOUSE, VOIDF (CONTROL WINDOW::Message),
"sMouse", MNIF NO FLAGS },
{ MSG_HELP_ COMMANDS, VOIDF (CONTROL WINDOW::Message),
"&Commands", MNIF NO FLAGS },
{ MSG_HELP PROCEDURES, VOIDF (CONTROL_ WINDOW: :Message),
"&Procedures", MNIF NO FLAGS },
{ MSG_HELP_ OBJECTS, VOIDF (CONTROL WINDOW::Message),
"sObjects", MNIF NO FLAGS },
{ MSG_HELP_HELP, VOIDF(CONTROL WINDOW::Message),
"&Using help", MNIF NO FLAGS },
{ 0, VOIDF(0), "", MNIF SEPARATOR },
{ MSG_HELP ZINCAPP, VOIDF(About), "&About ...",
MNIF NO FLAGS }, { 0, 0, 0, 0 }// End of array.
bi

Getting Started with Zinc Progfamm)‘ng) 265



Program Design

In our hypothetical revision, each menu item would have a function that per-
formed a particular operation. To do this, we would define functions for each
of the menu items specified in the main control window. Here’s an example
of how we could write the HelpKeyboard( ) function.

EVENT TYPE HelpKeyboard(UI_WINDOW OBJECT *item, UI EVENT &event,

EVENT TYPE ccode)
{

item->helpSystem->DisplayHelp (item->windowManager,
HELP_KEYBOARD) ;

While our hypothetical revision works, it has serious drawbacks.

1. Using structured programming techniques results in inefficiency. In the
help example, it took seven functions to do the work that the CON-
TROL_WINDOW::OptionHelp( ) function does in one. This wastes
compiler time and executable space, making our applications perform
more slowly.

2. Using structured programming techniques in an event-driven architecture
results in confusing code. Since event-driven architecture works best
with object-oriented programming techniques, we should stick to writing
object-oriented programs.

3. Using structured programming techniques makes us duplicate much of
what Zinc has already accomplished. Since Zinc has an extensive library
of objects and event-handling routines, embedding functions like we’ve
done negates the advantages of object-oriented structure, among which
are elegant design and smaller code size. Using structured techniques
increases the amount of time and effort involved in creating and debug-
ging programs.

Because of these reasons, Zinc recommends that we eschew structured pro-
gramming techniques in writing our programs.

266

Getting Started with Zinc Programmingf



Conclusion

We’ve reached the end of Getting Started with Zinc Programming. We now
know enough about Zinc to begin writing complex applications that run on
nearly every operating environment in the world—all with one source code
file, using objects native to each of those operating environments. Zinc is
sure you’ll enjoy using the Application Framework—after all, we have as
much flexibility as possible, full use of the advanced features of C++, and
can use in our interfaces any modern language used anywhere in the world
today.

Have fun!

Getting Started with Zinc Programming 267



Program Design

268 Getting Started with Zinc Programming |



Appendix A

Compiler
Considerations

This appendix describes how to compile your applications with Zinc Appli-
cation Framework.

When building your applications, we recommend using the same switch set-
tings that were used to compile the Zinc Application Framework libraries.
These settings are found in the appropriate library makefiles in the
ZINC\SOURCE directory.

Getting Started with Zinc Programming 269



Compiler Considerations

Here is a complete list of all libraries and what they contain. Libraries for a
particular compiler are located in the ZINC\LIB\ compiler directory (except
for Motif, Macintosh, and NEXTSTEP).

DOS_ZIL.LIB. Real-mode DOS library.

D16_ZIL.LIB. 16-bit DOS library.

D32_ZIL.LIB. 32-bit DOS library.

DOS_GFX.LIB. DOS real-mode UI_GRAPHICS_DISPLAY.

D16_GFX.LIB. DOS UI_GRAPHICS_DISPLAY for 16-bit DOS
extender.

D32 _GFX.LIB. DOS UI_GRAPHICS_DISPLAY for 32-bit DOS
extender.

WIN_ZIL.LIB. MS Windows library.

WNT_ZIL.LIB. MS Windows NT library.
0S2_ZIL.LIB. IBM OS/2 library.

BC_LGFX.LIB. Borland-specific GFX graphics library.

BC_16GFX.LIB. Borland-specific GFX graphics library for 16-bit DOS
extender.

DOS_BGI.LIB. DOS UI_BGI_DISPLAY.
DOS_ZILO.LIB. Borland DOS overlay library.
MS_LGFX.LIB. Microsoft-specific GFX graphics library.

MS_16GFX.LIB. Microsoft-specific GFX graphics library for 16-bit
DOS extender.

MS_32GFX.LIB. Microsoft-specific GFX graphics library for 32-bit
DOS extender.

DOS_MSC.LIB. DOS UI_MSC_DISPLAY.

D16_MSC.LIB. DOS UI_MSC_DISPLAY for 16-bit DOS extender.
D32_MSC.LIB. DOS UI_MSC_DISPLAY for 32-bit DOS extender.
SC_LGFX.LIB. Symantec-specific GEX graphics library.

SC_16GFX.LIB. Symantec-specific GFX graphics library for 16-bit
DOS extender.

SC_32GFX.LIB. Symantec-specific GFX graphics library for 32-bit
DOS extender.

SC_LGFXV.LIB. Symantec-specific DOS overlay GFX graphics

270 Getting Started with Zinc Programming



Makefiles—
DOS, Windows,
0Ss/2

library.

DOS_ZILV.LIB. Symantec DOS overlay library.

DOS_GFXV.LIB. Symantec DOS overlay UIL_GRAPHICS_DISPLAY.
D32_WCC.LIB. DOS UI_WCC_DISPLAY for 32-bit DOS extender.

WC_32GFX.LIB. Watcom-specific GFX graphics library for 32-bit
DOS extender.

lib_mtf_zil.a. OSF/Motif library.
lib_crs_zil.a. Curses library.
lib_nxt_zil.a. NEXTSTEP library.

Borland

This section describes how to use Borland compilers with Zinc. For more
complete details on the Borland compilers, see your Borland User’s Guide.

When building applications using a makefile, your TURBOC.CFG and
TLINK.CFG files must be set to include paths to both the Borland and the
Zinc libraries and include files. A typical TURBOC.CFG file might look
like this:

-I.;C:\ZINC\INCLUDE;C:\BORLANDC\INCLUDE
-L.;C:\ZINC\LIB\BTCPP400;C: \BORLANDC\LIB

A typical TLINK.CFG might look like this:

-L.;C:\ZINC\LIB\BTCPP400;C: \BORLANDC\LIB

Any of the example or tutorial makefiles can be used as a skeleton for creat-
ing your own makefiles. It is important that the switches used to compile the
Zinc libraries be used when compiling your applications. Of particular
importance are the -x and -RT switches. These control the enabling of
exception handling and the enabling of run-time type checking, respectively.
The Zinc libraries are compiled with these options turned off. If any modules
in your application, including the Zinc libraries, don’t match the other mod-
ules in your application with regard to these options, or your application will
likely crash.

Getting Started with Zinc Prégfa;ﬁiﬁ;



Compiler Considerations

Borland 4.0 To compile DOS or Windows applications in the IDE, do the following:
IDE—DOS, : :

z 1. Select Project | New project.
Windows = S Pl

2. Enter the project directory and name.

3. Choose the target platform.

4. Choose the large memory model.

5. Make sure the Runtime library is selected. If you’re building a DOS
application using BGI, select the BGI library, as well. Zinc does not
require the other libraries.

6. If you’'re building a Windows application, select the Static option.

7. Select Options | Project.

8. Select the Directories topic. Enter the directories for the Borland and
Zinc include and library directories.

9. Select the C++ Options topic and open the Exception handling/RTTI
sub-topic. Turn off the Enable exceptions option and the Enable run-
time type information option.

10. Place the necessary source and library files in the project.

11. Select Project | Build all.

Borland 1.5 To compile an OS/2 application in the IDE, do the following:
IDE—O0S/2

1
2
3.
4

o

. Select Project | New project.

. Enter the project directory and name.

Select Project | View Settings.

. Select the Directories page. Enter the directories for the Borland and

Zinc include and library directories.
Select Project | Add item.
Place the necessary source and library files in the project.

Select Compile | Make.

272 Getting Started with Zinc Programming



Microsoft

Makefiles—
DOS, Windows

Visual
Workbench—
DOS, Windows

Getting Started with Zinc Fro?yfamming 7 273

This section describes how to use Microsoft compilers with Zinc. For more
complete details on the Microsoft compilers, see your Microsoft User's
Guides.

When building applications using a makefile, your LIB and INCLUDE envi-
ronment variables must be set to include paths to both the Microsoft and the
Zinc libraries and include files. A typical L/B environment variable might
look like this:

LIB=.;C:\ZINC\LIB\MVCPP150;C:\VISUALC\LIB
A typical INCLUDE environment variable might look like this:
INCLUDE=. ;C:\ZINC\LIB\MVCPP150;C:\VISUALC\INCLUDE

The easiest way to set theses environment variables is in your
AUTOEXEC.BAT file.

Any of the example or tutorial makefiles can be used as a skeleton for creat-
ing your own makefiles. It is important that the switches used to compile the
Zinc libraries be used when compiling your applications.

To compile DOS or Windows applications in the Visual Workbench, do the
following:

1. Select Project | New.

2. Enter the executable name.

3. Set the Project Type.

4. Add files to the project.

5. Select Options | Project

6. Choose the Compiler button

7. Under Code Generation, set CPU to 8086/8088.

8. Under Memory Model, set Model to Large.

9. Choose the Linker button.

10. Under Input, turn on Prevent Use of Extended Dictionary.

11. Under Memory Image, set Max. Number of Segments to 256.

12. If compiling a DOS application, under Input, ad<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>