

Getting Started
with Zinc Programming

Zinc<ID Application Framework™
Version 4.0
Zinc Software Incorporated
Pleasant Grove, Utah

Copyright © 1990-1994 Zinc Software Incorporated
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

Preface xxv

What is Zinc? xxvii

What you need to write Zinc programs xxvii

System requirements xxvii

The manuals xxviii
Programmer's Reference xxviii
Getting Started xxix
Zinc Designer xxix

Technical support xxix

Conventions used in this book xxxi

Getting Started with Zinc Programming v

section one

vi

Zinc concepts

1 Installing Zinc 3

how to install Zinc in your operating environment

Safety frrst. .. 3

DOS, Windows, and OS/2 4
Confmn license agreement 4
Run the installer program 4
Select a drive and subdirectory 4
Select the package option 4
fustall Zinc 5

Macintosh 5
Confirm license agreement 5
Run the installer program 5
Choose an installation 5
Specify an installation folder 6
fustall Zinc 6
Make aliases 6

OSF/Motifand Unix Curses 6
Confmn license agreement 6
Extract Zinc 7
Run the installation script 7

NEXTSTEP8

Confmn license agreement 8
Extract Zinc 8
Load the package 8

Finished! 9

Getting Started with Zinc Programming

2 Introduction to Zinc 11

what Zinc is
what Zinc's components are
how Zinc benefits us

An object-oriented solution 12
Transition to C++ 13
The benefits ofZinc 14
Zinc: an application framework 15

The Event Manager 18
UI_DEVICE and abstract classes 19
Event mapping 20
Benefits of logical event mapping 20

The Window Manager 21
''Top down" and "bottom up" 21
Window position and priority 22
Native objects, not emulated 22

The display 23

The help and error systems 24

Storage and retrieval 25

Globalization 26
The obstacles to reaching the global market 26
ISO 8859-1 and Unicode 26
Language and locale 26
Delta storage 27

Geometry management 28

Printer support 28

Conclusion 28

Getting Started with Zinc Programming vii

viii

3 Window Objects 29

the different types of window objects
how window objects work

Zinc's window objects 30
Basic window objects 30
Buttons 31
Combo boxes 32
Dates 33
Geometry management 35
Icons 35
Lists 35
MDI windows 36
Menus 36
Notebook 37
Numbers 37
Scroll bar 38
Slider 39
Spin control 39
Status bar 39
String fields 40
Table 41
Text 41
Time 42
Tool bars 43
Other programmer-defmed window objects 43
Editing window objects 44

Conclusion 44

Getting Started with Zinc Programming

4 Writing Multiplaiform Programs 45

multiplatform application design
special considerations of each environment

About multiplatform programming in Zinc 46
Single source 46
Engines and keys 46
Look and feel 46
Libraries 46
Compiler options 47
Main()47
Event handling 47
Executable naming conventions 48
Shipping applications 49

DOS 49
Look and feel 49
DOS libraries 49
Compiler options 49
maine) 50

Windows 50
Look and feel 50
Windows libraries 50
Compiler options 50
WinMain() 51

OS/252
Look and feel 52
OS/2 library 52
main() 52

Macintosh 52
Look and feel 52
Macintosh libraries 52
maine) 53

Getting Started with Zinc Programming ix

x

OSF/Motif53
Look and feel 53
OSF/Motif libraries 53
main() 54
Shipping applications 54

Curses 54
Look and feel 54
Curses libraries 54
maine) 55

NEXTSTEP 55
Look and feel 55
NEXTSTEP library 55
main() 55
Event handling 55

Conclusion 56

5 Event Flow and Mapping 57

top-down and bottom-up event handling
event map tables
palette mapping

Top down 58

Bottom up 60

Event processing 62

Event map table 64
Event mapping algorithm 65
Palette mapping 65

Conclusion 67

Getting Started with Zinc Programming

6 Library Classes 69

base classes
region lists
display classes

Base classes-Zinc's periodic table 70
UI_ELElVIENT 72
UI_LIST72

Event Manager 73
Input devices 73
The event queue 74

Window Manager 75
Window objects 75
Event member functions 76

Help system 77

Error system 78

Screen displays 78
Region lists-DOS and Curses 79
Virtual display functions 81

Conclusion 81

7 Zinc and C++ 83

instantiating and destroying objects
member variables and scope
member functions, overloaded functions and operators

Getting Started with Zinc Programming xi

xii

Class definitions 84
How to design classes 84
Derived classes 86
Multiple inheritance 88
Abstract classes 88
Friend classes 89

Object creation 90
Explicit instantiation 90
Implicit instantiation and scope 90
Base class construction 91
Array constructors 92
Overloaded constructors 92
Copy constructors 93
Default arguments 94

Object deletion 94
Explicit deletion 94
Implicit deletion and scope 95
Virtual destructors 95
Base class destruction 96
Array destruction 96

Member variables 97
Variable definitions 97
Static member variables 97

Member functions 98
Function definitions 98
Default arguments 98
Virtual member functions 99
Virtual functions and message handling 100
Overloaded member functions 100
Overloaded operators 101
Static member functions 102

Conclusion 104

Getting Started with Zinc Programming

8 Globalization 105

enabling a Zinc program
how to use ISO 8859-1 and Unicode characters
shipping a globalized application

Enabling Zinc objects 106
Enabling objects 106
Character types 107
Using wide character strings 107

Localizing our application 108
Localizing Zinc objects 108

Localizing our objects 109
Detecting the language 109
Detecting the locale 110
Building our application 110

Shipping our application 110
Non-Unicode applications 111
Required files for Unicode applications 111

Conclusion 111

Getting Started with Zinc Programming xiii

section two

xiv

Zinc programming

9 "Hello, Universe!" 115

Using UI_APPLICATION
Learning to write a simple Zinc application
Shutting down an application

What we'll do 116
Include files 117
A new Main() 119
Creating a window and adding a text field 120
Responding to events 121

Under the hood ofUI_APPLICATION::Main() 121
What UI_APP does 122
Main() 122

Event flow and Control() 123

HELLOl.CPP without VI_APPLICATION 124
The Event Manager 124
Shutting down HELLOl.CPP 125

Conclusion 125

Getting Started with Zinc Programming

10 Help and Error Systems 127

Using Zinc's help and error systems
Writing an exit function
Creating user interfaces programmatically

The help system 128

The error system 133
Control flow of the error system 133
Exit function 134
Multiple windows 135
Program flow 138
Cleanup 138

Conclusion 138

11 Using the Designer 139

Working with persistent objects
Creating user interfaces with Zinc Designer

What we'll do 140

Using the Designer 141
Creating a file 141
Creating a window 142
Creating a window object 144
Creating additional windows 145
Saving the file 147
Window access 148
Run-time features 148

Conclusion 149

Getting Started with Zinc Programming xv

xvi

12 Eventflow 151

working with top-down and bottom-up event flow
writing a user function to validate input

What we'll do 152
Running the program 152
Source code 152
Class defInitions 153

Creating the window 155
The user function 157

Following events 158
Event flow-DOS 159
Event flow-Windows 160

Conclusion 161

13 The Zinc Data File 163

the data file
adding and deleting objects to and from the data file

What we'll do 164
Running the program 164
Source code 165
Program flow 165
Class defInitions 166

Creating the user interface 168
Using the Designer to create the window 168

DICTIONARY_WINDOW 169

Getting Started with Zinc Programming

Wiring up the interface 169
The Event() function 169

The D_ENTRY class 170
Z~_STORAGE_OBJECT170
The constructor 170
The New function 170
The Save function 170

The DICTIONARY class 171

Conclusion 172

14 Virtual List 173

creating a virtual list
using the UIW_TABLE class

What we'll do 174
Running the program 174
Source code 175
Analyzing the source code 175
Program flow 177

Using the UIW_TABLE object 177
Table structure 177
The table record 178
The table header 178
Adding records to the list 179
Adding fields to the records 179
Getting the data into the fields 180

Conclusion 182

Getting Started with Zinc Programming xvii

xviii

15 Deriving a Device 183

how to work with input devices 183
how to write a simple keyboard macro 183
how to initialize the macro device class & its base class

What we'll do 184
Source code 184
Program execution 184
Class defmitions 185
Program flow 186
Base class initialization 188
fuitializing member variables 189
The Poll() function 190
Responding to events 191
Enhancements 191

Conclusion 192

16 Customized Displays 193

the basics of designing of a display class
initializing the display class and its base class
giving a display class custom behavior

What we'll do 194
Using the class 194
Source code 194

Writing UI_BGI_DISPLAY 196
fuitializing the base class 196
fuitializing UI_BGI_DISPLAY 197

Getting Started with Zinc Programming

Display destructor 199

The Rectangle() function 199
Drawing on the screen 199
Infonnation member functions 201

Conclusion 202

17 Using Locales 203

detecting the system locale
setting an object's locale

What we'll do 204
Running the program 204
Source code 205
Analyzing the source code 205
Program flow 208

REPORT_WINDOW 208
Wiring up the interlace 208
Changing locales 209

Conclusion 210

18 Using Languages 211

detecting the system language
setting the application language

What we'll do 212
Running the program 212

Getting Started with Zinc Programming xix

xx

Source code 213
Analyzing the source code 213
Program flow 215

REPORT_WINDOW 215
Wiring up the interlace 215
Changing languages 216

Conclusion 217

19 Program Design 219

design of a large application
using event map tables
using accelerator keys

What we'll do 220
Source code 220
Program specification 221

Design and implementation 222
Accelerator keys 225
General program flow 227

Control 229

Control program flow 231

Display options 233
Display program flow 234

Window options 239
Window program flow 241

Event options 246
Event program flow 247
Monitoring library events 250
The event monitor 251

Getting Started with Zinc Programming

appendices

The ZincApp window manager 256

Help options 258
Help program flow 260
General library help 264

Structured programming-in a word, don't 264

Conclusion 267

A Compiler Considerations 269

Borland 271
Makeftles-DOS, Windows, OS/2 271
Borland 4.0 IDE-DOS, Windows 272
Borland 1.5 IDE-oS/2 272

Microsoft 273
Makefiles-DOS, Windows 273
Visual Workbench-DOS, Windows 273

Symantec 274
Makeftles-DOS, Windows 274
Symantec 6.1 IDDE-DOS, Windows 275

Watcom 275
Makefiles-DOS, Windows, OS/2 275
Watcom 10.0 IDE-DOS, Windows, OS/2 276

IBM 276
Makeftles-oS/2 276

Getting Started with Zinc Programming xxi

xxii

WorkFrame/2277

Macintosh 277
THINK Project Manager (TPM) 277

Motif278

Curses 279

NEXTSTEP 279

B Example Programs 281

Callbacks 281
VALIDT281

Draw/tern 282
ANALOG 282
GRID 284
GRAPH 285
DISPLY285
LSTITM286

Event and palette mapping 287
CALC 287
CALNDR288

Get/set data 289
PHONBK289
WINDOW 289
POSTWN290
NOTEBK290
STATUS 290
MENUS 291
SPREAD 292
AGENCY 292

/18N 294
118N294

Getting Started with Zinc Programming

DELTA 295

Messages 296
MESSGS296
MATCH 296
WORLD 297

Miscellaneous 297
FRESTR297
DRAG 298
Spy 299
COORDS300
FONTS 300
COLORS 301

New objects 301
GMGR301
PRINTR303
SPIN 305
MDI306
PERIOD 307
TABLE 307
MSGWIN308

C Zinc Coding Standards 311

Naming 312
Classes and structures 312
Functions 312
Variables 312
Constants 313

Organization 313
Class scopes 313
Files 314

Comments 315

Getting Started with Zinc Programming xxiii

xxiv

Files 315
Functions 315
Variables 315
Blocks 315

Indentation 316
Classes and structures 316
Functions 317
Function calls 317
Case statements 318
H and for statements 318

D Keyboard and Mouse
Mappings 319

DOS and Windows 320

OSF/Motifand Curses 323

Macintosh 325

NEXTSTEP 326

Getting Started with Zinc Programming

Preface

If you want to learn to program using Zinc, this manual is for you.

This book teaches programmers how to write robust programs using Zinc
Application Framework, the advanced object-oriented development environ­
ment that runs under nearly every popular operating environment in the
world.

Zinc's mission is to help programmers write object-oriented, graphical,
event-driven programs that are portable across operating systems, CPU
architectures, and languages and locales. Programmers often must deal with
issues like writing programs that run under multiple environments, or use
unrelated display technology, or that show text and data formatting in multi­
ple languages like English, German, and Japanese. By design, Zinc makes
writing these programs far easier. But to achieve this, Zinc had to become
different from other programming environments-and this difference means
the programmer who is just starting out with Zinc faces the prospect of
learning something new.

Getting Started with Zinc Programming xxv

Preface

xxvi

No other book before this one explained to novice Zinc programmers how to
write a Zinc program step by step. Though programmers who used other
environments found Zinc's reference manuals invaluable for their depth of
information, the programmer just starting out with Zinc found it hard to learn
the core principles of writing Zinc programs only through following the tuto­
rial. Therefore we designed this book to help the novice Zinc programmer
get up to speed with maximum speed and efficiency-and with a minimum
of intimidation.

Since this book was designed to help the programmer who is just starting out
with Zinc, we will occasionally cover a subject in less detail than more
expert programmers would prefer. We encourage Zinc masters to look to our
Reference Manual for more detail.

Things we've left out altogether are in-depth discussions about object-ori­
ented programming, programming in C++, and operating systems. Although
we don't expect you to be an expert C++ programmer, we do expect that you
have some knowledge and understanding of object orientation and C++
before you start this tutorial.

To teach you the conceptual framework of writing Zinc programs, we start
out with one of the smallest programs possible. After, we introduce more
complicated, though still easy to understand, example programs, designed to
teach specific Zinc features and benefits. This approach offers an opportu­
nity to understand how every line of code works and fits together-and why
Zinc is a wonderful choice for writing applications with graphical interfaces
that run under multiple operating environments, languages, and locales.

While you learn how to write Zinc programs, you'll also learn some key
principles important to how Zinc accomplishes its mission of portability.
Each chapter will emphasize one of these key principles to keep you focused
on learning that principle well. Later on, you can generalize these principles
to help you write any program with Zinc.

By the end of this book, you will know enough about Zinc to use it on your
own. But you'll probably want to refer back to this manual from time to time
to refresh your memory about how to accomplish a specific task

Getting Started with Zinc Programming

System
requirements

What is Zinc?

Zinc is an application framework that programmers use to write object-ori­
ented, graphical, event-driven programs that are portable across operating
systems, CPU architectures, and languages and locales.

But more than a mere set of tools, Zinc is also an architecture, or a coherent
structure that follows a set of design principles. Zinc discusses these design
principles in detail in the first part of this manual. Briefly, however, in its
classes and member functions, Zinc uses specific design principles of event­
driven architecture, object orientation, portability, and flexibility. Zinc pro­
grams that use these classes and follow these principles benefit by how eas­
ily they port to different operating systems and CPU architectures, and how
flexibly they adapt to different languages and locales.

As we learn to write Zinc programs, Zinc's intuitive design will stand out
more and more-indeed, you will be able to anticipate how features of Zinc
will work without having used them. This quality is what makes Zinc attrac­
tive to so many programmers around the world.

What you need to write Zinc programs

Writing Zinc programs means purchasing a Zinc Engine and a Key for the
target operating environment. You will also be required to have a supported
compiler for that environment.

DOS text and DOS graphics. To write Zinc programs for DOS in real mode,
you need a Zinc Engine and DOS Key; a C++ compiler for DOS such as the
Borland C++, Microsoft C++, or Symantec C++ compiler; DOS 3.1 or later;
and a Microsoft mouse-compatible driver. To write Zinc programs for DOS
Text and DOS Graphics in protected mode, you need the above as well as a
DOS extender SDK. See the READ.ME file for a list of currently supported
DOS extenders. Most "real-world" applications will require a DOS extender.

Getting Started with Zinc Programming xxvii

Preface

Programmer's
Reference

xxviii

Windows. Zinc Engine and Windows Key; a C++ compiler for Windows
such as the Borland C++, Microsoft C++, or Symantec C++ compiler; and
Windows 3.0 or later. To develop applications for Windows NT you need a
Zinc Engine and Windows Key; and a C++ compiler for Windows NT, such
as the Borland C++, Microsoft C++, or Watcom C++ compiler.

OS/2. Zinc Engine and OS/2 Key, a C++ compiler for OS/2 such as the Bor­
land C++, IBM C++, or Watcom C++ compiler, and OS/2 2.0 or later.

Macintosh. Zinc Engine and Macintosh Key, a C++ compiler for the Macin­
tosh such as the Symantec C++ compiler, and Macintosh System 7 or later.

OSF/Motif. Zinc Engine and Motif Key, a C++ compiler compatible with
AT&T's cfront version 2.1, and OSFlMotif l.lor later running on XllR4 or
later. You may need to change some source code to use the Motif Key on
hardware platforms that are not directly supported by Zinc. Though Zinc
makes no claim that Zinc programs written for a version of OSFlMotif not
directly supported by Zinc will work properly, doing so should be straight­
forward.

Unix Curses. Zinc Engine and Curses Key, and a C++ compiler compatible
with AT&T's cfront version 2.1.

NEXTSTEP. Zinc Engine and NEXTSTEP Key; and NEXTSTEP 3.2 User
and Developer editions or later, which come with the required compiler.

The manuals

The Programmer's Reference is comprised of two volumes.

The Programmer's Reference Volume 1 contains descriptions of Zinc Appli­
cation Framework support classes, the calling conventions used to invoke
the class member functions, short code samples using the class member
functions, and information about other related classes or example programs.
Support objects are those objects that are not window objects.

Getting Started with Zinc Programming

Getting Started

Zinc Designer

The Programmer's Reference Volume 2 contains descriptions of Zinc Appli­
cation Framework window object classes, the calling conventions used to
invoke the class member functions, short code samples using the class mem­
ber functions, and information about other related classes or example pro­
grams.

Some miscellaneous information is presented in the Appendices of Pro­
grammer s Reference Volume 2. This section (Appendices A through I) con­
tains support definitions, system event definitions, logical event definitions,
class identifications, storage information, internationalization information,
and some hardware issues.

Getting Started contains a general overview of Zinc's architecture in addi­
tion to a series of tutorials designed to help us learn how to write Zinc pro­
grams.

If you're a Zinc novice, or if you're a beginning or intermediate C++ pro­
grammer, you should probably begin at the beginning of this book and learn
what the pieces of Zinc are and how they fit together. If you've already
learned about Zinc, or if you have extensive experience with C++, you may
want to start with "Section Two-Zinc Programming," which teaches you
how to write many different Zinc applications.

Zinc Designer contains an overview of the principles of Zinc's interactive
interface design tool, in addition to feature-by-feature explanations of Zinc
Designer's functionality.

Technical support

Zinc Software Incorporated offers a comprehensive technical support pro­
gram to registered users, so be sure to complete and return the registration
card. Currently, Zinc registered users are eligible for the following support
services at no charge:

Limited warranty. The terms of your limited warranty are explained in the
Zinc Application Framework End User Software License Agreement.

Getting Started with Zinc Programming xxix

Preface

xxx

Telephone support. If you need assistance beyond what the Zinc manuals or
your reseller can provide, you can call +1 801 785 8998 between 8:00 a.m.
and 5:00 p.m. Mountain Time, or +44 (0)181 855 9918 between 9:00 a.m.
and 5:00 p.m. London Time, or +81 (052) 733 4301 between 9:00 a.m. and
5:00 p.m. Japan Time to speak with one of our technical support representa­
tives. Technical support is closed during the noon hour and on weekends and
holidays. Please have the following information ready before you call:

· Your Zinc version number, serial number, and registered name

· Your hardware and operating system configuration

· Your compiler and version number

Electronic support. If you want to send messages to Zinc's technical support
representatives, download software maintenance releases (requires pass­
words), exchange ideas with other programmers, or download user contribu­
tions, you can use the following electronic support services:

· Zinc Fax. In North America, call +1 801 785 8996. In Europe, call +44
(0)181 3167778. In Asia, call +81 (052) 733 4328. If you need to send
more than one page of code, don't use the Fax.

· Zinc BBS. In North America, call +1 801 785 8997 with 300-9600 baud
(v'32bis), 8 data bits, no parity, 1 stop bit or +1 801 785 8995 with 300­
9600 baud (HST dual standard), 8 data bits, no parity, 1 stop bit. In
Europe, call +44 (0) 181 317 2310 with 300-9600 baud (HST dual stan­
dard), 8 data bits, no parity, 1 stop bit. In Asia, call +81 (052) 733 4359
(HST dual standard), 8 data bits, no parity, 1 stop bit. Zinc's BBS is
accessible 24 hours a day.

· Internet. Zinc's Internet connection is accessible 24 hours a day.

Email: tech@zinc.com

Anonymous ftp: ftp.zinc.com

Web server: http://www.zinc.com!

• CompuServe-Zinc's CompuServe forum is accessible 24 hours a day.

GO ZINC

Special offers. You can receive special promotional offers for new products
and product upgrades.

Zinc's technical support program is subject to change without notice.

Getting Started with Zinc Programming

Conventions used in this book

This manual uses the following conventions:

TABLE 1. Conventions

Italics

Bold

Constant
width
text

c:

identify arguments, variables, and pointers in function and
method prototypes.

identifies file and directory names, and Zinc class and member
function names.

identifies programming examples and command line or shell
output.

is the command line DOS prompt, which you can access from
inside Windows

Getting Started with Zinc Programming xxxi

Preface

xxxii Getting Started with Zinc Programming

section one
Zinc concepts

Getting Started with Zinc Programming 1

Getting Started with Zinc Programming 2

Chapter 1

Safety fi rst. . .

Installing Zinc

This chapter explains how to install Zinc for all its supported operating
environments. Refer to this chapter for instructions on how to ensure Zinc's
components are installed correctly. Also, refer to the appropriate section for
your operating environment for installation instructions.

Before actually installing Zinc Application Framework, back up your distri­
bution disks.

how to install Zinc in your operating environment

Getting Started with Zinc Programming 3

Installing Zinc

Confirm license
agreement

Run the installer
program

Select a drive
and subdirectory

Select the
package option

4

DOS, Windows, and OS/2

Installing Zinc on a DOS, Windows, or OS/2 system takes five steps:

1. Confirm license agreement.

To install Zinc Application Framework, read and accept the Zinc Appli­
cation Framework End User Software License Agreement and the Source
Code License Addendum. The license agreement is found at the begin­
ning of this manual. To confirm and proceed with the installation, select
"yes." Otherwise, select "no" and the installation will abort.

2. Run the installer program.

The install program is a DOS executable, and should be run from DOS or
a DOS window in OS/2, Windows, or Windows NT.

Insert into your floppy drive the first Zinc Engine diskette. Then run the
Zinc 4.0 Installer on the diskette by typing the following:

A: INSTALL

3. Select a drive and an installation subdirectory.

Select the hard drive on which to install Zinc. Then, on that hard drive,
select an installation subdirectory. Press <Enter> to accept the default
directory, \ZINC, or type in a new directory and press <Enter>.

4. Choose Zinc engine and key(s).

The following is a list of diskette packages you need to use Zinc on your
computer.

Required

· Zinc Engine

Optional

· DOS Key

· Windows Key

• OS/2 Key

Getting Started with Zinc Programming

Install Zinc

Confirm license
agreement

Run the installer
program

Choose an
installation

5. Install Zinc.

The program installs Zinc from the distribution floppies to your hard
drive and displays its progress on the screen. Periodically, it will prompt
you for a new disk. Remove the current disk from the drive, insert the
appropriate new disk, and press any key to continue the installation.

When the process is complete, a message appears on your screen indicat­
ing that Zinc Application Framework has been successfully installed.

Macintosh

On a Macintosh computer, the install process takes six steps:

1. Confirm license agreement.

To install Zinc Application Framework, read and accept the Zinc Appli­
cation Framework End User Software License Agreement and the Source
Code License Addendum. The license agreement is found at the begin­
ning of this manual. To confirm and proceed with the installation, select
"yes." Otherwise, select "no" and the installation will abort.

2. Run the installer program.

Insert into your floppy drive the first Zinc Macintosh Key diskette. Then
run the Zinc 4.0 Installer icon on the diskette. After reading the
README file, select "Continue."

3. Choose an installation.

Choosing "Install" installs the entire Zinc Application Framework pack­
age. If you choose the default Zinc installation, skip to the next step.

Choosing "Custom" allows you to specify only those components of
Zinc Application Framework you wish to install. You can select the
entire Zinc Application Framework by choosing "Zinc Application
Framework 4.0 (All)," or you can select from a range of options by click­
ing on the first option in the range, and then, while holding the <Shift>
key on the keyboard, clicking on the last option in the range-this will
select all options between them. Then choose "Install" after you have
selected the desired components.

Getting Started with Zinc Programming 5

Installing Zinc

Specify an
installation
folder

Install Zinc

Make aliases

Confirm license
agreement

6

4. Specify where to install Zinc Application Framework.

The Symantec project manager requires that you install Zinc in the same
folder that contains the Symantec THINK Project Manager. If you wish
to install Zinc Application Framework into a folder with a name other
than the default, enter the new name in the field provided.

5. Begin installation ofZinc.

Choose "Save" to begin installing the files.

When installation is complete, you may install Zinc in another location,
or you may simply quit.

6. Make aliases.

The Symantec compiler needs to know how to locate Zinc files when
compiling. Make aliases of the SCCPP700 Include folder, located in the
Include folder, and of the SCCPP700 Library folder, in the Library
folder. Move these aliases to the Aliases folder within the Symantec C++
folder.

Installation is now complete. You may wish to precompile Zinc's header
files, which will speed up compile time considerably. To do so, refer to
the file MAC.TXT, included in the Read Me Files folder in the Zinc
directory now installed on your hard drive.

OSFlMotifand Unix Curses

Installing Zinc on an OSFlMotif or Curses system, takes three steps:

1. Confirm license agreement.

To install Zinc Application Framework, read and accept the Zinc Appli­
cation Framework End User Software License Agreement and the Source
Code License Addendum, found at the beginning of this manual. To con­
firm and proceed with the installation, select "yes." Otherwise, select
"no" and the installation will abort.

Getting Started with Zinc Programming

Extract Zinc

Run the
installation
script

2. Extract Zinc from distribution media.

Copy the Zinc distribution to your system by following the appropriate
instructions in one of the sections below. The examples below will place
the Zinc distribution in /usr/locaVZinc.

a. Installing from tape. To install Zinc from a tape, change directory to
the installation directory. Use the tar command to extract the contents of
the tape. For example, use tar xv or tar xvf TAPENAME, where TAPE­
NAME is the name of the tape drive on your system, such as /dev/rmt!
1m.

b. Extracting from DOS floppy or DOS BBS. To install Zinc from the
DOS file ZAF4xMTF.TZ, mount the DOS floppy or use a communica­
tions software package to retrieve the file, then move or copy the DOS
file into the installation directory.

Use zcat and tar to uncompress and unarchive the distribution files:

localhost> cat zaf36rntf.tz I zcat I tar xvf -

If you purchased the Zinc Unicode key, uncompress and unarchive the
distribution files this way:

localhost> cat zaf36uni.tz I zcat I tar xvf -

c. Extracting from a file. If you received the file zaf.motif.4.x.tar.Z over
the Internet, move the file to the location that you want to contain the
Zinc directory tree, such as /usr/local.

Use zcat and tar to uncompress and unarchive the distribution files:

localhost> zcat zaf.rnotif.3.6.tar.Z I tar xvf ­

If you purchased the Zinc Unicode key:

zcat zaf.unicode.3.6.tar.Z I tar xvf -

3. Run the installation script.

Once you have extracted Zinc from the distribution media, run the instal­
lation script called INSTALL.

localhost> ./INSTALL

The script will detect whether you've installed the OSF/Motif or Curses
keys. If you have, the script will ask you which you would like to use.

INSTALL also asks questions about what type of system you have, and
then it will show you the default configuration for your system type. You
can change any parameters necessary. INSTALL then configures all the

Getting Started with Zinc Programming 7

Installing Zinc

Confirm license
agreement

Extract Zinc

Load the
package

8

makefiles in the Zinc tree. If the C++ compiler on your system needs to
have C++ source file names to end with something besides .cpp, such as
.C, .cc, or .CXX, INSTALL changes all the source files in the Zinc tree.

NEXTSTEP

Installing Zinc on a NeXT computer or on a PC running NEXTSTEP takes
three steps:

1. Confirm license agreement.

To install Zinc Application Framework, read and accept the Zinc Appli­
cation Framework End User Software License Agreement and the Source
Code License Addendum, found at the beginning of this manual.

2. Extract Zinc from distribution media.

a. Extracting from floppy. To extract Zinc from a floppy, insert the floppy
into your computer and mount it in the Workspace. Click on the floppy
icon in the Workspace Manager, and drag the Zinc.pkg icon from the
floppy to a directory in which you have write permissions.

b. Extracting from DOS BBS. To install Zinc from the DOS file
ZINC.NXT, use a communications software package to retrieve the file,
then move or copy the DOS file into the Zinc installation directory. Then
rename the DOS file to Zinc.pkg.compressed. Last, open the Tools
Inspector panel, and select Uncompress.

c. Extracting from afile. If you received Zinc.pkg.compressed over the
Internet, move the file to the Zinc installation directory. Then open the
Tools Inspector panel, and select Uncompress.

3. Load the package.

Double-click on the Zinc.pkg icon to launch the NEXTSTEP Installer.
The Installer will then ask you to specify an installation directory.
Choose an installation directory such as /LocalDeveloper/Zinc or /usr/
local/lib. When the Installer prompts you, remove the floppy in the com­
puter and replace it with the next one.

Getting Started with Zinc Programming

Finished!

Now that you've reached the end of this chapter, you're finished installing
Zinc. Now you're ready to learn the details of Zinc's architecture-what the
pieces of Zinc are, and how they fit together.

Getting Started with Zinc Programming 9

Installing Zinc

10 Getting Started with Zinc Programming

Chapter 2 Introduction to Zinc

1 the early days of the Industrial Revolution, pinmaking was a slow,
excruciating process. Each pinmaker, responsible for the entire construction
of each pin, would fashion its head, its shaft, and finally sharpen the pin
from a solid sliver of metal. Pinmaking was so inefficient, a group of twenty
talented pinmakers might produce no more than twenty pins per week.
Understandably, pins were expensive.

Then came the development of interchangeable parts, and the craft of pin­
making became radically more efficient. Teams of pinmakers specialized in
creating pin components-some would create the heads, some the shafts,
and still others would put them together into a finished product. Because
each pinmaker could benefit from the work of others, pin production soared
and its costs plummeted.

what Zinc is

what Zinc's components are

how Zinc benefits us

Getting Started with Zinc Programming 11

Introduction to Zinc

An object­
oriented solution

12

In the early days of the Information Revolution, programming, like pinmak­
ing, was also a slow process. Like pinmakers carving pins whole from solid
slivers of metal, each programmer was responsible for writing his entire pro­
gram. A programmer would first design the program according to a specifi­
cation, create the program's procedures from scratch, and finally test and
debug those procedures in a long and drawn-out process. Programming was
so inefficient, a group of twenty talented programmers might take five years
to produce a robust mission-critical program. Understandably, programs,
like pins in the Industrial Revolution, were expensive.

With the development of object-oriented programming, analogous to the
development of interchangeable parts in the Industrial Revolution, the craft
of programming became radically more efficient. Teams of programmers
specialized in creating parts of programs. Some wrote file storage objects,
some event handling objects, still others concatenated the objects into work­
ing programs. Because these programmers could concatenate objects into
working programs without knowing how the objects worked, they often
would write object-oriented programs in a fraction of the time.

Procedural programs are difficult to maintain, difficult to port to different
operating environments, and difficult to enhance with new features. This is
what Zinc calls "the procedural dilemma." Caught in the procedural
dilemma, procedural programmers struggle valiantly to incorporate new fea­
tures into their programs. Often they give up, and rewrite their programs
from scratch when incorporating new features.

Object-oriented programming helps programmers avoid the procedural
dilemma by offering interchangeable software components. Object-oriented
programmers realize dramatic improvements in productivity and reliability,
and consequently the costs of developing and maintaining object-oriented
programs plummets.

Zinc helps programmers write object-oriented programs, in turn helping us
solve the procedural dilemma.

Zinc gives us a robust library of C++ classes that we can access in our appli­
cations. This library includes classes that handle events, manage windows,
display help and error messages, and write to the displays. Further, Zinc's
library includes user interface objects like windows, buttons, controls, lists,
menus, tool bars, strings-all native to every environment Zinc supports.
Zinc's architecture is open and extensible by design, allowing us to create
custom versions of Zinc objects with behaviors that precisely meet our
needs. With Zinc's modularity we won't find ourselves painted into a corner.

Getting Started with Zinc Programming

Transition to C++

Zinc also features an intuitive interface design tool, Zinc Designer. Because
Zinc Designer is tightly integrated with the Zinc class library, from within
the Designer we have direct access to all of the library's features, including
event handling and window management infrastructure, and Zinc interface
objects. Further, our interfaces run under any environment Zinc supports
with a look and feel native to the environment.

In addition to Zinc Designer and Zinc's robust and comprehensive class
library, Zinc lets us write applications to run under multiple operating envi­
ronments with one set of source code, which makes porting trivial. For
example, with one set of source code, we can port our Zinc applications to
DOS text and DOS graphics in real and protected modes, Microsoft Win­
dows, OS/2, Macintosh, OSF/Motif, Unix Curses, and NEXTSTEP. Further,
one set of source code makes maintenance easier, letting us spend our devel­
opment resources on developing new products, not on trying to juggle sev­
eral versions of the same product.

Zinc also helps us write programs that we can internationalize easily. If we're
writing programs that need to run in multiple languages like English, Ger­
man, and Japanese, and that need to display data in formats specific to cer­
tain countries, money and dates, for example, Zinc does much of the work
for us.

We might question the need to learn the new features of C++, and more
importantly, object-oriented programming in general. But as we learn our
way around Zinc, we'll find many compelling reasons to use Zinc and
object-oriented programming techniques.

The transition to object-oriented programming is nontrivial-but because
Zinc has an elegant and consistent architecture, Zinc's a great place to start.
Designed from the ground up for helping programmers write object-oriented
programs that have graphical user interfaces, respond to events, and support
multiple operating environments and languages, we'll find writing object­
oriented programs in Zinc will become intuitive and natural.

However, to complete the Zinc tutorials, we recommend at least a working
knowledge of object-oriented programming concepts as well as differences
between ANSI C and C++. To successfully complete the tutorials, for exam­
ple, you will need to understand basic principles of object-oriented program­
ming like classes, inheritance, polymorphism; as well as basic features of
C++ like constructors and destructors, member functions, virtual functions,
and function and operator overloading.

Getting Started with Zinc Programming 13

Introduction to Zinc

The benefits of
Zinc

14

Writing object-oriented Zinc applications offers us several benefits over
writing the same application procedurally. Some of those benefits are-

Consistency. Because of its object-oriented nature, Zinc eliminates develop­
ing and maintaining multiple versions of source code for multiple platforms.
With Zinc we can focus our efforts on developing, maintaining, and enhanc­
ing one set of source code, and let Zinc interact at a low level with the oper­
ating environment and display so we don't have to. Through abstraction,
Zinc insulates us from the complexities of the operating environment with­
out restricting our access to environment specific features, like Microsoft
Windows messages or the raw scan codes from the keyboard.

Ease-ai-use. Instead of generating source code which is difficult to optimize
and is not object oriented, Zinc Designer saves our user interface as plat­
form-independent resources.

Reusability. Not only are Zinc's base classes reusable, but any object or class
that we create can become a part of our tool kit. We save time by using
classes that have previously been tested and debugged. After all, "the line of
code we didn't have to write is the line of code that won't break."

Extensibility. Because Zinc is object oriented from the ground up, we benefit
from a powerful feature of OOP-inheritance. Rather than developing an
object from scratch, we can use Zinc's base classes with their existing mem­
ber functions and data to derive new classes. For example, we can create a
new input device like a digitizer by deriving our own class from Zinc's
device class. With inheritance we can stand on the shoulders of giants by
creating only the unique characteristics of the new class and reusing the
characteristics of the old class.

Maintenance. Object-oriented applications are much easier to maintain than
structured programs. With object-oriented encapsulation, C++ keeps rele­
vant data and functions together and allows us to modify an object without
affecting other parts of the application.

Flexibility. Wherever possible, Zinc has chosen to give the programmer
more flexibility, rather than more rules. This means that Zinc, like C++
itself, gives us more freedom to write code, and less worries about conform­
ing to arbitrary Zinc standards.

Getting Started with Zinc Programming

Zinc: an
appl ication
framework

Globalization. Zinc is the only environment where programmers can write
Zinc programs for all other popular languages and locales. Zinc uses the
IS08859-1 character set, which defines 8-bit characters, by default, but also
provides support for the Unicode 16-bit character set using the Unicode Key.
Zinc maps strings between these character sets and the native character set of
the target operating systems. Additionally, Zinc also allows programmers to
save language and locale information in a single file, and separate the infor­
mation for applications that use different languages in the same locale, and
different locales with the same language.

At the highest level of its architecture, Zinc consists of components that han­
dle specific tasks; these components make up what Zinc calls the Zinc
Application Framework, which is an infrastructure for helping us write
event-driven, object-oriented, global programs faster than we could other­
wise.

For example, one Zinc component is an infrastructure for retrieving events
and routing them to the part of our program that knows how to respond to
those events. Another component is an infrastructure for managing those
parts of our application that respond to events, as well as managing how win­
dows behave on screen and how they respond to user input.

Getting Started with Zinc Programming 15

Introduction to Zinc

This diagram displays the basic Zinc components and how they work
together in an infrastructure. Study this diagram until you know how to rec­
reate it without looking at the book, and you'll have a much easier time of
understanding Zinc as we continue with this discussion.

ULEVENT_MANAGER

Main event loop

~~

Support resources UI_WINDOW_MANAGER

B [storage I
B

Window 1
(current)

16

Here's a description of all these components and what they do:

Input devices. The keyboard, mouse, cursor, timer, or any other devices that
generate events.

Getting Started with Zinc Programming

Event Manager. Handles the flow of events and system messages throughout
the application. Certain operating systems sometimes will pass events to a
window object, bypassing the Event Manager.

Window Manager. Controls the behavior of windows. Certain operating sys­
tems sometimes will pass events to a window object, bypassing the Window
Manager.

Display. The display of the computer running the Zinc application. General­
ized by Zinc as an abstract class, from which programmers derive displays
specific to particular display libraries.

Help system. Displays help information at run time.

Error system. Displays error information when a user enters inappropriate
data.

Event mapping. Mapping of raw input, such as mouse clicks and keystrokes,
to logical system events such as sizing, moving, and redrawing.

Color mapping. Mapping of colors in a specific operating system to Zinc
colors.

Storage. Reads and writes objects to and from disk.

Geometry management. Allows the programmer to specify rules that dictate
how objects should be positioned and sized in specific situations.

Printer support. Allows the application to send output to a printer, either by
performing a screen dump or by using the display primitives to draw an
image.

Getting Started with Zinc Programming 17

Introduction to Zinc

18

The Event Manager

The Event Manager is Zinc's infrastructure for handling events and system
messages. It accepts events from common input devices such as the key­
board and mouse and it stores event information in the event queue. The
Event Manager also handles custom input devices we write ourselves like a
digitizer or a scanner device.

Main event loop

~~
"

UI_WINDOW_MANAGER

The event queue stores events until the event loop can pass the event to the
appropriate window or window object. The event queue can buffer as many
as 100 events by default, but this can be easily changed by the programmer.
The Event Manager deals with these events one at a time until the event
queue is empty. At run time, the event loop immediately takes events from
the queue and passes them to the appropriate window or window objects.

For example, in DOS, when the user presses Alt <F4>, the
DID_KEYBOARD device, which is a specific Zinc class that handles key­
board events, receives the keystroke event and puts it into the event queue.
As the event loop repeats its cycle, it passes the event to the Window Man­
ager, which then passes it to the appropriate window or window object. The
event loop repeats until the user gives the application the "quit" event.

Getting Started with Zinc Programming

UI_DEVICE and
abstract classes

We've skimmed over how the Event Manager works with input devices to
retrieve events. Now we'll explain how Zinc's devices work. Most compiler
libraries have a set of functions to get input information from the keyboard,
functions like getch(), getchar(). However, most of these libraries include
neither functions to handle information from other devices like the mouse,
nor functions to handle multiple input devices. Zinc provides seamless sup­
port for multiple, diverse devices, which is what makes Zinc such a flexible
event-driven environment.

Zinc handles keyboard and mouse input in classes called
UID_KEYBOARD and UID_MOUSE. By responding to events, which are
information that comes from input devices, a Zinc program can follow the
user's orders and call member functions, change data, even load new lan­
guages and locales "on the fly."

All input devices inherit from the base class UI_DEVICE, which is an
abstract class. An abstract class defines the basic behavior for a type of
object, but typically leaves specific implementation details to a derived
class. An instance of an abstract class cannot be created; a class must be
derived from it and an instance of that class created. If we were to create our
own input device, we would derive it from UI_DEVICE and add our own
functionality.

UID_TIMER programmer­
defined device
objects

Getting Started with Zinc Programming 19

Introduction to Zinc

Event mapping

Benefits of
logical event
mapping

20

Many user interface libraries convert raw input information to logical infor­
mation when the input device sends information. For example, a mouse
device may define the left mouse button click as the L_SELECT operation.
The programmer must then decipher the L_SELECT operation in the context
of his or her program's operations, a task that many programmers find cum­
bersome.

Zinc takes a different approach to event mapping. Zinc receives raw events
from input devices at run time and interprets them in the context of the
object and the type of operation being performed. This means the program­
mer doesn't have to write as much code, freeing him or her up to focus on
writing the program's core functionality.

Here's how Zinc's event mapping works. Imagine running a hypothetical
application that has a main window and a text field. Here's a description of
how Zinc would map the events generated in DOS when clicking the left
mouse button or pressing the <F2> key on the keyboard:

1. The input device, UID_KEYBOARD or UID_MOUSE, receives the
event and places the keyboard or mouse information in the event queue.

2. The Window Manager passes the event to the current window.

3. The window passes the event to the current window object.

4. The UIW_TEXT window object evaluates both the keyboard and mouse
events as the L_BEGIN_MARK operation.

5. Finally, the results of the L_BEGIN_MARK operation return to the win­
dow and then to the Window Manager.

Here's how logical event mapping benefits us. First, each object interprets
the event according to how the object operates, eliminating the need for us to
write code to tie events to window objects. The UIW_TEXT object views
both events as an L_BEGIN_MARK operation. However, if the mouse click
returned unprocessed to the Window Manager, it would interpret it as an
L_BEGIN_SELECT operation, while the <F2> key, which is unknown by the
Window Manager, would remain unprocessed.

Another benefit from logical event mapping gives us the ability to create
additional input devices that generate their own raw event information. This
way, we can define logical event mapping for Zinc but still receive all the
raw event information generated by the new input device. Still another bene­
fit is that we can easily redefine key mapping without changing Zinc's source
code, allowing us to customize our programs without interfering with how
Zinc operates.

Getting Started with Zinc Programming

"Top down" and
"bottom up"

But the most important benefit from logical event mapping is portability.
Because Zinc allows each object to behave differently, an object has the flex­
ibility to behave differently under different operating environments. We can
assign behavior on an object-by-object basis, a manageable task, in contrast
to forcing an object to reevaluate its behavior in contexts of different operat­
ing environments.

The Window Manager

So what happens after the Event Manager gathers events in the event queue?
How does the program know how to respond to those events? The answer
lies in the Window Manager, which determines how windows and window
objects behave.

Just as good tourists do what the Romans do when in Rome, Zinc ensures
that when we're writing programs that run under multiple operating environ­
ments, the programs behave as though they're native to that environment. In
fact, Zinc creates native applications for each environment it supports. One
reason Zinc does this is to ensure each program responds to events in the
manner native to that operating system, making programming simpler.

An operating environment with no native ability to handle events means that
if we want to write an event-driven program for that environment, we'll have
to bring our own event handling infrastructure with us. Zinc's native event
handling model is a "top-down" model because events trickle down from the
top, the main event loop, through the Window Manager and the current win­
dow, to the current window object. Each of these objects gets a chance to
determine if it should respond to the event; if an object doesn't or can't, it
merely passes it down the hierarchy.

Some operating environments that can handle events use what is called a
"bottom up" event handling model in which the event goes directly to the
lowest level current object. In this case, events follow a more complicated
route. Here's a brief description. When we write a Zinc program that runs
under Microsoft Windows, an example of an operating environment that
uses the bottom-up model of handling events, Zinc relies on the native meth­
ods of Windows for its windows and window objects to respond to system
events.

Getting Started with Zinc Programming 21

Window 1 gets
all mouse clicks here

Introduction to Zinc

Window
position and
priority

Native objects,
not emulated

22

For example, if a user clicks on an object, the operating system gets the
event and places it on its own event queue. When Zinc gets the event from
the event queue and starts to process it, instead of routing the native message
through the Zinc hierarchy, it sends it to the operating system and lets it pro­
cess it like any other native event. Because Windows is a bottom-up environ­
ment, the event goes directly to the window that was clicked on, the
"bottom" object. If that object does not handle the event, it may choose to
pass it back up the hierarchy so that a higher level object can process it­
hence the term "bottom up."

The Window Manager maintains a list of windows and minimized windows.
The Window Manager determines the position and priority of windows on
the screen and channels the events to the proper windows.

gets all keyboard info

/
•
I
I.._-.. --------_ ..

For example, if Window 1 overlapped Window 2, the Window Manager
would route all keyboard information to Window 1, since it is the topmost
window-the current window. In addition, any mouse events that overlapped
Window 1 or the area intersected by Window 1 and Window 2 will be sent to
Window 1 for processing. If a mouse event overlaps the area occupied only
by Window 2, however, that event would go to Window 2.

All windows and window objects derive either directly or indirectly from the
UI_WINDOW_OBJECT base class. This means that all Zinc windows and
window objects share certain behaviors and characteristics, notably the abil­
ity to appear native to the operating environment under which we compile
our programs.

Zinc doesn't emulate the look and feel of a native object, as do some other
application frameworks. Rather, Zinc uses native objects-no emulation
needed. Windows and window objects native to each environment are faster

Getting Started with Zinc Programming

because the Zinc program doesn't have to draw the objects or process system
events that the native object already processes. When we write programs in
Zinc for multiple environments, our programs are indistinguishable from
other programs written specifically for those environments.

If you've ever used a program that runs under multiple environments, and
that program uses windows and window objects different from those that
you're used to, you'll understand the frustration of users who feel that the
programmer didn't care enough to write that program specifically for them.
Because all windows and window objects are native, it's easier for us to
write applications.

The display

Since Zinc programs support multiple operating environments, Zinc has cre­
ated some infrastructure for making those programs easier to write in an
intuitive and simple way.

Zinc's infrastructure is an abstract class called VI_DISPLAY. We will never
use a display of the VI_DISPLAY class; rather, we will use a display
derived from VI_DISPLAY, but with behaviors defined for a specific type
of display, such as a Borland BGI display, an OS/2 display, or a NEXTSTEP
display. As an abstract class, VI_DISPLAY defines some functions that a
display object should perform, but it leaves how those functions should be
performed up to the specific displays.

This object-oriented approach to handling displays gives us an attractive
benefit. We can run our graphical application under all the environments
Zinc supports with one set of source code, merely deriving a display specific
to our own. Further, because all displays derive from VI_DISPLAY, they all
have the same interface, making it less work to understand how to access dif­
ferent displays.

Getting Started with Zinc Programming 23

Introduction to Zinc

Here's both a representation of the VI_DISPLAY class hierarchy and a list
of all the classes derived from the VI_DISPLAY base class:

UI DISPLAY

The help and error systems

UI_MACINTOSH_DISPLAY

UI_MSC_DISPLAY

UI_MSWINDOWS_DISPLAY

UI_NEXTSTEP_DISPLAY

UI_TEXT_DISPLAY

UI_WCC_D1SPLAY

programmer-defined display

24

Most robust applications have some sort of help system to give users infor­
mation about features while running the program. Zinc makes it easier for us
to write such a help system with a class called, appropriately,
VI_HELP_SYSTEM. This class uses Zinc windows to display help infor­
mation, ensuring that no matter which applications we want our program to
support, we'll only have to write the help information once.

Zinc initially does not make us include the VI_HELP_SYSTEM class; if
we don't want the help system class linked into our programs, we don't have
to use it. Zinc gives us the choice to decide whether or not we include a help
system, putting us in control of how we write our own applications.

Getting Started with Zinc Programming

As with help systems, most robust applications have some sort of error sys­
tem that tell us when we've made a mistake while running the program.
Zinc's error system is a class called, appropriately, UI_ERROR_SYSTEM.
This class uses Zinc windows to display error information. Again, as with
the help system, this means no matter which environments we want our pro­
gram to support, we'll only have to interface with one error system.

Zinc initially does not make us include the UI_ERROR_SYSTEM class; if
we don't want the error system modules linked into our programs, we don't
have to use it. Zinc gives us the choice to decide whether or not we include
an error system, putting us in control of how we write our own applications.

Storage and retrieval

We've seen how Zinc gives us quite a bit of infrastructure for handling much
of what goes on under the hood of an object-oriented, event-driven, graphi­
cal application. In addition to all the other infrastructure Zinc gives us, we
can use Zinc's ability to save and load data to and from disk. Zinc uses an
advanced method for saving and loading data to disk called persistent object
technology. Persistence isn't unique to Zinc, but Zinc's flavor of persistence
allows us to store and retrieve C++ objects to and from disk as platform­
independent resources through low-level file management routines as well
as persistent object technology.

Zinc uses its own storage and retrieval classes in Zinc Designer. When we
interactively create and modify windows and window objects using Zinc
Designer, we're using the same storage and retrieval classes we'd use without
Zinc Designer.

Getting Started with Zinc Programming 25

Introduction to Zinc

The obstacles to
reaching the
global market

ISO 8859-1 and
Unicode

Language and
locale

26

Globalization

We've covered almost all of Zinc's infrastructure for writing object-oriented,
event-driven, graphical applications. But we still need to discuss how Zinc
makes it easy for us to write applications that run in different languages and
display localized information about dates, money, and so forth.

True globalization is a complex process. If we were to write a program and
deploy it on desktops in North America, Europe, and the Pacific Rim, among
other things, we would have to enable our program to be compatible with
complex permutations of languages and locales, eight-and 16-bit character
sets, incompatible hardware and display technologies, and a plethora of
input methods.

Zinc takes more of the burden off our shoulders than any other application
framework. Using Zinc's optional Unicode key ensures that our programs
can detect their language and locales at run time, use both 8-and 16-bit fonts
as appropriate, run on nearly all popular hardware combinations, and work
with nearly all popular input methods.

We're not obligated to use Unicode to deploy our Zinc applications in most
areas of the world; Zinc programs automatically use the eight-bit ISO 8859­
1 character set, which contains most international characters. This means the
base Zinc Engine and Keys let us reach much of the world's software market
right out of the box. However, if we must deploy a Zinc application in a
nation that uses a 16-bit font, like most Asian countries, Zinc gives us the
option to use Unicode, an international standard for character sets. Unicode
contains every character from every modern language, giving Zinc a single,
comprehensive standard for displaying characters.

For example, if we wrote a Zinc application and intended to distribute the
executable in the United States and Japan, we'd translate the interface text
into Japanese, and then use Zinc's Unicode characters to represent the Japa­
nese text on our interface. We'd do the same thing if we wanted to translate
our interface to any other language-Unicode contains any characters we'd
need. Using Unicode to represent character sets makes programming easier
because we only need to deal with one standard.

Another reason running Zinc applications in different languages and locales
is easier is that Zinc gives us the ability to store different languages and
locales in the same interface file. If we write our Zinc application with

Getting Started with Zinc Programming

Delta storage

English and Japanese interfaces, we don't have to juggle two different inter­
face files; Zinc can store it for us in one place, giving us fewer components
to worry about.

Zinc keeps certain globalization information separate from interface text,
however; this information concerns the locale, or region of the world where
our program will run. Part of translating a program is displaying locale infor­
mation in a format that differs from country to country-date information,
decimals, and currency symbols in certain window objects, for example.
When we translate our program we merely specify to Zinc which locale to
use; it's as easy as that. In fact, Zinc automatically detects what language and
locale the environment is using, and will automatically adapt to the environ­
ment's needs.

One dramatic benefit of separating language from locale is our program's
ability to use multiple languages within one distribution region. For exam­
ple, if we wrote a Zinc application for both English-speaking and French­
speaking Canadians, we'd still have to translate our interface into English
and French, but we'd only have to specify one locale-Canada. Another ben­
efit of separating language from locale is our program's new ability to use
different data formatting in the same language. For example, if we wanted to
write an application for Spanish speakers in Mexico, we'd still have to spec­
ify Mexican locale information, but we could merely translate our interface
into Spanish. Again, Zinc gives us flexibility in how we write our programs,
leaving the design decisions up to us.

Another reason running Zinc applications in different languages and locales
is easier is that Zinc gives us the ability to store only the differences between
languages and locales in what Zinc calls delta storage. If we write our Zinc
application with English and Japanese interfaces, Zinc doesn't have to dupli­
cate both interfaces, translated text and all; Zinc merely stores the differ­
ences between the interfaces, decreasing our program size and increasing its
performance. Without delta storage, users would have to dedicate a larger
amount of disk space to their applications.

Getting Started with Zinc Programming 27

Introduction to Zinc

28

Geometry management

Programming graphical user interfaces opens up the problem of how inter­
face objects should relate to each other visually-this is called geometry
management. Though some user interface design tools provide some rudi­
mentary rules for how those relationships should work, Zinc takes geometry
management to the next level. Zinc's geometry management allows the pro­
grammer to specify sophisticated rules that dictate how objects should be
positioned and sized in specific screen resolutions, on every platform Zinc
supports.

Printer support

Part of the difficulty of writing crossplatform programs is determining how
to print. Zinc's printer object allows our programs to perform a screen dump,
or to print an image using Zinc's display primitives-bitmaps, ellipses, lines,
polygons, rectangles, as well as text. Zinc's printer support formats text
across an entire page, providing page breaks as necessary. Further, Zinc pro­
vides the ability to print an environment's default printer, as well as to a
PostScript file. And in DOS, which has no printer support, Zinc supports the
popular peL format.

Conclusion

Zinc allows us to write programs easily ported to other operating environ­
ments, languages, and locales. Zinc's library includes native interface objects
like windows, buttons, controls, lists, menus, tool bars, and strings in every
environment Zinc supports, ensuring high performance and acceptance by
users. Zinc includes infrastructure that handles events, manages windows,
displays help and error messages, and manages the visual relationships of
interface objects, leaving us to concentrate on writing programs rather than
reinventing the wheel. In the next chapter we're going to discuss Zinc's win­
dows and window objects.

Getting Started with Zinc Programming

Chapter 3 Wmdow Objects

In the last chapter, we discussed how Zinc helps programmers write
object-oriented applications, Zinc's underlying infrastructure, and the types
of Zinc objects we can use in our applications. In this chapter, we'll discuss
Zinc's window object classes. We'll discuss each window object, what it
does, and how it works.

Most Zinc windows share basic window objects; they have borders, titles,
maximize buttons, minimize buttons, and system buttons. In another exam­
ple of how Zinc helps us write efficient programs, Zinc doesn't make us
include these basic window objects with every Zinc window we instantiate.
Instead, we add to our windows the objects we want, instead of deleting
objects we may not want.

the different types of window objects

how window objects work

Getting Started with Zinc Programming 29

Window Objects

Basic window
objects

30

Zincswindow objects

Below is a typical Zinc window and its basic window objects, in addition to
the code we'd need to write to instantiate them under any operating environ­
ment Zinc supports. Notice it doesn't take much code to instantiate this win­
dow and its basic objects.

*window
+ new UIW BORDER
+ new UIW MAXIMIZE BUTTON- -
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON(SYF_GENERIC)
+ new UIW_TITLE(" Generic Window");

Although some operating environments don't have some of these basic win­
dow objects-for example, NEXTSTEP windows don't support maximize
buttons-we can use these and all other window objects for any operating
environment Zinc supports. If we use a maximize button in a Zinc program
that runs under NEXTSTEP, the NEXTSTEP window simply will not dis­
play the maximize button.

Here's a list of the window objects we used in the above code, and the
classes which they comprise.

Border. The UIW_BORDER class. In graphics mode, the border is a three­
dimensional shaded region drawn around the window; in text mode, the bor­
der is a shadow.

L
Maximize button. The UIW_MAXIMIZE_BUTTON class. Located on the
top right side of the window. Changes the size of its parent window to
occupy the entire screen display.

Minimize button. The UIW_MINIMIZE_BUTTON class. Usually located
at the top right corner of the window. When pushed, it reduces the window to
an icon.

Getting Started with Zinc Programming

System button. The UIW_SYSTEM_BUTTON class. When pushed, selects
window or system specific commands associated with the window object,
such as size, move, maximize, minimize, and close. If the system button has
options, a pop-up menu appears on the screen.

Title bar. The UIW_TITLE class. Displays text to identify the window.

~=I Generic Window

Buttons

Now that we've seen the different types of basic window objects we've used
in our code snippet, let's take a look at some more complicated window
objects we can use in our applications.

The simplest of the more complicated window objects is a button. A button
is a rectangular region of the screen that displays information and performs
an operation when pushed.

At its most general level, a basic button display information in the form of
text. But in Zinc, we can also use more complicated buttons-bitmapped
buttons, check boxes, and radio buttons, all of which look and act differently
from basic buttons. Though these more complicated buttons look and act dif­
ferently, they all derive from UIW_BUTTON and share the same behav­
ior-they display information and perform operations. In other words,
despite their more complicated behavior, they're all still buttons.

Below is an instance of UIW_BUTTON, the most basic button object in
Zinc's library.

I Save I
Bitmapped button. Displays a bitmap rather than, or in addition to, text. Bit­
mapped buttons used in text mode will not display graphics.

IEa Net d

Getting Started with Zinc Programming 31

Window Objects

Combo boxes

32

Check box. Check boxes in a window, a group, or a list box are members of
the same group. Multiple checkboxes from a group may be selected at any
time.

[2] XO NIXO FF

o Line Wrap

Radio button. Radio buttons in a window, a group, or a list box are members
of the same group. Only one radio button from a particular group may be
selected at any time.

() 9600

(~) 4800

UIW_GROUP is a Zinc class for grouping Zinc objects together on screen.
Once we instantiate a group object, we add to the object the desired radio
buttons and check boxes. Unless we're using only one radio button or check­
box, we use the UIW_GROUP class to group our window objects together.

Another more complicated Zinc window object is the combo box. Imple­
mented as the UIW_COMBO_BOX class, the combo box is a one-line
string field with a button object attached, that, when clicked, displays a list
of items from which we can choose.

Many operating environments include the combo box, the purpose of which
is to give the user multiple ways to select an option. When using a combo
box, a user can select options with the mouse, or he can type the option he
wants into the string field using the keyboard.

Here's how the combo box works. Consider a program that contains a list of
selections. When the user pushes the button attached to the string field, a list
that contains those selections appears on the screen. When the user clicks on
the selection he wants, the item is copied into the string field, and then the

Getting Started with Zinc Programming

Dates

list disappears. Alternatively, the user can type the selection into the string
field directly, bypassing the pop-up list and saving time. Here's a
UIW_COMBO_BOX object:

I_He_m_O llII

When we write Zinc programs that display date information or gather date
information from a user, we use objects of class UIW_DATE. These objects
display date information and allow the user to enter and modify date infor­
mation in different formats. Below is a UIW_DATE object:

108/08/1994

The default behavior of a Zinc date object is to display the date in a format
native to the language and locale under which the program's running. How­
ever, by passing to the constructor certain styles, we can override any lan­
guage or localization information.

Here's a list of all the different styles Zinc's date class supports, and a sample
of how dates look using these styles.

TABLE 2. Date styles

Long month

Dash

Day of
week.

European
format.

Japanese
format.

Displays the entire name of the
month as an ASCII string
value.

Separates each date variable
with a dash.

Displays the day-of-week as an
ASCII string value.

Displays the date in the Euro­
pean format of day/month/year.

Displays the date in the Japa­
nese format of year/month/day.

3-28-1990

12-04-1980

1-3-2003

3-28-1990

12-04-1980

1-3-2003

Monday May 4, 1992

Friday Dec. 5, 1980

Sunday Jan. 4, 2003

28/3/1990

4 December, 1980

3 Jan., 2003

1990/3/28

1980 December 4

2003 Jan. 3

Getting Started with Zinc Programming 33

Window Objects

TABLE 2. Date styles

Military for­
mat.

Short day of
week.

Short
month.

Short year.

Slash.

Uppercase.

v. S. fo rmat.

Zero fill.

Displays the date in the format
day month year, where month is
either a three-letter abbreviated
word, and, if the
DTF_SHORT_YEAR or
DTF_SHORT_MONTH flags
are set, year is a two-digit year
value. If those flags aren't set,
month is spelled out, and year
is a four-digit value. May be
overridden with other date
styles.

Displays shortened day-of­
week value with the date.

Displays a shortened alpha­
numeric month value with the
date.

Displays the year as a two-digit
value.

Separates each date value with
a slash.

Displays the date in uppercase
format.

Displays the date in the U.S.
format of, month/day/year,
regardless of the default coun­
try information.

Inserts zeroes before the year,
month, and day values when
their values are less than 10.

4 Jul 91

4 July 1991

Mon. May 4, 1992

Fri. Dec. 5, 1980

Sun. January 4, 2003

Mar. 28, 1990

Dec. 4, 1980

Jan. 3, 2003

3/28/90

December 4, '80

Jan. 3, '89

3/28/90

12/04/1900

1/3/2003

MARCH 28, 1990

DEC. 4, 1980

SATURDAY JAN 3, 2003

March 28, 1990

12/4/1980

Jan 3, 2003

March 08, 1990

12/04/1980

01/03/2003

34 Getting Started with Zinc Programming

Geometry
management

Icons

Lists

Though geometry management isn't a window object, it affects the way win­
dow objects display themselves in relationship to their parent windows and
other objects.

An object's geometry is its height, width, and location on its parent, and
geometry management is a feature that allows the location and size of other
objects to determine an object's geometry. For example, we can use Zinc's
geometry management to keep a button centered in its parent, regardless of
the parent's size.

An icon is a small window that displays a graphic image that allows the user
to recognize information quickly. Zinc's UIW_ICON class gives instances
of Zinc icons some standard behavior and properties. For example, when we
instantiate an icon of the UIW_ICON class, we can display it on a window
or attach it to the window as a the icon to which the window will minimize.

Below is an instance of the UIW_ICON class.

Lists provide a method of giving the user predefined, uneditable selections to
choose from. Because the user can choose only the selections that we give
him, we can ensure that our program can use those selections as valid input.

To give us a quick way to include lists in our Zinc applications, Zinc pro­
vides two list classes, UIW_VT_LIST and UIW_HZ_LIST, which display
selections either in a vertical list with one column, or a horizontal list with
one or more columns. The available selections are added to the lists as
instances of other Zinc objects, typically strings or buttons.

These are instances of vertical and horizontal list objects:

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7

Hem 1 Item 6
Item 2 Item 7
Item 3 Item 8
Item 4 Item 9
Hem 5 Hem 10

+1 j t+J

Getting Started with Zinc Programming 35

Window Objects

MOl windows

Menus

36

The Zinc windows we've seen so far display themselves on screen indepen­
dently of each other; they can overlap and cover each other, but so far they
can't display themselves inside of another window. However, the popular
Microsoft Windows environment specifies a type of window called the MDI
window, or multiple-document interface window, that displays itself inside
another window, and so Zinc created its own MDI window object that we
can use to display windows inside other windows.

However, unlike other window objects we've discussed in this chapter,
Zinc's MDI window doesn't derive from its own class. A Zinc MDI window
is a normal Zinc window, but with a flag that tell the window to become an
MDI window. To instantiate an MDI parent and child window with Zinc, we
instantiate two windows, the first an MDI parent, and the second an MDI
child. However, we create these windows with the flag
WOAF_MDI_OBJECT; then we simply attach the child to the parent with
the overloaded + operator.

Zinc MDI parent windows behave like any other Zinc window; they may be
maximized, minimized, moved, or sized within the MDI parent. The only
restriction of MDI child windows is that they cannot move outside of their
parent-the parent window clips the child at the inside of their parent's bor­
der. Below is an MDI parent window that contains an MDI child window
and several minimized MDI child windows.

=1 Personal Assistant I. ...J ...
File

""I Edit 1 ... 1'"

~ U ~ III. R~~ ··ICI

Phone Book Calendar Computer Calculator Disk

In describing Zinc's more complicated window objects, we've discussed how
some of Zinc's objects present selections to the user. Now we're going to dis­
cuss what Zinc lets us do with menus. What sets menus apart from lists and
combo boxes? The crucial difference between menus, lists, and combo bars
is that menus provide an intuitive way to find functions associated with a
specific window.

Getting Started with Zinc Programming

Notebook

Numbers

In Zinc, menus of four components: pull-down menus and items, and pop-up
menus and items. The pull-down menu is the first level in the selection pro­
cess. Below is a typical window with a pull-down menu object that stretches
across the window below the title bar.

The pull-down menu consists of a pull-down item labelled File. This pull­
down item lists the types of functions that the user can access while this win­
dow is active; because this pull-down item groups similar functions together,
the user can find a function without sorting through the pull-down items.
When the user clicks on a pull-down item, the pull-down menu displays a
pop-up menu that lists those similar functions as pop-up items. Then in only
a few seconds, with only one mouse click and some mouse movement, the
user can merely click on a pop-up item and access that function. Here is a
menu object:

The Zinc notebook class, UIW_NOTEBOOK, offers an intuitive interface
for navigating around groups of related objects. An instance of a notebook
object has tabs like a notebook in the real world-except the notebook object
"turns" to the page when the user clicks on it. Here's an instance of a note­
book object, taken from Zinc Designer:

General I Sub-Objects T Position T Geomelry I Advanced

I' ----- Support Features ----- ~
Title: I<untitled> I D Border ...l

Minlcon: I la D Maximize Button
INone) D Minimize Button

D System Button

II Name: I<UNTITLED> I D Geometry Management

Help: llNone) iii D Vertical Scroll-Bar

D Horizontal Scroll-Bar

----- Type -----

I OK I I I;.ancel I I I o Default,
Help f\ un, n,- +

Zinc gives us several classes for when we want our programs to display or
gather numeric information. Zinc supports three types of number fields with
the UIW_BIGNUM, UIW_INTEGER, and UIW_REAL classes.

Getting Started with Zinc Programming 37

Window Objects

The UIW_BIGNUM class displays numbers with up to 30 digits to the left
of the decimal point and eight digits to the right, by default. It also formats
numbers using percent signs, commas, and decimal places. The
UIW_INTEGER class displays numbers using the integer data type. The
UIW_REAL class displays real numbers and numbers in scientific notation
using double-precision, floating-point numbers. When an instance of the
UIW_REAL class displays numbers that are too long for the field, it uses
scientific notation so the user can view the entire number.

These are the display and entry styles we can use with the UIW_BIGNUM
class, in addition to examples of how these styles look.

TABLE 3. UIW_BIGNUM styles

Decimal.

Currency.

Credit.

Commas.

Percent.

Shows the number with a decimal point at a fixed
location.

Shows the number with the country-specific cur­
rency symbol.

Shows the number with the appropriate credit
symbols whenever the number is negative.

Shows the number with commas in the appropri­
ate positions.

Shows the number followed by a percentage
symbol.

10,000.00

43.45

$149.95.

$10,000.00

DM100

£195

(1000)

(23040)

(759)

$10,000.00

45,000

1,195

100%

4.5%

10%

Scroll bar

38

Scroll bars allow the user to scroll an object or its information using the
mouse. Both horizontal and vertical scroll bars can be created. A scroll bar is
created using the UIW_SCROLL_BAR class.

Getting Started with Zinc Programming

Slider

Spin control

Status bar

A slider is similar to a scroll bar, except that it doesn't control another object;
instead it's a standalone object. A slider lets us select a setting from a range
of values; it displays the current value in a range of values. A slider is cre­
ated using the UIW_SCROLL_BAR class by setting the SBF_SLIDER flag
in the constructor.

Many people who have worked with electronic equipment have used a dial
to quickly flip through a range of information. A dial gives us the ability to
test many values to find quickly the one we want without wasting a lot of
time. Zinc's spin control class, UIW_SPIN_CONTROL, is the window
object equivalent of a dial that lets users flip through a range of values to
find the one that works best.

A spin control instance displays the object's current value in a field, while
two buttons allow the user to increment or decrement that value. Our spin
control objects can use many Zinc window object classes, such as
UIW_BIGNUM, UIW_DATE, UIW_TIME, and so forth, to contain that
value. When instantiating a spin control object, we can tell the object to
increment or decrement its value by certain amounts that we specify.

Below is an instance of a Zinc spin control object:

Often, programs provide information about the status of some of its compo­
nents-for example, a program might display status information like the cur­
rent cursor location or the last key pressed. To make it easier for us to display
status information in our programs, Zinc gave us a class called
UIW_STATUS_BAR.

A Zinc status bar displays at the bottom of a window information about the
status of information in our program. To display this information we attach
time fields, date fields, number fields-anything that contains status infor­
mation-to the status bar, in the same way that we'd attach a window object
to a window.

Below is an instance of a Zinc status bar object:

_ IFirst name of customer

, Lad name of customer

Getting Started with Zinc Programming 39

Window Objects

Strin9 fields A string is a set of characters upon which we can perform certain operations.
In Zinc, a string field is an object that displays or accepts from a user as
input a string, with or without special formatting, that takes up only one line
in a field. We'll often manipulate strings in our programs, so using an exist­
ing Zinc class instead of writing our own will save us a lot of time and work.

Zinc provides two classes for working with string fields, UIW_STRING
and UIW_FORMATTED_STRING. The UIW_STRING class allows us
to display and to gather from the user string information, whereas the
UIW_FORMATTED_STRING class does the same thing except it speci­
fies a format for the data that is entered and displays the data in that format.
For example, we would create a UIW_STRING field to accept the user's
name. But we would create a UIW_FORMATTED_STRING if we wanted
to accept the user's telephone number in the format (801) 785-8900, with
parentheses and a dash in the appropriate places.

Below is an instance of a string field object.

IString

When we want to work with a Zinc string field, we pass to the string field object
special placeholder characters that represent how to format its encapsulated string
information. Though the UIW_STRING and UIW_FORMATTED_STRING
differ in how they format information, both classes share these placeholder charac­
ters along with common display styles. Here's a partial list of the display styles
these string field classes share:

TABLE 4. String-field display styles (partial list)

Lowercase

Uppercase

Spaces to
underscores

Password­
style

Left justify

Displays string in lowercase, no matter what its
original format.

Displays string in uppercase, no matter what its
original format.

Converts all spaces in the field to the underscore
character.

Doesn't echo characters as the user types in
information.

Displays string at the leftmost border of the
field.

40 Getting Started with Zinc Programming

TABLE 4. String-field display styles (partial list)

Right justify Displays string at the rightmost border of the
field.

Center justify Displays string in the center of the field.

Table

Text

A table is used to present lists of information to the user. Often the informa­
tion is comprised of multiple, related fields. The table can display headers to
describe the contents of each row and column of data.

Besides working with strings, manipulating text is one of the most common
things we'll do in writing graphical applications, so using Zinc's text class
will save us a lot of time and work. We can think of Zinc's text class as a
multiline string field class, except that we can attach scroll bars to our text
objects and that some of the custom display options can't be used with the
text class.

Zinc's text class, UIW_TEXT, allows us to display and to gather from the
user text information; with UIW_TEXT we can use many of the custom dis­
play styles of the UIW_STRING class, in addition to functionality specific
to a text object, such as cursor movements. For example, Zinc text objects
include the built-in capability for moving to the beginnings and ends of
words, lines, and pages, in addition to scrolling up and down pages and
wrapping words that extend beyond the boundaries.

Below is an instance of the UIW_TEXT class.

This is a text field,
used to display
multiple lines of text.

We should use UIW_TEXT objects for multiline text information, and use
the UIW_STRING objects for single line information.

Getting Started with Zinc Programming 41

Window Objects

Time

Additionally, when we instantiate a Zinc text object, we can use the
WOF_NON_FIELD_REGIONflag to cause our text to take up all the avail­
able space inside the window's border. For example, a help window always
contains the basic window objects we discussed at the beginning of this
chapter, as well as a UIW_TEXT field that dynamically fills the window.

We can use Zinc's time field objects whenever we want to display time infor­
mation or gather time information from the user. Time field objects, created
using the UIW_TIME class, display time information and allow the user to
enter and modify time information in many different international formats.

Below is an instance of the UIW_TIME class.

110:.(1 p.m.

The default behavior of a Zinc time field object is to display the time in a
format native to the language and locale under which the program's running.
However, with certain Zinc flags, we can override any language or localiza­
tion information.

Here are the different styles Zinc's time field class supports, and a sample of
how time styles look.

TABLE 5. Time styles

Colon sepa­
rator.

Hundredths.

Lowercase.

No separator.

Seconds.

Separates each time variable with a
colon.

Includes hundredths value in the time,
which otherwise is not included.

Shows time in a lower-case format.

Does not use separator characters to
delimit time values.

Includes seconds value in the time, which
by default is not included.

12:00

13:00:00

12:00 a.m.

1:05:00:00

23:15:05:99

7:45:59:00 a.m.

12:00 p.m.
1:00 a.m.
7:00 p.m.

120

130000

17500

8:09:30

14:00:00

3:24:59 p.m.

42 Getting Started with Zinc Programming

TABLE 5. Time styles

Twelve-hour
clock.

Twenty-four
hour clock.

Uppercase.

Zero jill.

Shows time using a 12-hour clock,
regardless of the default information.

Shows time using a 24-hour clock,
regardless of the default information.

Shows time in an upper-case format.

Fills hour, minute and second values with
zeroes when times values are less than
10.

12:00 a.m.
1:00 p.m.
5:00 p.m.

12:00

13:00

17:00

12:00 P.M.

1:00 A.M.

7:00 P.M.

01:10 a.m.
13:05:03

01:01 p.m.

Tool bars Tool bars display at the top of a window and are used to provide quick access
to commonly used features. Tool bars are useful because, like pull-down
menus, they provide an intuitive way to access functions associated with a
specific window; but in providing a single button for accessing that function,
they save mouse clicks and movements and therefore they save time and
work. In Zinc, tool bars of the UIW_TOOL_BAR class can contain Zinc
objects like icons, buttons with bitmaps, strings, combo boxes, and so forth.

Below is an instance of the UIW_TOOL_BAR class.

"""I Tool Bar Window
Defaults 108 August 1994 IIaHald

Other
programmer­
defined window
objects

Any window object that comprises and conforms to the operating protocol
defined by the UI_WINDOW_OBJECT base class.

Getting Started with Zinc Programming 43

Window Objects

Editing window
objects

44

Users can edit certain window objects, notably String, Formatted String,
Text, Number, Date, and Time. All editable window objects support the
following features:

TABLE 6. Features of editable window objects

Mark Marks part of the current field for cutting or copying. Marked
regions are shown as shaded regions.

Cut Cuts the marked contents of the current field and stores it in a
paste buffer. This data can later be pasted into any other field, as
long as the information is valid for that field type. For example,
the text "400" could be pasted into a numeric, string or text field,
but not in a check box.

Copy Copies the marked contents of the current field and stores it in a
paste buffer. This data can later be pasted into any other field, as
long as the information is valid for that field type.

Paste Copies the contents of the paste buffer into the current field. Data
can be pasted into any field, as long as the information is valid for
that field type.

Conclusion

In this chapter, we've learned about Zinc's window object classes, includ­
ing what they do and how they work. Besides borders, titles, maximize but­
tons, minimize buttons, and system buttons, which are the most basic
window objects in the Zinc library, we can use Zinc window object classes,
all operating-environment independent, for accomplishing many things.
These things include using dates and times with international formats, using
pull-down menus and tool bars, offering selections in vertical and horizontal
lists, displaying MOl windows, and manipulating strings and text.

In the next chapter we'll learn about issues of writing Zinc programs for mul­
tiple operating environments.

Getting Started with Zinc Programming

Chapter 4 Writing
Multiplatform
Programs

In the last chapter, we learned the contents of Zinc's window and window
object classes, including what each does and how it works. In this chapter,
we'll discuss how Zinc enables us to write programs for multiple operating
environments.

multiplatform application design

special considerations of each environment

Getting Started with Zinc Programming 45

Writing Multiplatform Programs

About multiplatfonn programming in Zinc

Single source

Engines and
keys

Look and feel

Libraries

46

Writing a Zinc program for multiple operating environments requires only
one set of source code. This is an important benefit of Zinc. Since we only
need to write one program for all our operating environments, we don't have
to juggle multiple sets of source code, making multiplatform development
easier.

Zinc consists of two parts, the Engine and the Key. With the Engine and the
appropriate key, we can compile DOS text, DOS graphics, Windows and
Windows NT, OS/2, Macintosh, Motif, Curses, and NEXTSTEP programs
from the same set of source code.

The Engine includes all of Zinc's code that is independent of specific operat­
ing environments. It also includes collateral such as this manual. The Key
includes precompiled libraries for our target operating environment, the
source code for the display class, and Zinc Designer.

An important Zinc goal is to allow our programs to look and feel native to
the environment for which they were compiled-for example, Zinc wants
our DOS applications to look and feel like DOS applications, our OS/2
applications to look and feel like OS/2 applications, and so forth. Zinc wrote
its libraries with windows and window objects for each operating environ­
ment it supports. This way, we don't have to know the low-level details of
each environment, but can still access them directly if we wish. This means
our Zinc programs will look and feel native to our target environments
because they are native-and users will accept our programs without a sec­
ond thought.

Zinc's source code for windows, window objects, and event handling for
each operating environment lives in certain library files, named for specific
things in each environment. For example, the DOS libraries are called
DOS_ZIL.LIB. This is the file we must link into the executable if we want
to write Zinc applications for DOS. For a complete list of all the library files
Zinc includes, consult "Appendix A, Compiler Considerations."

Getting Started with Zinc Programming

Compiler
options

Main()

Event handling

When writing a Zinc program for a target operating environment, pay special
attention to the following compiler options:

Application type. If your compiler can compile executables for multiple
environments, select the compiler option to create the application as an exe­
cutable for the target environment.

Memory model. If you are building an application for an operating system
that supports multiple memory models, you must use the large memory
model since this is the only model Zinc supports in those environments.

Ordinary C++ programs call main() as their first function, and Zinc pro­
grams are no different. However, in Zinc we can create the main() function
in two ways. The first is to create the Main() function in the Zinc class
VI_APPLICATION. This class provides our programs with a main() or
WinMain() function, depending on whether our target environment is DOS
or Windows; this class also initializes the display, Event Manager, and Win­
dow Manager. The second way is to write the main() function ourselves and
initialize the display, Event Manager, and Window Manager by hand.

Zinc designed the VI_APPLICATION class to handle much of the work of
setting up the infrastructure needed to run a Zinc program under multiple
operating environments. This infrastructure includes the display, the Event
Manager, and the Window Manager. We recommend that you use
VI_APPLICATION: :Main() wherever possible to set up that infrastruc­
ture.

In Zinc, each window object contains an Event() function that processes
messages as appropriate for the target operating environment. We can clas­
sify event handling into two types: top down and bottom up.

In top down environments, the Event Manager receives events from input
devices such as the keyboard and mouse, which it places in the event queue.
Then the main event loop takes each event from the queue and dispatches the
event to the Window Manager, which processes the event with its own
Event() function, and determines whether or not it can respond to the event.
If the Window Manager can, it performs an action and passes control back to
the main event loop; but if the Window Manager cannot, it passes the event
to the current window, which then processes the event with its own Event()
function. If it can, the window performs an action, but if it cannot, it passes it
to the current window object, which responds to the event.

Getting Started with Zinc Programming 47

Writing Multiplatform Programs

In bottom-up environments, the operating environment receives events from
input devices such as the keyboard and mouse, and processes the event in a
black box; inside the black box, the operating environment determines which
object the event is supposed to go to. When the system processes the event, it
dispatches the event to the current window object, which then determines
whether or not it can respond to the event. If the window object can, it per­
forms an action and returns control to the operating system; but if it cannot,
it may pass the event to its parent window for processing. Because the events
pass from the bottom, the current window object, to the top this type of event
handling is called bottom up.

When writing Zinc programs for different operating environments, be sure to
take into account how each environment processes events, because if we
write a Zinc program to deploy on DOS and Windows, each environment
handles events differently than the other. For example, if we write a Zinc
program for DOS that traps keyboard events, no matter what window object
is current, we might create a window that traps events since all events go
through the window. This does not hold true for Windows, so if we run our
program under Windows, the window will only trap messages if no other
window objects are current. Be sure to take into account event handling for
each target operating environment, so that you can write your programs to
handle events properly.

Executable
naming
conventions

48

So you can easily identify the environment for which you've compiled your
executable, Zinc maintains the following naming conventions for executa­
bles:

TABLE 7. Naming conventions for executables

Environment Convention

DOS hello1

DOS l6-bit hellol16

DOS 32-bit hellol32

Macintosh Hello!

NEXTSTEP hellol

OS/2 ohellol

OSFlMotif hellol

Windows 3.x whellol

Windows NT nhellol

Getting Started with Zinc Programming

Shipping
applications

Look and feel

DOS libraries

Compiler
options

Be sure to include the following run-time files when you ship your finished
applications:

· .DAT files (generated by Zinc Designer) required by your applications.

· I18N.DAT required by globalized applications.

· UNICODE.FNT required by double-byte (Unicode) applications run­
ning in DOS graphics mode.

YOU MAY NOT INCORPORATE INTO YOUR APPLICATION OR
DISTRIBUTE AS PART OF YOUR APPLICATION ANY PORTION
OF ZINC DESIGNER WITHOUT THE EXPRESS WRITTEN PER­
MISSION OF ZINC.

DOS

In DOS, a Zinc application follows IBM's SAAICUA specification for the
display and input devices. Using Zinc libraries, we can compile Zinc pro­
grams that run in DOS text and graphics, in both real and protected modes.

The DOS version of Zinc has been compiled into a single library file called
DOS_ZIL.LIB. When creating a DOS application, we must link
DOS_ZIL.LIB, and, if our program is designed to run in DOS graphics
mode, the appropriate graphics display class library as well, into the .EXE
file.

When creating a DOS application, select the following compiler options:

DOS program. If your compiler can compile executables for other environ­
ments in addition to DOS, select the compiler option to create the application
as a DOS executable program.

Large model. Set the compiler to the large memory model. Since Zinc only
uses the large memory model, we must ship all our applications with the
large memory model.

See "Appendix A-Compiler Considerations" for more information regard­
ing compiler-specific options.

Getting Started with Zinc Programming 49

Writing Multiplatform Programs

main()

Look and feel

Windows
libraries

Compiler
options

50

Ordinary C++ programs begin with calling main() as the first function.
Zinc-based applications for DOS are no different. We may create the maine)
function in our DOS programs by using the VI_APPLICATION class,
which contains a maine) function, and also initializes the display, Event
Manager, and Window Manager. Or we may create our own maine) function
and initialize the display, Event Manager, and Window Manager by hand.

Windows

In Windows, a Zinc application is an actual Windows application built with
actual Windows objects. When writing Zinc programs, we have full access
to the Windows API and Windows resources, including writing Win32 appli­
cations that run under the Win32s extensions for Windows 3.1 and Windows
NT.

The Windows version of Zinc has been compiled into a single library file
called WIN_ZIL.LIB, and a Windows NT library file called WNT­
_ZIL.LIB. When creating a Windows application, we must link WIN­
_ZIL.LIB, or, if we're compiling a program for Windows NT,
WNT_ZIL.LIB, into the .EXE file.

When creating a Windows application, be sure to select the following com­
piler options:

Windows application. If your compiler can compile applications for other
environments in addition to Windows or Windows NT, select the compiler
option to compile the program into a Windows or Windows NT executable.

Large model. Set the compiler option to compile using the large memory
model. Since Zinc ships only with the large memory model, all Windows
programs must also use the large memory model.

See "Appendix A-Compiler Considerations" for more information regard­
ing compiler-specific options.

Getting Started with Zinc Programming

WinMain() Ordinary C++ programs begin with maine) as the first function. However,
when writing Zinc programs for Windows or Windows NT, we create instead
a function called WinMain(), which Windows uses to begin executing an
application. Here is the definition of WinMain():

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCrndLine, int nCmdShow);

We can create the WinMain() function two ways. The first is to use
VI_APPLICATION: :Main(), which contains the WinMain() function,
and also initializes the display, Event Manager, and Window Manager. Zinc
recommends using VI_APPLICATION::Main() to promote portability
between operating environments and to ease program design.

The second way is to create the WinMain() function in our program and
initialize the display, Event Manager, and Window Manager by hand. The
following code sample demonstrates this technique:

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCrndLine, int nCmdShow)

II Initialize the environment dependent display.
UI_DISPLAY *display =

new UI_MSWINDOWS_DISPLAY(hInstance, hPrevInstance, nCmdShow);

II Create the event manager and add devices.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display);
*eventManager

+ new UID KEYBOARD
+ new UID MOUSE
+ new UID_CURSOR;

II Create the window manager.
UI_WINDOW_MANAGER *windowManager = new UI_WINDOW_MANAGER(

display, eventManager);

II Clean up.
delete windowManager;
delete eventManager;
delete display;

return (0);

Getting Started with Zinc Programming 51

Writing Multiplatform Programs

OS/2

Look and feel

OS/2 library

main()

Look and feel

Macintosh
libraries

In OS/2, a Zinc program is an actual OS/2 application built with actual OS/2
objects. When writing an OS/2 application, we have full access to the OS/2
API and OS/2 resources.

The OS/2 version of Zinc has been compiled into a single library file called
OS2_ZIL.LIB. When creating an OS/2 application, we must link
OS2_ZIL.LIB into the .EXE file.

Ordinary C++ programs begin with calling main() as the first function.
Zinc-based applications for OS/2 are no different. We may create the maine)
function in our OS/2 programs by using the VI_APPLICATION class,
which contains a maine) function, and also initializes the display, Event
Manager, and Window Manager. Or we may create our own maine) function
and initialize the display, Event Manager, and Window Manager by hand.

Macintosh

In Macintosh, a Zinc program is an actual Macintosh application built with
actual Macintosh objects. When writing a Macintosh application, we have
full access to the Macintosh Toolbox and Macintosh resources.

The Macintosh version of Zinc has been compiled into several library files,
listed in the table below.

TABLE 8. Macintosh library files

Library

Mac_ZILl

Mac_ZIL2

Mac_ZIL3

Mac_ZIL4

Mac_ZIL5

Function

Global code and international classes

Device classes

Window Manager and window object classes

UIW_WINDOW classes

Window support classes

52 Getting Started with Zinc Programming

TABLE 8. Macintosh library files

Library

Mac_ZIL6

Mac_ZIL7

Mac_ZIL8

Mac_ZIL9

Mac_ZILlO

UClumpTables

UCApplication

ZIL_Storage

Mac_ZIL.rsrc

Function

Date and time classes

String and text classes

Window-derived classes

Button-derived and table classes

Number classes

Global object table

UCAPPLICATION code

Storage code

Macintosh-specific code

main()

Look and feel

OSF/Motif
libraries

When creating a Macintosh application, we must link some or all of these
libraries into the .EXE file, depending on what functionality we need in our
application. For example, if we wanted to use the VI_APPLICATION class
in our Macintosh program, we would include the library VI_Application.

Ordinary C++ programs begin with calling main() as the first function.
Zinc-based applications for Macintosh are no different. We may create the
maine) function in our Macintosh programs by using the
VI_APPLICATION class, which contains a maine) function, and also ini­
tializes the display, Event Manager, and Window Manager. Or we may create
our own maine) function and initialize them by hand.

OSF/Motij

In OSF/Motif, a Zinc application is an actual OSF/Motif application built
with actual OSF/Motif widgets. When writing Zinc programs, we have full
access to the OSF/Motif toolkit, Xt Intrinsics, X Library, and all X resources.

The OSF/Motif version of Zinc has been compiled into a single library file
called lib_mtCziI.a. When writing an OSF/Motif program, we must link
lib_mtCzil.a, as well as libXm.{a, so, sl}, libXt, libXll, and the Xm
library, into the executable file. We may have to change some source code to

Getting Started with Zinc Programming 53

Writing Multiplatform Programs

use the OSFlMotif Key on hardware platforms not directly supported by
Zinc. See the README file for a list of currently supported hardware plat­
forms.

main()

Shipping
appl ications

Look and feel

Curses libraries

54

Ordinary C++ programs begin with calling main() as the first function.
Zinc-based applications for OSFlMotif are no different. However, the
main() function for OSFlMotif does require the standard argc and argv

parameters. When the OSFlMotif display is created, these parameters are
passed to the Xt Intrinsic initialization routines, which allow Zinc applica­
tions to use X command-line options, such as other displays, colors, fonts,
and so forth.

There are two ways to implement the maine) function in our OSFlMotif
programs. The first is to use the VI_APPLICATION class, which provides
the maine) function, and also initializes the display, Event Manager, and
Window Manager. Or we may create our own main() function and initialize
the display, Event Manager, and Window Manager by hand.

In addition to the files specified at the beginning of this chapter, be sure to
include this additional run-time file when you ship your finished Motif
applications:

. ZincApp.ad, which provides your Zinc applications with defaults.

Curses

In Curses, a Zinc application uses the Curses library to perform terminal
screen I/O.

The Unix Curses version of Zinc has been compiled into a single library file
called lib_crs_zil.a. When writing a Curses program, we must link
lib_crs_zil.a into the executable file. We may have to change some source
code to use the Curses Key on hardware platforms not directly supported by
Zinc. See the README file for a list of currently supported hardware plat­
forms.

Getting Started with Zinc Programming

main()

Look and feel

NEXTSTEP
library

main()

Event handling

Ordinary C++ programs begin with calling main() as the first function. Zinc
applications for Curses are no different.

There are two ways to implement the main() function in our Unix Curses
programs. The first is to use the VI_APPLICATION class, which provides
the main() function, and also initializes the display, Event Manager, and
Window Manager. Or we may create our own main() function and initialize
the display, Event Manager, and Window Manager by hand.

NEXTSTEP

In NEXTSTEP, a Zinc program is an actual NEXTSTEP application built
with actual NEXTSTEP objects. When writing a NEXTSTEP application,
we have full access to NEXTSTEP and its resources, with the exceptions of
drag and drop and object linking.

The NEXTSTEP version of Zinc has been compiled into a single library file
called lib_nxCzil.a. When creating a NEXTSTEP application, we must link
lib_nxCzil.a into the executable.

Ordinary C++ programs begin with calling main() as the first function.
Zinc-based applications for NEXTSTEP are no different. We may create the
main() function in our NEXTSTEP programs by using the
VI_APPLICATION class, which contains a main() function, and also ini­
tializes the display, Event Manager, and Window Manager. Or we may create
our own main() function and initialize the display, Event Manager, and
Window Manager by hand.

A Zinc window object running under NEXTSTEP contains an Event()
function that processes messages using NEXTSTEP responder methods such
as -mouseDown, as well as delegate methods for classes such as Window.

Getting Started with Zinc Programming 55

Writing Multiplatform Programs

Conclusion

In this chapter, we discussed how Zinc enables us to write programs for mul­
tiple operating environments. Since different operating environments require
different main() functions, writing programs for multiple operating environ­
ments can be eased with UI_APPLICATION::Main(). Each operating
environment requires that we use certain libraries, and that we take into
account differences in event handling between environments.

In the next chapter, we'll discuss event handling in greater detail and explain
more how top-down and bottom-up event handling works.

56 Getting Started with Zinc Programming

Chapter 5 Event Flow and
Mapping

Lthe last chapter, we discussed how Zinc enables us to write programs for
multiple operating environments. In this chapter, we'll discuss how events
flow through the system and how Zinc maps events. As stated earlier, Zinc
programs are event driven, which means that at their core they contain a
main event loop which spins in the background, catching events and dis­
patching them to the appropriate places. In Zinc, each window object con­
tains an Event() function that handles events as appropriate for the target
operating environment. And each environment may handle events in a top­
down or bottom-up manner. What follows is a discussion of how this works.

top-down and bottom-up event handling

event map tables

palette mapping

Getting Started with Zinc Programming 57

Event Flow and Mapping

58

Top down

In top down environments, the Event Manager receives events from input
devices such as the keyboard, mouse, and perhaps the operating environ­
ment, and places the events in the event queue. The main event loop takes
the event from the queue and sends it to the Window Manager, which pro­
cesses it with its own Event() function. Then the object determines whether
or not it can respond to the event. If it can, it peIfOlIDs an action and returns
control to the main event loop; but if it cannot, it passes the event to the cur­
rent window, which processes the event with its own Event() function. If it
can, the window peIforms an action, but if it cannot, it passes it to the current
window object, which responds to the event. This continues until an object
processes the event or when the event comes to an object with no children.

The following diagram represents event flow in a program running under a
top down environment. The program contains two windows; the current win­
dow contains a UIW_GROUP object, which in turn contains several check­
box objects, while the noncurrent window contains no objects. The Window
Manager, the current window, and the current object maintain three pointers,
first, current, and last, which are the first object, the current subobject, and
the last object below each.

Here's how events flow when the user presses a key.

1. First, the keyboard press sends an event to the Window Manager, which
tries to interpret the event and fails. It then passes the event to the current
window.

2. The window tries to interpret the event and fails. It then passes the event
to the UIW_GROUP object since it is the current object on the window.

3. The UIW_GROUP object tries to interpret the event and fails. It then
passes the event to the checkbox object that is current in the group.

4. The checkbox tries to interpret the event by looking in the event map
table. If the event maps into an event it can process, it does so.

5. Then the subobject returns a control code (not shown) indicating whether
or not it processed the event.

Getting Started with Zinc Programming

UI_WINDOW_MANAGER • The Window Manager tries to inter­
pret the keyboard event.

m A
< m
m -<z OJ
--j 0

l>
JJ The appropriate window tries to

interpret the keyboard event.

Window 1
(current)

m
<m
z
--j

Subobject 1

Window 2
(noncurrent)

The appropriate object tries to inter­
pret the keyboard event.

The appropriate subobject inter­
prets the keyboard event.

Getting Started with Zinc Programming 59

Event Flow and Mapping

60

Bottom up

In bottom up environments, although the operating environment processes
events from input devices such as the keyboard and mouse that are related to
the system, the Event Manager still receives the input first, turns it into a
Zinc event, and hands it to the Window Manager.

If the event isn't a native event, the event will flow from top to bottom as it
does in a top down environment. But when it is a native event, the Window
Manager hands the event to the system. When the system processes the
event, it sends it to the current low level window object, which determines
whether it will respond to the event. If it responds to the event, it returns con­
trol to the operating system; but if it doesn't, it may pass the event to its par­
ent window, which then may process the event with its own Event()
function. Because the events pass from the current window object on the bot­
tom, to the top, this type of event handling is called bottom up.

The following diagram represents event flow in a program running under a
bottom up environment. Again, the program contains two windows; the cur­
rent window contains a UIW_GROUP object, which in turn contains sev­
eral checkbox objects, while the noncurrent window contains no objects.

Here's how events flow when the user presses a key.

1. First, the key press causes the Event Manager to send an event to the
Window Manager, which tries to interpret the event and fails. It then
passes the event to the operating environment.

2. The operating environment, in a black box, sends the object to the current
subobject.

3. The checkbox tries to interpret the event by looking in the event map
table. If the event maps into an event it can process, it does so.

Getting Started with Zinc Programming

-:::;'
!e.

UI_WINDOW_MANAGER

The Window Manager tries to interpret the keyboard event
and sends it to the operating environment, a "black box."

Window 1
(current)

Object 1

(Subobjecl 1r

Window 2
(noncurrent)

• The "black box" dispatches the
event to the current subobject.

• The current subobject interprets the event.

Getting Started with Zinc Programming 61

Event Flow and Mapping

62

When writing Zinc programs for different operating environments, be sure to
take into account how each environment processes events, because if we
write a Zinc program to deploy on DOS and Windows, both environments
handle events different from each other. For example, if we write a Zinc pro­
gram for DOS that traps keyboard events, no matter what window object is
current, the window itself gets events. This does not hold true for Windows,
so if we run our program under Windows, the window will only process
events if the operating environment thinks it ought to get them. Be sure to
take into account event handling for each target operating environment, so
that you can wrtite your programs to handle events properly.

Event processing

Here's how events get processed in Zinc. When either the Window Manager
or the black box dispatches an event to an object, C++ ensures that it gets
sent to the most derived object. Notice in the following diagram that the
most derived object, the one that we derive from an existing Zinc object,
receives the event first. If our object's Event() function can't process the
event, it should send it to the next most derived object, and so on. The bene-

Getting Started with Zinc Programming

fit is that we can extend Zinc-because we know that our object can receive
an event before any other predefined object, we can add custom functionality
to our objects that override Zinc functionality.

os

UI_WINDOW_OBJECT

UIW_WINDOW

UIW_VT_LIST

Our custom object (most derived)

Here's what should happens when derived objects process events:

1. Our custom object receives an event for processing.

2. If the most derived object, our custom object, cannot process that event,
it passes it up to the next most derived object, UIW_VT_LIST, for pro­
cessing.

3. If UIW_VT_LIST cannot process that event, it passes it up to the next
most derived object, UIW_WINDOW, for processing.

4. If UIW_WINDOW cannot process that event, it passes it up to the next
most derived object, UI_WINDOW_OBJECT, for processing.

5. If UI_WINDOW_OBJECT cannot process that event, it passes it up to
the operating system for processing (if applicable), or returns a control
code indicating it could not process the event.

Getting Started with Zinc Programming 63

Event Flow and Mapping

64

Event map table

In Zinc, event map tables list important events that input devices can send,
and how Zinc objects interpret those events. Zinc's event mapping conforms
to the key assignments of each operating environment's specifications. For
example, a Zinc application running under Windows would conform to
IBM's Common User Access Panel Design and User Interaction specifica­
tion. And a Zinc application running under NEXTSTEP would conform to
NeXT's user interface guidelines.

Here's how map tables work. The following portions of eventMapTable,
which is a static table accessed by UI_WINDOW_OBJECT::eventMapT­
able, define how a window object interprets events generated by the key­
board and mouse:

static UI_EVENT_MAP eventMapTable[] =

{

ID_WINDOW_OBJECT,L_NEXT,E_KEY,TAB },
ID_WINDOW_OBJECT,L_PREVIOUS,E_KEY,BACKTAB },
ID_WINDOW_OBJECT,L_SELECT,E_KEY,ENTER },

II End of array.
{ ID_END, 0, 0, a

} ;

An event map table entry is composed of the identification for the type of
object, the logical event, the device type that produced the message, and the
raw scan code of the event. In our example, a window object will process an
L_NEXT message when a user presses the <Tab> key.

Not only does Zinc's event mapping allow different devices to generate the
same logical message, but it also allows different objects to interpret the
same event in different ways. This is a strong benefit to programming in
Zinc. Because each object can respond differently to events, we don't have
to write code to decipher how each object should behave in context of our
program; we need only tell the object to perform a method appropriate to
how it operates.

For example, the following portion of an event map table defines how a
string object will interpret events.

ID_STRING,L_BEGIN_MARK,E_MOUSE,M_LEFT I M_LEFT_CHANGE},
ID_STRING,L_CONTlNUE_MARK,E_MOUSE,M_LEFT},
ID_STRING,L_END_MARK,E_MOUSE,M_LEFT_CHANGE},

Getting Started with Zinc Programming

Event mapping
algorithm

Palette mapping

A string interprets a click on the left mouse button as a mark operation
instead of a select operation. If a string object couldn't respond differently, it
would have to override the select operation in order to set the mark opera­
tion, causing us to write more code than necessary.

When the object receives an event, the mapping algorithm walks through the
map table and searches for the best match according to the object's and the
device's identification, the raw scan code, and the input modifier, usually the
keyboard shift state, associated with the event. For example, if the user
presses the left mouse button while the cursor is positioned in a string object,
the application will scan the map table until the best possible match is found,
shown below:

As a result, the mark operation will begin within the string object. When the
application interprets the L_END_MARK logical message, the mark opera­
tion will be finished.

Zinc uses palette mapping to provide a way for objects to paint themselves
when in different states. Palette mapping takes the state of an object and
gives it a palette to use to paint itself.

VI_PALETTE, the Zinc palette class, is the set of colors an object uses
when drawing itself; the colors it uses depends on the mode of the display,
such as color text mode, color graphics mode, mono text mode, mono graph­
ics mode, and so forth. An object gets a palette when it draws itself. We can
describe a palette in terms of its graphics mode and foreground and back­
ground color; for example, a palette may contain a red foreground and a blue
background for color graphics mode.

VI_PALETTE_MAP contains an object ID, such as ID_WINDOW_OBJ­
ECT, ID_WINDOW, or ID_LIST_ITEM; a logicalPalette, such as PM_ACT­
IVE, PM_SELECTED, PM_CURRENT, PM_ANY; and the corresponding
VI_PALETTE.

A palette map table is a lookup table that is an array of VI_PAL­
ETTE_MAPs.

Getting Started with Zinc Programming 65

Event Flow and Mapping

66

When a WOS_OWNERDRAW object should draw itself, Zinc calls its Draw­
Item() function. The control code, passed to the DrawItem() function, tells
the object why it should draw-for example, it may receive an S_CURRENT
control code. The object uses the control code when calling the Zinc Logi­
calPalette() function, which will look at the control code and the current
state of the object in woStatus, such as active, current, inactive, selected, and
so forth. LogicalPalette() will use the control code and current status to
come up with a logical palette, determined by GRing together PM_ flags.

LogicalPalette() will call VI_PALETTE_MAP::MapPalette(), passing
in the object's palette map table, the LogicalPalette determined above, and
five IDs, which are found in window/D. MapPalette() searches the palette
map table, comparing IDs and the logical palette to find the appropriate
VI_PALETTE. This VI_PALETTE is used when calling the display's
drawing functions.

Most graphics libraries have special ways of using colors, and to make it eas­
ier for us to let us use the colors we want in our Zinc programs, Zinc pro­
vided concepts called palettes, palette maps, and palette map tables. For
example, the VI_BGI_DISPLAY has a protected member function called
MapColor() that maps Zinc VI_PALETTE structure information to colors
understood by the Borland graphics library. Below is how this works:

1. Call the MapColor() function with two parameters, palette, a pointer to
a VI_PALETTE class, and foreground, which tells us whether we want
the foreground or background color.

COLOR UI_BGI_DISPLAY::MapColor(const UI_PALETTE *palette,
int foreground)

{

2. Next, we determine the type of display our program is running in, and get
the appropriate number of colors from the palette.

II Match the color request based on the type of display.
if (maxColors == 2)

return (foreground? palette->bwForeground
palette->bwBackground);

else if (maxColors < 16)
return (foreground? palette->grayScaleForeground

palette->grayScaleBackground);
return (foreground? palette->colorForeground

palette->colorBackground);

Getting Started with Zinc Programming

Whenever a window object draws information on the screen, it must map the
map logical values into Zinc values. To do so, it uses
UI_WINDOW_OBJECT::MapPalette() to get the palette from the sys­
tem. MapPalette() then uses a specified mapTable to match the Zinc value
to a system palette. Zinc uses three predefined map tables for palettes called
normalPaletteMapTable, helpPaletteMapTable, and errorPaletteMapTable.
All window objects use normalPaletteMapTable, the VI_HELP_SYSTEM
window uses helpPaletteMapTable, and the UI_ERROR_SYSTEM win­
dow uses the errorPaletteMapTable.

Conclusion

In this chapter, we've discussed how events flow through the system, and
how Zinc maps events and palettes. In the next chapter, we'll learn about
Zinc's library classes, and how they provide a kind of periodic table of
objects with which we can build new objects.

Getting Started with Zinc Programming 67

Event Flow and Mapping

68 Getting Started with Zinc Programming

Chapter 6 Library Classes

1 the last chapter, we discussed how events flow and how Zinc maps
events. In this chapter, we'll learn about what Zinc calls its library classes.
Library classes are the molecules and elements that make up Zinc programs.

Some of Zinc's library classes contain properties and behaviors that are so
basic they cannot be reduced-these are the Zinc elements. Others, however,
are comprised of other Zinc library classes-these are the Zinc molecules
that combine Zinc elements to create entirely new properties and behaviors.
For example, lists and list elements are the smallest units of Zinc that contain

base classes

region lists

display classes

Getting Started with Zinc Programming 69

Library Classes

its own properties and behaviors, whereas the Event Manager and Window
Manager consist of lists and list elements. Here's a table that describes
Zinc's library classes.

TABLE 9. Zinc's library classes

Base classes

Event Manager

Window Manager

Help system

Error system

Screen display

Lists and list elements. Most Zinc components are made up
of these base classes

Input devices, the Event Manager, and their support classes

All Zinc window objects, the Window Manager, and their
support classes

Context-sensitive help displayed in a Zinc window

Run-time errors displayed in a modal dialog box

Low-level screen functions, which include managing
screen regions

70

Base classes-Zincsperiodic table

Zinc contains two base classes: VI_ELEMENT and VI_LIST. Zinc calls
VI_ELEMENT and VI_LIST base classes because they do not derive from
other classes. In fact, we can think of Zinc's base classes like a periodic table
of objects that consists of two elements. Below is the definition of these two
classes and their public and protected members:

class EXPORT DI ELEMENT

friend class EXPORT DI_LIST;
public:

virtual -UI_ELEMENT(void);
int ListIndex(void);
DI_ELEMENT *Next(void);
DI_ELEMENT *Previous(void);

protected:
DI_ELEMENT *previous, *next;
UI_ELEMENT (void) ;

} ;

class EXPORT DI LIST

Getting Started with Zinc Programming

friend class EXPORT UI_LIST_BLOCK;
public:

int (*compareFunction) (void *elementl, void *element2);
UI_LIST(int (*_compareFunction) (void *elementl, void

*element2) = NULL);
virtual -UI_LIST(void);
UI_ELEMENT *Add(UI_ELEMENT *newElement);
UI_ELEMENT *Add(UI_ELEMENT *element, UI ELEMENT *newElement);
int Count (void) ;
UI_ELEMENT *Current(void);
virtual void Destroy(void);
UI_ELEMENT *First(void);
UI_ELEMENT *Get(int index);
UI_ELEMENI' *Get(int (*findFunction) (void *elEm8l1t1, void *matchData) ,

void *matchData);
int Index(UI_ELEMENT const *element);
UI_ELEMENT *Last(void);
void SetCurrent(UI_ELEMENT *element);
void Sort (void) ;
UI_ELEMENT *Subtract(UI_ELEMENT *element);
UI_LIST &operator+(UI_ELEMENT *element);
UI_LIST &operator-(UI_ELEMENT *element);

protected:
UI_ELEMENT *first, *last, *current;

} ;

The Event Manager has two main classes: VI_DEVICE and VI_EVENT_­
MANAGER. The VI_DEVICE class derives from VI_ELEMENT and is
used to define the operation of input devices. Its derivation from VI_ELE­
MENT allows other classes to be grouped together, in the form of a list.
Since the VI_EVENT_MANAGER class derives from VI_LIST, it is able
to maintain a list of all attached devices. This derivation also allows the
Event Manager to control the operation and flow of event information from
the input devices.

The Window Manager has three major classes: VI_WINDOW_OBJECT,
VI_WINDOW_MANAGER, and VIW_WINDOW. The VI_WINDOW­
_OBJECT class derives from VI_ELEMENT, and serves as the base class
for all window objects, such as buttons, icons, and menu items. Because
VI_WINDOW_OBJECT derives from VI_ELEMENT, we can combine
window objects inside a parent window. Similarly, because VI_WIN­
DOW_MANAGER derives from VIW_WINDOW, it can group window
objects in a list.

Getting Started with Zinc Programming 71

Library Classes

UI ELEMENT

UI LIST

72

The UIW_WINDOW class is unique because it acts like an element when
attached to the Window Manager, and it acts like a list because it contains
window objects such as a border, title bar, and so forth. Appropriately, this
class derives from both the UI_ELEMENT base class through the
UI_WINDOW_OBJECT class and the UI_LIST base class.

We've been discussing two base classes, UI_ELEMENT and UI_LIST.
Technically, however, Zinc has a third base class called UI_DISPLAY,
which provides to all of Zinc's displays some basic behaviors and draw func­
tions. But we will use this class only when deriving a display class, so we'll
spend most of our time talking about the other base classes.

The UI_ELEMENT class defines an element by what it can do, which is
point to other elements directly before or after it in a list. It's meaningless to
create an instance of UI_ELEMENT, because the class merely describes the
basics of what elements can do, rather than describing more specialized
things, such as collecting input from users or displaying themselves on
screen. These things are left to classes such as input devices and window
objects that derive from UI_ELEMENT and thereby inherit the basic
behavior of elements and then add more specialized behavior. We'll explain
more of what's going on under the hood in the next chapter when we discuss
abstract classes.

The UI_ELEMENT class has two member functions, Previous() and
Next(), which allow an element to point to the element directly before or
after it in a list. Here's an example of how this works. The following code
adds three input devices, a keyboard, mouse, and cursor to the Event Man­
ager object, which we'll discuss later in this chapter.

eventManager->Add(keyboard);
eventManager->Add(rnouse);
eventManager->Add(cursor);

If the mouse were the current object, Previous() would return a pointer to
the keyboard, whereas a call to Next() would return a pointer to the cursor.

The UI_LIST class defines a list by what it can do, which is contain ele­
ments. While you can create an instance of UI_LIST, it usually doesn't
make much sense because the class merely describes the basics of what lists
can do, rather than the more specialized things like receiving and responding
to input devices or display a collection of windows and window objects on

Getting Started with Zinc Programming

Input devices

the screen. These things are left to objects such as the Event Manager and the
Window Manager that derive from UI_LIST, which inherit the basic behav­
ior of lists and then add some more specialized behavior.

The UI_LIST class has four member functions, First(), Last(), Add(), and
Subtract(), as well as + and -, which are overloaded operators that allow us
to add and delete elements to and from the list without using the correspond­
ing functions. Predictably, the First() and Last() member functions retrieve
the first or last element in the list. For example, First() would return a
pointer to the keyboard object, and Last() would return a pointer to the cur­
sor.

The Add() and Subtract() member functions, along with the + and - oper­
ator overloads, add or subtract list elements to and from the list object. For
example, the two code samples below are equivalent.

eventManager->Add(keyboard);
eventManager->Add(mouse);
eventManager->Add(cursor);

or

*eventManager
+ keyboard
+ mouse
+ cursor;

Event Manager

We introduced the Event Manager in "Introduction to Zinc" on page 11,
where we described it as Zinc's infrastructure for handling events and system
messages. Now we can elaborate by saying UI_EVENT_MANAGER, the
main class of the Event Manager portion of Zinc, uses the list functions of
UI_LIST and adds a queueBlock member variable to store events.

The Event Manager's UI_LIST contains input devices, such as keyboards
and mouses, that collect events as the user works with the application. Zinc
defines how these input devices work in classes called UID_KEYBOARD
and UID_MOUSE, which derive from UI_DEVICE. UI_DEVICE is an
abstract class that defines the structure of input devices and how they work,

Getting Started with Zinc Programming 73

Library Classes

The event queue

74

but which must be derived from. The UI_DEVICE class derives from the
UI_ELEMENT, which allows us to add input devices to the Event Man­
ager's list of input devices, and contains virtual member functions not
present in UI_ELEMENT called Event() and pone), which control how
input devices operate. These functions also allow input devices to place
events in the event queue, which we'll discuss later in this section.

We can use the Event() function to send a message to an input device to
change its behavior. Zinc applications pass this message in event. type. Here
are some sample messages we can send to input devices:

D_OFF. Tells the device to stop placing events into the Event Manager's
event queue. It will send no further input information until a D_ON message
is received.

D_POSITION. Changes the position of a device. For example, if the device
receiving this message were a cursor, the position of the blinking cursor
would be changed to the screen position given by event.position.

DM_WAIT. Changes the mouse pointer to an hourglass. The mouse is the
only input device that uses this message.

Where the Event() function controls how input devices operate, the pone)
function allows each device to place events in the Event Manager's event
queue. For example, the UID_KEYBOARD class uses the pone) function
to check if the user has pressed any keys. If so, the pone)function places the
resulting event in the Event Manager's event queue.

Just as the Event Manager derives from UI_LIST and adds additional
behavior, so does the event queue, a member variable of type
UI_QUEUE_BLOCK, which we'll discuss in just a moment. The queue­
Block member variable stores all unprocessed events.

Three major classes make up the event queue: the UI_EVENT structure, the
UI_QUEUE_ELEMENT class, and the UI_QUEUE_BLOCK class.

Getting Started with Zinc Programming

Window objects

The UI_EVENT structure contains the event, the type of which depends on
the type of class that generated the message. For example,
UID_KEYBOARD sets the following event information:

• _event. type always contains the value E_KEY. This lets all receiving
objects know that event. key contains any related keyboard information.

· _event. rawCode contains the keyboard's raw scan code.

• _event. modifiers is a flag field indicating the keyboard shift states.

• _event. key contains other keyboard information, such as the shift state
and the key's value.

The UI_QUEUE_ELEMENT and UI_QUEUE_BLOCK classes store
event information in a list block. The UI_QUEUE_ELEMENT class
derives from UI_ELEMENT and contains the event information.

The UI_QUEUE_BLOCK class derives from UI_LIST_BLOCK and
stores UI_QUEUE_ELEMENT objects. Though it's natural for Zinc to use
its own UI_LIST_BLOCK class to build the UI_QUEUE_BLOCK class,
Zinc also gains in performance through using these classes, which allow the
event queue to buffer event information before the application processes it.
By buffering events in a list block, Zinc doesn't allocate and destroy mem­
ory every time it receives or dispatches a message, an slow process, thereby
increasing performance.

Window Manager

The class UI_WINDOW_MANAGER controls the flow of events to all
windows and manages the front to back ordering of windows (called the z­
order). UI_WINDOW_MANAGER derives from UIW_WINDOW and
uses a virtual Event() member function to process messages it receives from
the main event loop.

The UIW_WINDOW part of the Window Manager contains a list of active
windows, and each window contains a list of its window objects. Since win­
dow objects derive from UI_ELEMENT, they know how to belong to the
list that the Window Manager maintains.

Getting Started with Zinc Programming 75

Library Classes

Event member
functions

76

Each Zinc window object derives from the UI_WINDOW_OBJECT base
class, which defines the structure and behavior of window objects.
UI_WINDOW_OBJECT derives from the UI_ELEMENT base class,
adding the necessary functionality to display itself and to process events in
an Event() virtual member function.

The Event() function processes logical or system events sent to a window
object. Here are some sample messages that window objects can interpret:

S_CREATE. Tells the window object to initialize its internal information,
such as its size and position within a parent window. The S_CREATE mes­
sage is sent to all of the window objects associated with a window whenever
the window is attached to the Window Manager.

S_DISPLAY_ACTIVE. Tells the window object to display itself in its active
state. The complementary message is S_DISPLAY_INACTIVE.

L_BEGIN_SELECT. Begins the selection process of a window or window
object. For example, if the user presses the left mouse button, the selection of
an object is initiated. When the mouse button is released, an
L_END_SELECT is received, and the selection process is completed.

The UI_WINDOW_MANAGER::Event() member function sends events it
receives from the main event loop to windows. For example, if an applica­
tion contained two overlapping windows, the Window Manager would auto­
matically route normal event information to the top window, but pass a
mouse click to the bottom window if the user clicked the mouse on that win­
dow.

The Window Manager and window objects understand three types of events:

Logical Events. Logical events are the logical interpretation of a raw event
that was generated by an input device. For example, a window would inter­
pret a mouse click as the logical event L_BEGIN_SELECT, or "begin select­
ing something"; but a text field object would interpret the same mouse click
as L_BEGIN_MARK, or "begin marking text." Logical events have an L_
prefixand generally should not be sent to an object. They are intended to be
interpreted.

Getting Started with Zinc Programming

System Events. The Window Manager, or window objects as the result of a
previous event, generate system events. For example, when a window is
added to the Window Manager, the Window Manager sends the window an
S_CREATE event. System events have an S_ prefix and are intended to be
generated and sent directly to objects or placed directly on the event queue.

Environment-specific. The operating system or host environment in which
the Zinc application is running generates these events. For example, when
running under Windows, Zinc objects understand and interpret WM_ mes­
sages such as WM_PAINT, or many other Windows messages. The same
holds true for Zinc objects running under other operating environments as
well.

Help system

The help system, designed to provide help for both general and specific fea­
tures of an application, contains one important virtual function,
DisplayHelp():

class EXPORT UI_HELP_SYSTEM
{

public:

virtual void DisplayHelp(UI_WINDOW_MANAGER *windowManager,
UI_HELP_CONTEXT helpContext ~ NO_HELP_CONTEXT);

The help window system's DisplayHelp() member function provides con­
text sensitive help information during an application. Each help context con­
tains a title, shown on the title bar, and a help message, shown in the text
portion of the window. The helpContext argument is used as an identifier to a
unique title/message pair.

Getting Started with Zinc Programming 77

Library Classes

78

Error system

The error system brings up a window to display error information whenever
an error is detected. The error system inherits one important virtual function,
ReportError().

The UI_ERROR_SYSTEM class uses a UIW_WINDOW object or an
environment specific error handling mechanism to present error information
to the screen.

The error system's ReportError() member function is used to display infor­
mation about the type of error encountered during an application. This func­
tion takes printf() style arguments that are used in the text portion of the
window.

Screen displays

Display classes provide common display primitive functionality to the Zinc
programmer but handle the output using the low-level graphics or text func­
tions. Each display class derives from the UI_DISPLAY base class. Zinc
defines the following display classes:

UI_BGI_DISPLAY. A graphics display that uses the Borland BGI graphics
routines to display information to the screen. The UI_BGI_DISPLAY class
provides support for CGA, EGA, VGA, and Hercules monochrome display
adapters running in graphics mode.

VI_GRAPHICS_DISPLAY. A DOS graphics display that uses the GFX
graphics libraries by C-Source, included with Zinc, to display information to
the screen. VI_GRAPHICS_DISPLAY supports CGA, EGA, VGA,
SVGA, and Hercules monochrome display adapters running in graphics
mode.

VI_MACINTOSH_DISPLAY. Uses the Macintosh's QuickDraw routines
to display information on screen.

VI_XT_DISPLAY. Uses the XII drawing primitives to display information
using the X window system. Used by the OSF/Motif and X Keys.

Getting Started with Zinc Programming

Region lists­
DOS and Curses

UI_MSC_DISPLAY. Uses the Microsoft MSC graphics routines to display
infonnation. Supports CGA, EGA, VGA, SVGA, and Hercules mono­
chrome display adapters in graphics mode.

UI_MSWINDOWS_DISPLAY. Uses the Microsoft Windows GDI graph­
ics routines to display information.

UI_NEXTSTEP_DISPLAY. Uses NEXTSTEP's Display PostScript Win­
dow Server to display infonnation.

UI_OS2_DISPLAY. Uses OS/2 GPI graphics routines to display informa­
tion.

UI_TEXT_DISPLAY. A compiler-independent text display used in DOS
and Curses. The UI_TEXT_DISPLAY class supports MDA, CGA, EGA,
and VGA display adapters in the following text modes:

· 25 line x 80 column mode,

· 25 line x 40 column mode,

· 43 line x 80 column mode, and

· 50 line x 80 column mode.

This class supports snow checking on CGA monitors and IBM TopView. In
tum, TopView supports Microsoft Windows and Quarterdeck DESQview
environments.

UI_WCC_DISPLAY. Uses the Watcom graphics routines to display infor­
mation. Supports CGA, EGA, VGA, SVGA, and Hercules monochrome dis­
play adapters in graphics mode.

Other programmer-defined screen display objects. Any custom display
object that derives from or conforms to the UCDISPLAY base class. Zinc
posts third-party display classes supporting other DOS graphics libraries on
its BBS that Zinc customers are free to download.

The DOS and Curses display classes derive from UI_REGION_LIST,
which contains functionality for keeping track of regions on the screen.
When a program places an object on the screen under DOS or Curses, the
display class reserves a drawing region for the object. As the program places

Getting Started with Zinc Programming 79

Library Classes

80

more objects on the screen, the display class splits up the regions to allow
more objects to display themselves without disturbing higher level objects,
clipping screen regions according to an object's identification.

Region lists have three main components: a VI_REGION structure,
VI_REGION_ELEMENT objects, and a VI_REGION_LIST class. The
VI_REGION structure contains the actual reserved region. The screen coor­
dinates are defined according to the mode of operation, with the top-left cor­
ner at {O, O}. Here are some sample right-bottom coordinates for a screen,

based on the type of display mode:

TABLE 10. BGI display values

Display Columns Lines

Text 80 25

40 25

80 43

80 50

CGA 320 200

MCGA 320 200

EGA 350 480

VGA 640 480

The VI_REGION_ELEMENT and VI_REGION_LIST classes store the
region information in elements, organized in a list. The VI_RE­
GION_ELEMENT class derives from VI_ELEMENT and contains the
actual region information as well as a unique identification:

class EXPORT UI_REGION_ELEMENT : public UI_ELEMENT
{

public:
SCREENID screenID;
UI_REGION region;

When a window is attached to the Window Manager, Zinc assigns it a unique
value stored in its screenID member variable. In addition, the screen is rede­
fined to contain the window's region. This area is represented by a new
VI_REGION_ELEMENT, where screenID is assigned the same value as
the window's screen identification, and region is assigned the same area
occupied by the window. The region variable is used later by display func­
tions to clip the boundaries of an object before any screen painting is per­
formed. For example, if two windows were attached to the screen and

Getting Started with Zinc Programming

Virtual display
functions

information were painted to the background window, the background infor­
mation would be clipped so that the painted regions would not overlap the
front window. Since all operating environments other than DOS and Curses
handle clipping internally, their display classes do not derive from
VI_REGION_LIST. In those environments, screenID is the handle
assigned to the object by the operating system.

Virtual display member functions define an abstract method of drawing
information to the screen. For example, all display classes have the
Rectangle() member function. In text mode, a rectangle is drawn with either
a single or a double line. In graphics mode, however, the same routine draws
a single or double pixel rectangle. Virtual display member functions allow us
to use drawing functions in all of Zinc's display modes by acquiring at run
time basic information such as the display's resolution, boundaries, and so
forth.

Conclusion

In this chapter, we learned about Zinc's library classes, the basic elements
that combine to make up other classes. In the next chapter, we'll learn about
how Zinc puts the advanced features of C++ to work across the entire appli­
cation framework.

Getting Started with Zinc Programming 81

Library Classes

82 Getting Started with Zinc Programming

Chapter 7 Zinc and c++

1 the last chapter, we discussed how Zinc's library classes combine to
make up other classes. In this chapter, we'll examine how Zinc uses C++
features to define classes, instantiate and destroy objects, and work with
member variables and overloaded functions. We'll also learn how Zinc uses
C++'s virtual functions to help objects respond to the right events.

Note that this chapter is not a substitute for learning C++, and that Zinc
depends heavily on the features of the language for many of its own features.
This chapter gives its best results if we are already familiar with C++.

instantiating and destroying objects

member variables and scope

member functions, overleaped functions.and operators

Getting Started with Zinc Programming 83

Zinc and C++

How to design
classes

84

Class definitions

When Zinc's architects wrote the library classes in C++, they followed some
explicit rules to make programming in Zinc logical and efficient. Here they
are-if we follow them, too, we'll find understanding our code later on will
be easier.

1. Precede all C++ class definitions with the reserved word class; the envi­
ronment-specific identifier, ZIL_EXPORT_CLASS; and one of the
Zinc prefixes UI_, UID_, UIW_, and ZAF_.

The reserved word class tells the compiler that the definition not only
contains structural information, but member functions, inheritance infor­
mation, and pointers to member functions as well.

ZIL_EXPORT_CLASS, not part of the C++ language, is a Zinc type
definition to allow us to use one set of source code when writing pro­
grams for multiple operating environments, a key benefit of Zinc. In
Windows, for example, ZIL_EXPORT_CLASS is defined to be
HUGE, so that Zinc defines class HUGE UI_ELEMENT, whereas in
DOS, Zinc defines class UI_ELEMENT. Without
ZIL_EXPORT_CLASS , we'd have to maintain one set of source for
each environment we wanted to support.

The prefix UI_ indicates a "User Interface" class, UID_ a "User Inter­
face Device" class, UIW_ a "User Interface Window object" class, and
ZAF_ a "Zinc Application Framework" class. These prefixes allow us to
have other C++ classes, such as list and list elements, without worrying
that our definition conflicts with Zinc's. Some sample class definitions
are given below:

class ZIL EXPORT CLASS UI ELEMENT- - -

class ZIL_EXPORT_CLASS UIW_WINro'V : public UI_WINro'V_OBJEcr ,
public UI_LIST

2. Define public members first, then protected members, and private mem­
bers last. This way, we can find the member information we need without
wading through the wrong variables and functions.

Getting Started with Zinc Programming

Any function can access public members, which are documented in the
Programmer's Reference. Only instances of the class itself, objects
derived from those classes, and objects that are friends of that class can
access protected members, also documented in the Programmer's Refer­
ence. Last, only instances of the class itself or friend classes can access a
private member variable; derived classes that are not friend classes may
not access the private members of another class. Private members are not
documented in any Zinc manual.

Below, the UID_KEYBOARD class, which derives from the
UI_DEVICE class, shows how this member access order is followed.
Note that the UID_KEYBOARD class, since it derives from
UI_DEVICE, could access UI_DEVICE's public and protected mem­
bers; but since it's not a friend class of UI_DEVICE, it may not access
any private members.

class ZIL_EXPORT_CLASS UID KEYBOARD public UI DEVICE
{

public:
static EVENT_TYPE breakHandlerSet;
UID_KEYBOARD(DEVICE_STATE state = D_ON);
virtual -UID_KEYBOARD(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);

protected:
virtual void Poll(void);

} ;

3. Finally, place member variables and functions in separate logical groups.
Zinc groups member variables according to a logical order such as byte
boundary alignment, first use, most common usage, or a number of other
factors-we may pick the order we like best, but we should stick with it.
In contrast, however, we organize member functions in alphabetical order
with the constructor and destructor first. The UIW_BUTTON class
shows how.

class ZIL_EXPORT CLASS UIW BUTTON public UI_WINDOW_OBJECT
{

public:
BTF_FLAGS btFlags;
EVENT_TYPE value;
UIW_BUTTON(int left, int top, int width, ZIL_ICHAR *text,

BTF_FLAGS btFlags = BTF_NO_TOGGLE I BTF_AUTO_SIZE,
WOF_FLAGS woFlags = WOF_JUSTIFY_CENTER,
USER_FUNCTION userFunction = NULL, EVENT_TYPE value = 0,
ZIL_ICHAR *bitmapName = NULL);

virtual -UIW_BUTTON(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);

Getting Started with Zinc Programming 85

Zinc and C++

Derived classes

86

ZIL_ICHAR *DataGet(int stripText = FALSE);
void DataSet(ZIL_ICHAR *text);
virtual void *Information(INFO_REQUEST request, void *data,

OBJECTID objectID = 0);
static EVENI'_'I'YPE !'Essage(UI_WINIX:W_OBJECI' *object, UI_EVENI' &event,

EVENT_TYPE ccode);

In addition to the class definition rules described above, Zinc Software
employees adhere to a full set of internal coding standards, designed to
improve the readability and maintenance of code. For a full explanation of
these rules see "Appendix C-Zinc Coding Standards."

Deriving classes, otherwise known as inheritance, is a benefit of C++ that
allows us to build applications with more functionality, less code, and fewer
bugs. By deriving a class and then adding or changing the behavior we want,
we leave other code untouched. If we wanted to do something conceptually
similar in C, we would have to copy all the code in a procedure that we
would otherwise subclass in C++, and modify much or all of it in order to
add or change the behavior we want. Copying and modifying, in contrast to
deriving, introduces bugs not present before, increases complexity, and
results in larger code and executable size.

Getting Started with Zinc Programming

One example of inheritance in Zinc is the UID_KEYBOARD class, whose
hierarchy is shown below:

Deriving UID_KEYBOARD from UI_DEVICE and UI_ELEMENT base
classes has two benefits. First, because UID_KEYBOARD derives from
UI_ELEMENT, classes that derive from UI_LIST can group and manipu­
late it; this means the Event Manager can manage aUlD_KEYBOARD
object. Second, because UID_KEYBOARD also derives from
UI_DEVICE, the Event Manager can call UID_KEYBOARD's virtual
Poll() function, thereby allowing the keyboard device to place events into
the event queue.

Another example of class inheritance are the UIW_MINIMIZE_BUTTON
and UIW_MAXIMIZE_BUTTON classes, both three-dimensional buttons
which function when the user clicks on them with the mouse. Fundamen­
tally, they're the same, but we change them by giving them different appear­
ances and by making them do different things.

Getting Started with Zinc Programming 87

Zinc and C++

Multiple
inheritance

Abstract classes

88

Multiple inheritance allows classes to inherit behavior from classes with dif­
ferent member functions and variables. This helps us avoid duplicating work
when our own classes must inherit behavior common to more than one class.
However, multiple inheritance has its critics.

Some programmers using object-oriented languages such as Objective-C
and Smalltalk-80 believe that multiple inheritance leads to more complicated
classes. Indeed, classes with multiple parents have code that's harder to read.
However, Zinc could not have implemented some features as elegantly and
in such a small amount of code without multiple inheritance. Despite adding
more complexity to a class, multiple inheritance allows us to extend the fea­
tures of objects with less work, minimal code duplication, and more intu­
itively than if C++ did not use multiple inheritance.

UIW_WINDOW is an example of the benefits of multiple inheritance,
because it derives from both UI_WINDOW_OBJECT and UI_LIST, using
behaviors common to both. Because UIW_WINDOW derives from
UI_WINDOW_OBJECT, which in turn derives from UI_ELEMENT, it
can act as an element of a list. Also, because UIW_WINDOW derives from
the UI_LIST base class, UIW_WINDOW can also behave as a list that
manages elements such as buttons, strings, and tool bars. Because of multi­
ple inheritance, UIW_WINDOW and other classes can inherit behavior
from disparate classes-without it, we would find implementing UIW­
_WINDOW much more difficult.

Abstract classes define a function but don't implement it-they leave the
implementation to another class, allowing functionality to be decided at run
time. For example, Zinc's display function defines a display, but leaves how
that display function will work to a derived class that detects what display
the computer is using, and configures itself appropriately.

Zinc uses abstract classes in its methods of abstracting devices and displays
of native operating environments. For example, Zinc's UI_DISPLAY class
defines some basic behaviors, such as drawing lines and polygons-but it
leaves the implementation of these behaviors to classes that derive from
UI_DISPLAY. This way, a derived display class can inherit basic behaviors
from UI_DISPLAY, and implement them for a specific operating environ­
ment's display. This is what Zinc calls a "less-thin" layer of abstraction over
the native operating environment's API, in contrast to a thin or thick layer.

Getting Started with Zinc Programming

Friend classes

Because a thin layer is tightly bound to an operating environment, it provides
higher performance, but at the cost of less programming flexibility and port­
ability. In contrast, a thick layer of abstraction provides greater programming
flexibility and portability, but at the cost of lower performance. Zinc treads a
middle ground between thin and thick layers that benefits us two ways.

The first benefit of Zinc is that our Zinc programs run nearly as fast as pro­
grams that wrap a thin layer over the operating environment. Second, we
will find that writing the program will be nearly as flexible and portable as
writing a program using a thick layer of abstraction of the operating environ­
ment.

For a class to be considered abstract, it must have one or more pure virtual
functions. For example, VI_DEVICE has two pure functions, Event() and
Poll(). Neither actually do anything in VI_DEVICE; rather, their function­
ality is implemented by the devices that inherit from VI_DEVICE. Here's
an example of VI_DEVICE's virtual functions:

class ZIL_EXPORT_CLASS UI_DEVICE : public UI_ELEMENT
{

friend class ZIL_EXPORT_CLASS UI_EVENT_MANAGER;
public:

virtual EVENT_TYPE Event(const UI_EVENT &event) 0;
protected:

virtual void Poll(void) = 0;
} ;

Abstract classes help us because we can define how a class behaves without
associating any specific code with the class. However, some classes appear
abstract, even though they are not; for example, the
VI_WINDOW_OBJECT appears like an abstract class, but it is not an
abstract class because it has no pure virtual functions. We'll discuss virtual
functions in more detail in this chapter, including how virtual functions free
us from tying events to windows and window objects.

Friend classes allow a specified class to gain access to the protected and pri­
vate members of another class; we can hide the implementation of one class
but let a similar or corresponding class have special access rights. Often, a
Zinc class grants friend rights to other classes, most often, in Zinc Designer.
Other times, a class derived from the VI_ELEMENT base class grants
friend access to its parent list, allowing it to optimize access to its list ele­
ments.

Getting Started with Zinc Programming 89

Zinc and C++

Explicit
instantiation

Implicit
instantiation
and scope

90

Object creation

Once we've defined a class, the next logical step is to put it to work by
instantiating it, which means creating an object from the definition of a class
by allocating memory for it. When we instantiate objects, we either use the
new operator, or we create a static instance that is deleted automatically
when the program moves out of scope. Using the new operator is called
explicit instantiation, because by doing so, we state explicitly that we want
to instantiate a new object. Explicit instantiation is dynamic; the memory for
the new object is allocated from the freestore of available memory. The new
operator initializes a class and maintains its information until it sees a delete
operator, which frees the memory; if we didn't use the new operator, the
object would be destroyed when the scope of the function ended.

Here is some sample code that initializes the display, the Event Manager, and
the Window Manager using the new operator:

#include <ui_win.hpp>
main ()
{

II Initialize the screen.
UI_DISPLAY *display = new UI_TEXT_DISPLAY;

II Initialize the event manager.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display);

II Initialize the window manager.
UI_WINOOW_MANAGER *windowManager = new UI_WINDOW_MANGER(display,

eventManager) ;

In contrast to using new to explicitly instantiate an object, we can write a
function to implicitly instantiate an object, which means the program instan­
tiates the object when it reaches the scope of its class. The biggest difference
between implicit and explicit instantiation is that implicit instantiation is
static; the compiler is responsible for allocating memory for the object.

In this example, the window created will be automatically deleted when the
scope of the function ends.

#include <ui_win.hpp>
ExampleFunction()
{

Getting Started with Zinc Programming

Base class
construction

II Create a window.
UIW_WINDOW window(O, 0, 25, 5);

A constructor initializes a new instance of an object, assigning to the object
the appropriate startup information. But C++ classes also call the construc­
tors of their base classes to assign startup information to them as well. For
example, the UI_TEXT_DISPLAY, which inherits from UI_DISPLAY and
UI_REGION_LIST, calls the UI_DISPLAY constructor and the UI_­
REGION_LIST constructor before it initializes any information:

UI_TEXT_DISPLAY::UI_TEXT_DISPLAY(TDM_MODE mode)
UI_DISPLAY(TRUE), UI_REGION_LIST()

C++ initializes a base class with no arguments automatically, whether or not
the derived constructor calls the base class. But Zinc calls base classes
explicitly in order to make code more readable. The UI_REGION_LIST
code above is one example of this-notice that we called
UI_REGION_LIST from the constructor of UI_TEXT_DISPLAY. In
another example, here the UID_KEYBOARD constructor calls UI­
_DEVICE to initialize its base class information:

UID_KEYBOARD::UID_KEYBOARD(DS_STATE initialState)
UI_DEVICE(E_KEY, initialState)

Sometimes, this base class initialization goes several levels up the inherit­
ance hierarchy. In the following example, UIW_POP_UP_ITEM class calls
the UIW_BUTTON class for initialization, which in turn calls
UI_WINDOW_OBJECT for base class initialization. This saves a lot of
code we'd otherwise need to write to initialize each object separately:

UIW_BUTTON::UIW_BUTTON(int left, int top, int width,
ZIL_ICHAR *_text, BTF_FLAGS _btFlags, WOF_FLAGS _woFlags,
USER_FUNCTION _userFunction, EVENT_TYPE _value,
ZIL_ICHAR *_bitrnapNarne) :
UI_WINDOW_OBJECT(left, top, width, 1, _woFlags,

WOAF_NOYLAGS) ,
text(ZIL_NULLP(ZIL_ICHAR)), btFlags(_btFlags),
value(_value), depth(2),
btStatus(BTS_NO_STATUS), bitrnapWidth(O), bitrnapHeight(O),

Getting Started with Zinc Programming 91

Zinc and C++

Array
constructors

Overloaded
constructors

92

bitmapArray(ZIL_NULLP(UINT8))

UIW_POP_UP_ITEM::UIW_POP_UP_ITEM(void) :
UIW_BUTTON(O, 0, 1, ZIL_NULLP(ZIL_ICHAR), BTF_NO_3D,
WOF_NO_FLAGS) ,
menu(O, 0, WNF_NO_FLAGS, WOF_BORDER,

WOAF_TEMPORARY I WOAF_NO_DESTROY),
mniFlags(MNIF_SEPARATOR)

An array constructor initializes an array, and an example of a class that uses
an array constructor is UI_QUEUE_BLOCK. Array constructors help the
Event Manager run more efficiently by allowing it to allocate memory for
the queue all at once, rather than allocating it as events come into the queue,
and then deallocating the blocks after it has been used. The code below
shows how the queue block initializes event information:

UI_QUEUE_BLOCK::UI_QUEUE_BLOCK(int _noOfElements)
UI_LIST_BLOCK(_noOfElements)

II Initialize the queue block.
UI_QUEUE_ELEMENT *queueBlock = new

UI_QUEUE_ELEMENT[_noOfElements);
elementArray = queueBlock;
for (int i = 0; i < _noOfElements; i++)

freeList.Add(NULL, &queueBlock[i));

Overloaded constructors are constructors that let us specify different param­
eters, depending on how we would like to initialize the information in a new
instance of an object. For example, the ZIL_DATE class overloads its con­
structor in the following manner:

class ZIL_EXPORT_CLASS ZIL DATE

ZIL_DATE(void);
ZIL_DATE(const ZIL_DATE &date);
ZIL_DATE(int year, int month, int day);
ZIL_DATE(const ZIL_ICHAR *string,

DTF_FLAGS dtFlags = DTF_NO_FLAGS) ;

Getting Started with Zinc Programming

Copy
constructors

Overloaded date constructors in the ZIL_DATE class allow us to create a
date object according to:

. the computer's system date, which requires no arguments;

a previously created date object;

. three integer values, the year, month, and day; and

a country-independent, alphanumeric date.

Most classes derived from UI_WINDOW_OBJECT have at least two over­
loaded constructors: one, or more, for basic run-time setup, and another for
persistent object access. For example, the UIW_POP_UP_ITEM class has
the following definitions:

UIW_POP_UP_ITEM(void) ;
UIW_POP_UP_ITEM(ZIL_ICHAR *text,

MNIF_FlAGS rnniFlags = MNIF_NO_FlAGS,
BTF_FlAGS btFlags = BTF_NO_3D, WOF_FLAGS woFlags = WOF_NO_FlAGS,
ZIL USER FUNCTION userFunction =
ZIL_NULLF(ZIL_USER_FUNCTION), unsigned value = 0);

II Persistent object constructor.
UIW_POP_UP_ITEM(const ZIL_ICHAR *narne,

ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object);

The first constructor provides menu item separators, the second creates the
pop up item according to the information in the constructor, and the last con­
struct the pop-up item from disk information.

A copy constructor lets us pass a previously created class into the construc­
tor of another object. We use copy constructors when we want to instantiate
a new object with the data contained in another object. Several library
classes use copy constructors: ZIL_BIGNUM, ZIL_DATE, ZIL_TIME,
and ZIL_UTIME. An example of the date constructor is shown below:

class ZIL EXPORT CLASS ZIL DATE- - -

ZIL_DATE(void) { DataSet(); }
ZIL_DATE(const ZIL_DATE &date);
ZIL_DATE(int year, int month, int day);
ZIL_DATE(const ZIL_ICHAR *string,

DTF_FLAGS dtFlags = DTF_NO_FLAGS);

Getting Started with Zinc Programming 93

Zinc and C++

Default
arguments

Explicit deletion

94

Often, constructors give us the choice whether or not to use a default argu­
ment, which sets up some default behavior for an object when we instantiate
it. When we call a constructor, we can leave out any arguments and use the
constructor's default, which Zinc specifies. The text display class uses a
default argument, TDM_AUTO, which sets the display to the highest possi­
ble text resolution.

class ZIL_EXPORT_CLASS UI_TEXT_DISPLAY : public UI_DISPLAY,
public UI_REGION_LIST

{

public:
UI_TEXT_DISPLAY(TDM_MODE mode = TDM_AUTO);

If we want to use the text display's default, we can call the constructor with
no arguments:

Otherwise, we can override the default by providing an argument. In this
case, our argument tells the constructor to create an 80 x 43 text display.

II Force 43 line mode.
UI_DISPLAY *display = new UI_TEXT_DISPLAY(TDM_43x80);

Many other member functions contain default information. The Program­
mer's Reference contains information about the types of default arguments,
their use, and overriding their definition.

Object deletion

Once we're done with an object, the next logical step is to delete it. When we
delete an object, we either use the delete operator, or allow the system to
delete the object when the scope of the function that instantiated the object
ends. The order of class creation and destruction is important. Generally, the
objects we create first we destroy last.

If we created an object using the reserved word new, we must delete it. For
example, when we create a display, Event Manager, and Window Manager
with new, we must use delete to free them.

Getting Started with Zinc Programming

Implicit deletion
and scope

Virtual
destructors

#include <ui_win.hpp>
rnain()

II Initialize Zinc using the new operator.
UI_DISPLAY *display = new UI_TEXT_DISPLAYi
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(

display) i

UI_WINDOW_MANAGER *windowManager =

new UI_WINDOW_MANGER(display, eventManager)i

II Restore the system.
delete windowManageri
delete eventManageri
delete displaYi

The example above showed how we could use the reserved word delete to
delete new objects. However, when a function creates a static instance of an
object, when the function's scope ends, the object will be deleted automati­
cally. In the example below, the class destructor is called automatically when
the scope of ExampleFunction() ends.

ExampleFunction()
{

UIW_WINDOW window(O, 0, 25, 5)i

II The window is automatically destroyed when the scope of
II ExampleFunction ends.

The order of class creation and destruction is important. In general, those
objects that you create first, must be destroyed last.

Virtual destructors allow Zinc to call the destructor of the base class, rather
than the destructor of the derived object. This saves us from writing func­
tions that delete instances of classes that derive from our base class. For
example, the keyboard, cursor, and mouse derive from VI_DEVICE, which
is derived from VI_ELEMENT. If we delete the Event Manager, when its
list is destroyed, all objects attached to the list will be destroyed, even
though the list cannot possibly know what types of objects it is deleting.

class ZIL_EXPORT_CLASS UI LIST
{

public:
virtual -UI_LIST(void) { DestroY()i }

Getting Started with Zinc Programming 95

Zinc and C++

Base class
destruction

Array
destruction

96

}
void UI_LIST::Destroy(void)
{

UI_ELEMENT *tElement;
II Delete all the elements in the list.
for (UI_ELEMENT *element = first; element;
{

tElement = element;
element = element->next;
delete tElement;

When we call the destructor of a derived class, C++ calls the destructor of
the base class. This saves us from calling the destructor by hand, saving us
code. The UIW_BUTTON class's destructor is a good example of how a
derived class constructor calls its base class's destructor.

UIW_BUTTON::-UIW_BUTTON(void)
{

if (string)
delete string;

After the button class destructor is executed, C++ automatically calls the
destructor of UI_WINDOW_OBJECT, then the destructor for
UI_ELEMENT. Thus, destruction of class objects works in an order oppo­
site of class construction. This way, member variables in base classes that a
derived class may rely on will still exist until after the derived object has
been completely destroyed.

UI_QUEUE_BLOCK uses an array destructor to delete its queue elements.
Array destructors should be used only in conjunction with array construc­
tors. Further, some compilers require that we specify the number of elements
in the array when deleting it, whereas others do not. The code for array
destruction is shown below.

UI_QUEUE_BLOCK::-UI_QUEUE_BLOCK(void)
{

II Free the queue block.
VI_QUEUE_ELEMENT *queueBlock = (VI_QUEUE_ELEMENT *) elementArray;
delete queueBlock;

Getting Started with Zinc Programming

Variable
definitions

Static member
variables

Member variables

As we discussed earlier in the chapter, Zinc member variables begin with a
lowercase character and are organized according to a logical order, such as
byte boundary alignment, first use, most common usage, or whatever makes
sense. An example of how Zinc defines member variables is the UI_LIST
class, with several of its member variables shown below:

class ZIL EXPORT CLASS UI LIST- - -

{

pratected:
UI_ELEMENT *first, *last, *current;
ZIL_COMPARE_FUNCTION campareFunctian;

Zinc objects define and use member variables as bitwise flags.
UI_WINDOW_OBJECT::woFlags is a good example of this:

II --- waFlags ---
typedef unsigned WOF_FLAGS;
canst WOF_FLAGS WOF_NO_FLAGS= OxOOOO;
canst WOF_FLAGS WOF_JUSTIFY_CENTER= OxOOOl;
canst WOF_FLAGS WOF_JUSTIFY_RIGHT= Ox0002;
canst WOF_FLAGS WOF_BORDER= Ox0004;
canst WOF_FLAGS WOF_VIEW_ONLY= OxOOlO;
canst WOF_FLAGS WOF_UNANSWERED= Ox0080;
canst WOF_FLAGS WOF_INVALID= OxOlOO;
canst WOF_FLAGS WOF_NON_FIELD_REGION= Ox0200;
canst WOF_FLAGS WOF_NON_SELECTABLE= Ox0400;
canst WOF_FLAGS WOF_AUTO_CLEAR= Ox0800;
class ZIL_EXPORT_CLASS UI_WINDOW_OBJECT : public UI_ELEMENT
{

pUblic:
WOF_FLAGS waFlags;

The base class UI_WINDOW_OBJECT logically ORs together the bits of
woFlags to form composite values to determine its mode of operation. See
the Programmer's Reference for what each flag sets.

Occasionally, classes define static member variables, which provide the
same information to any instance of the class or of a derived class. For exam­
ple, the UI_WINDOW_OBJECT class has a static member variable called
windowManager, which is a pointer to the Window Manager. All objects that
derive from UI_WINDOW_OBJECT will therefore point to the same Win-

Getting Started with Zinc Programming 97

Zinc and C++

Function
definitions

Default
arguments

98

dow Manager without any added work on our part. Other pointers in
UI_WINDOW_OBJECT, such as eventManager and display, allow all
window objects to use the same error and help systems.

static VI_DISPLAY *displaYi
static VI_EVENT_MANAGER *eventManageri
static VI_WINDOW_MANAGER *windowManageri

In addition to providing the same information to all objects of a class or that
derive from a class, static variables store internal information. For example,
in top-down operating systems such as DOS, Macintosh, and Curses, and
under certain conditions in bottom-up operating systems, the
UI_WINDOW_OBJECT class uses a static variable called repeatRate to
store the rate at which an object will repeat a character when the user holds
down a key, as well as another called doubleClickRate, which determines
how fast a window will respond to the double-click of a mouse.

static int repeatRatei
static int doubleClickRatei

Remember that when we use static pointers as part of a class, C++ requires
that we declare space for them outside of the class definition.

Memberfunctions

Zinc functions begin with an uppercase letter and usually form complete
words that describe the function. For example, the UI_ELEMENT class has
the member functions Listlndex(), Next() and Previous():

class ZIL EXPORT CLASS VI ELEMENT- - -
{

public:
int ListIndex(void)i
VI_ELEMENT *Next(void)i
VI_ELEMENT *Previous(void)i

Earlier we learned that constructors often give us the choice whether or not
to use a default argument, which sets up some default behavior for an object
when we instantiate it. Just as constructors can use default arguments, so can

Getting Started with Zinc Programming

Virtual member
functions

member functions, which use default arguments to behave consistently. For
example, VI_DISPLAY uses many default arguments for filling zones and
XORing the screen output. Notice the default arguments in VI_DISPLAY's
Bitmap(), Ellipse(),and MapColor() functions.

class ZIL_EXPORT_CLASS UI DISPLAY : public ZIL INTERNATIONAL
{

public:

virtual -UI_DISPLAY(void)j
virtual void Ellipse(ZIL_SCREENID screenID, int column, int line,

int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE,

virtual void Line(ZIL_SCREENID screenID, int columnl,
int linel, int column2, int line2,
const UI_PALETTE *palette, int width = 1, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION))j

virtual void Polygon(ZIL_SCREENID screenID, int numPoints,
const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int _xor = FALSE;

} ;

In C++, virtual member functions ensure that when we call an object's mem­
ber function, we don't call the member function of the base class with the
same name. Zinc takes advantage of virtual functions by defining them in a
base class, and overloading them in derived classes to give those classes
basic behavior. In one example, the VI_DEVICE class defines virtual
Event() and pone) routines.

class ZIL_EXPORT_CLASS UI_DEVICE public UI ELEMENT
{

public:
virtual EVENT TYPE Event(const UI EVENT &event) OJ

protected:
virtual void Poll(void) = OJ

When the Event Manager calls its devices' POne) functions, instead of call­
ing these functions, the Event Manager calls the virtual pone) functions of
the keyboard, mouse, and cursor.

Getting Started with Zinc Programming 99

Zinc and C++

Virtual functions
and message
handling

Overloaded
member
functions

100

Earlier, we discussed how each window and window object interprets events
according to how the object operates, eliminating the need for use to write
code to tie events to window objects. Virtual functions help this happen. If
we wrote a program with a Window Manager and an attached window, when
the user clicked the mouse button, the Window Manager would send a mes­
sage to the window, where it calls the UIW_WINDOW::Event() function
to override the actions that the UI_WINDOW_OBJECT base class would
normally perform. But if the window doesn't know how to handle the mes­
sage, the window would pas the event up its inheritance hierarchy by calling
the UI_WINDOW_OBJECT::Event() base class function, which may
know how to handle the message. One benefit to how Zinc uses virtual func­
tions is that we can send messages to an object without having to know how
the object works; we let Zinc handle those details for us. A second benefit,
the one we've already discussed, is that we don't need to tie events to win­
dow objects; we can tell a window object which events to watch for, and let
the window object work naturally.

Overloaded member functions allow us to specify different parameters and
values that a function accepts by default. For example, the ZIL_DATE class
overloads two member functions, Export() and Import():

class ZIL_EXPORT_CLASS ZIL DATE : public ZIL UTlME
{

public:
void Export(int *year, int *month, int *day,

int *dayOfWeek=ZIL_NULLP(int));
void Export(ZIL_ICHAR *string, DTF_FLAGS dtFlags);
void Export(int *packedDate);
DTI_RESULT Import (void) ;
DTI_RESULT Import(const ZIL_DATE &date);
DTI_RESULT Import(int year, int month, int day);

The overloaded Export() functions allow us to get

· a date based on three integers, year, month, and day

· a date based on an alphanumeric value

· a date in a packed integer format

The overloaded Import() functions allow us to set

· a system date, which requires no arguments;

· a date based on a date class object previously constructed;

· a date based on the year, month, and day; and

Getting Started with Zinc Programming

Overloaded
operators

Used properly, operator overloading is a major benefit of C++ for writing
more elegant and readable code.

Zinc uses operator overloading two different ways. The most common way is
to add an element to an existing list, as do the base classes UI_LIST,
UI_EVENT_MANAGER, UI_WINDOW_MANAGER, UIW_WINDOW,
and all objects that derive from the UIW_WINDOW class. The + operator
allows us to add a border, a maximize button, a minimize button, a system but­
ton, and a title to a parent control class, such as a window. For example, we
could use the following code to create a window and then attach to it sublevel
window objects:

II Create a simple window and attach sublevel window objects.
UIW_WINDOW *window = new UIW_WINDOW(5, 5, 40, 6);
*window

+ new UIW BORDER
+ new UIW MAXIMIZE BUTTON

- -
+ new UIW MINIMIZE BUTTON- -
+ new UIW_SYSTEM_BUTTON(SYF_GENERIC)
+ new UIW_TITLE("Simple Window");

The second way Zinc uses overloaded operators is with the ZIL_DATE and
ZIL_TIME classes, which define operations for =, +, -, >, >=, <, <=, ++, --,
+=, -=, == and !=. In ZIL_DATE and ZIL_TIME, these operators incre­
ment the values of date or time objects or compare the chronological value
of two date or time objects. Below is an example of how ZIL_DATE does
this.

II ---- ZIL_DATE ---------------------------------------­
class ZIL_EXPORT_CLASS ZIL_DATE : public ZIL_UTIME
{

public:
long operator=(long days) { jday = days; return (jday); }
long operator=(const ZIL_DATE &date)

{ jday = date.jday; usec = date.usec; return (jday);
long operator+(long days) { return (jday + days); }
long operator+(const ZIL_DATE &date)

{ return (jday + date.jday); }
long operator-(long days) { return (jday - days); }
long operator-(const ZIL_DATE &date)

{ return (jday - date.jday); }
long operator++(void) { jday++; return (jday);
long operator--(void) { jday--; return (jday);
void operator+=(long days) { jday += days; }
void operator-=(long days) { jday -= days; }
int operator==(const ZIL_DATE& date)

{ return (ZIL_UTIME::operator==(date)); }

Getting Started with Zinc Programming 101

Zinc and C++

Static member
functions

102

int operator!=(const ZIL_DATE& date)
{ return (ZIL_UTIME::operator!=(date));

int operator>(const ZIL_DATE &date)
{ return (ZIL_UTIME::operator>(date)); }

int operator>=(const ZIL_DATE &date)
{ return (ZIL_UTIME::operator>=(date)); }

int operator«const ZIL_DATE &date)
{ return (ZIL_UTIME::operator«date)); }

int operator<=(const ZIL_DATE &date)
{ return (ZIL_UTIME::operator<=(date));

void SetBasis(int _basisYear) {basisYear _basisYear;
int GetBasis() { return basisYear; }

} ;

The example below shows how we can use the overloaded date operators to
compare a date to special times throughout the year.

ZIL_DATE currentDate;11 Initialize the system date.
ZIL_DATE newYears1990("Jan. 1, 1990");
ZIL_DATE twentyFirstCentury("Jan. 1, 2001");
II Check the dates
if (currentDate == newYears1990)

printf ("Happy new year! \n");
else if (currentDate < twentyFirstCentury)

printf ("It's not the twenty-first century. \n") ;
else

printf (" It I s the twenty-first century. \n") ;

Analogous to a static member variable, a static member function provides to
all instances of a class or of a derived class a common function. Here's why
Zinc uses static member functions.

Static member functions allow us to check programmatically class informa­
tion before calling the class s constructor. A good example of this is the
ZIL_STORAGE_READ_ONLY class, where we can check the validity of
a file or directory path without first creating a storage unit. We can do this by
calling the ZIL_STORAGE_READ_ONLY::ValidName() member func­
tion.

class ZIL_EXPORT_CLASS ZIL_STORAGE_READ_ONLY
public UI_LIST

{

public:
static int ValidNClIre (canst ZIL_ICHAR *nartE,

int createStorage = FALSE);

Getting Started with Zinc Programming

Static member functions perform generic operations. Two static members fit
into this category: UIW_WINDOW: :Generic() and UIW­
SYSTEM_BUTTON::Generic(). We can use these member functions, not
only to construct the object, but also to place generic subobjects in their lists.
For example, the definition for UIW_WINDOW::Generic() lets us make
one call that initializes a window and adds the border, maximize button, min­
imize button, system button, and title:

UIW_WINIX:M *UIW_w:rNro'V: :Generic(int left, int top, int width,
int height, ZIL_ICHAR *title, UI_WINDOW_OBJECT *minObject,
WOF_FLAGS woFlags, WOAF_FLAGS woAdvancedFlags,
UI_HELP_CONTEXT helpContext)

II Create the window and add default window objects.
UIW_WINDOW *window = new UIW_WINDOW(left, top, width, height,

woFlags, woAdvancedFlags, helpContext, minObject);
(void) & (*window

+ new UIW BORDER
+ new UIW MAXIMIZE BUTTON

- -
+ new UIW MINIMIZE BUTTON- -
+ new UIW_SYSTEM_BUTTON(SYF_GENERIC)
+ new UIW_TITLE(title»;

II Return a pointer to the new window.
return (window);

Static member functions send system messages to the Event Manager. For
example, when the end user presses <Enter> or clicks the mouse button on a
UIW_BUTTON object whose BTF_SEND_MESSAGE flag is set, the but­
ton sends a message, whose type is UIW_BUTTON::value, to the Event
Manager. It does this by calling a static member function called Message(),
which simply places the event on the queue.

All window objects use static member functions when our programs call the
persistent object constructor. Each window object loaded from a Zinc
Designer file has a static member function called New(), which links all
code related to the class into the executable when the program calls an
object's constructor. Below is an example of an object's New():

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object)
{ return (new UIW_BUTTON(name, file, object»;

Often, when using static member functions, we'll find certain reasons for
using pointers to those functions. One important use for pointers to static
member functions is the addition of user functions to objects. For example,

Getting Started with Zinc Programming 103

Zinc and C++

104

when we create a button, we may want that button to call some function that
we wrote instead of one that Zinc wrote. If the user function is a member
function, it must be declared static because otherwise C++ doesn't allow its
address to be passed.

Conclusion

In this chapter, we've discussed how Zinc uses C++ features in defining
classes, instantiating and destroying objects, and working with member vari­
ables and overloaded functions, in addition to how scope affects writing pro­
grams in Zinc.

In the next chapter, we'll discuss the concepts of globalizing an application.

Getting Started with Zinc Programming

Chapter 8 Globalization

Lthis chapter we'll discuss the concepts of globalizing an application.
The basic Zinc package is already fully globalized. You can build globalized
applications that use either 8-bit character strings or 16-bit Unicode charac­
ter strings.

Globalizing an application takes two steps: enabling and localizing.
Enabling a program means to create the program in such a way that it can be
easily ported to any locale. Typically, an application is not enabled, unless
the program can be localized without recompiling the source code. Therefore
an enabled program must detect its locale and resolve any hardware depen­
dencies at run time. One example of how difficult this can be is writing a
program enabled for the Japanese marketplace. Since most Japanese pes are
non-ISA compliant, a program enabled for the Japanese marketplace must

enabling a Zinc program

how to use ISO 8859-1 and Unicode characters

shipping a globalized application

Getting Started with Zinc Programming 105

Globalization

Enabling objects

106

use different low-level functions. Therefore our application must know how
to detect that it's running on Japanese PC hardware and configure itself
accordingly.

Localizing an application means to adapt the application to run properly for
a particular locale. This means that the program displays and formats date,
time, currency, and number fields consistently with how someone native to
that locale would expect to see them. Additionally, the program should trans­
late any of its text appropriately.

Zinc is already enabled and has been localized for many different languages
and locales. For an up-to-date list of the supported languages and locales, see
the READ.ME file.

As mentioned above, globalizing an application is done in two steps: first
enabling the application and then localizing it. Enabling the application is
the foundation upon which globalization is built, and so we must enable our
programs by design, not after-the-fact. Here are some issues to consider
when designing your applications..

Enabling Zinc objects

Zinc's architects have enabled all objects in the Zinc library specifically to
ease globalizing our programs. We need not do anything to Zinc objects to
use them in our globalized applications.

Any object we use that presents information will likely need to be localized
later. This means we must provide a mechanism to allow the program to set
its data dynamically. We can follow three approaches.

1. Hardcode the data and change it for each locale. This is not a recom­
mended approach, since we may miss translating something, and since
we would have to provide a separate executable for each locale or lan­
guage.

2. Place the data in a separate module, in a table perhaps, that we can com­
pile and link into our application. This is not a good approach, since the
executable can only support a single language or locale;

Getting Started with Zinc Programming

Character types

Using wide
character strings

3. Place the data in a data file that can be accessed at run time. Zinc uses a
combination of methods two and three. Later in this chapter, we will dis­
cuss how Zinc uses these methods.

Zinc uses one of two character sets: ISO 8859-1 or Unicode. The ISO 8859­
1 characters are eight bits wide, while the Unicode characters are 16 bits. We
choose our program's characters by examining its requirements. By default,
Zinc programs use ISO 8859-1 characters, but if we want to build a Unicode
application we define ZIL_UNICODE in UI_ENV.HPP, and our applica­
tion will use Unicode characters. Also, whenever Zinc needs to output text to
the screen or get text from the user, it maps the characters to or from the
hardware character set. Zinc provides mappings for many common hardware
character sets.

Because Zinc can support either 8- or 16-bit characters, our programs must
be written for either type. We do this by using ZIL_ICHAR types, a specific
Zinc data type, instead of the char type wherever we use characters. A
ZIL_ICHAR variable resolves to an 8-bit char when the program doesn't
use Unicode, or to a 16-bit unsigned short if it does. The ZIL_UNICODE
macro defines its type definition. If UI_ENV.HPP doesn't define
ZIL_UNICODE when compiling the library, ZIL_ICHAR will be 8 bits
wide, whereas if it does, ZIL_ICHAR will be 16 bits wide.

Remember that the ZIL_UNICODE definition must be consistent between
the library and our source code.

Some compilers provide a wchar_t type, which should resolve to a l6-bit or
wider character type. Unfortunately, not all compilers support wchar_t or
define it to be a 16-bit or wider value. So even if our compiler supports
wchar_t, Zinc recommends using ZIL_ICHAR in case we must port our
application to another environment without a compiler that correctly sup­
ports the wchar_t type. In either case, ZIL_ICHAR provides more flexible
portability, as it resolves to either an 8-bit character or a 16-bit character as
appropriate for the application, whereas wchar_t stays the same.

This section applies to Unicode programs only. If we don't currently support
Unicode, Zinc recommends nonetheless the use of the techniques presented
here, or at least encourages familiarity with them, in case our application uti­
lizes the Unicode character set in the future.

If our compiler supports wide character strings correctly, meaning wchar_t
is a 16-bit value or wider as discussed above, we can define literal strings
with the 'L' type specifier, such as wchar_t *wideString = L"wide string."

Getting Started with Zinc Programming 107

Globalization

Localizing Zinc
objects

108

But if our compiler does not support wide character strings-and many com­
pilers don't-we must use an alternate method of creating string literals,
because a string in double-quotes resolves to 8-bit characters. Though the
practice looks unconventional, we must create strings as arrays of
ZIL_ICHAR characters, initialized by specifying each character individu­
ally. For instance, the text "wide string" would look like this:

ZIL_ICHAR wideString[] = { 'w', 'i', 'd', 'e',
1 " '5', It', 'r', Ii', 'n', 'gl, O};

Note the terminating 0 at the end of the string. The variable wideString from
this example is a 16-bit string we can use like a normal 8-bit string, except
that we must use the ZIL_INTERNATIONAL string functions for string
manipulation.

Localizing our application

Once we've enabled our application, localizing it is a matter of mere lan­
guage translation.

Many Zinc objects must be localized, which includes setting the correct date,
time, or number formatting; using translated text for things like system menu
options; providing default strings for things like error messages, and possi­
bly even changing bitmaps for icons and buttons. Zinc automatically local­
izes objects based on the system's language and locale. If the program
cannot support the system's language or locale for some reason, the program
will use its fallback data, originally linked at compile time.

The fallback data is the language, locale, and image information that is to be
used if the run-time system's setup is not supported. We link in the fallback
language as the LANG_DEF.CPP file. By default, this file contains English
translations. If we wish to use another language, we need only copy the
desired LANG_<ISO>.CPP file from the ZINC\sOURCE\lNTL directory
to the ZINC\sOURCE directory, rename it to LANG_DEF.CPP, and
recompile the library. Similarly, LOC_DEF.CPP contains the fallback
locale, which we can change by copying the desired LOC_<ISO>.CPP file
from ZINC\sOURCE\lNTL directory to the ZINC\SOURCE directory,
renaming it to LOC_DEF.CPP, and recompiling. The images used to draw

Getting Started with Zinc Programming

Detecting the
language

objects are in IMG_DEF.CPP. If we wish to use different fallback images,
copy the desired IMG_<ISO>.CPP file from ZINC\sOURCE\lNTL to
ZINC\sOURCE, rename it to IMG_DEF.CPP and recompile the library. In
order for our program to support any of the languages and locales that Zinc
supports, the application must find the I18N.DAT file at run time. This file
contains all the localization data for the various languages and locales, as
well as the map tables for using hardware character sets.

We can easily change the language, locale, or images of any single object or
of the entire application. To change the language for the entire application,
simply call languageManager.LoadDefaultLanguage()-languageMan­
ager is a static, global variable of type ZIL_LANGUAGE_MANAGER­
and pass it the two-letter ISO language code. Similarly, we can call the local­
Manager.LoadDefaultLocale() function to set the application's locale, and
decorationsManager.LoadDefaultDecorations() will set the decorations for
the entire application. Each object that uses language, locale, or decoration
information also has a SetLanguage(), SetLocale(), or SetDecorations()
function that can set the localization data for that instance of the object. We
will discuss this further as part of the tutorial later in this book.

Localizing our objects

If we are hardcoding data for our objects by embedding the data in the code
or by placing all the data in a single module or table, localizing is straightfor­
ward. If we are looking data up at run time, however, we need to know
which language and locale should be presented.

We may want to detect at run time which language the environment is using.
We can do this by inspecting the globallanguageManager variable, which is
a static variable of type ZIL_LANGUAGE_MANAGER. languageMan­
ager.defaultName is the two-letter ISO language code identifying which lan­
guage is in use.

One way to use the language code is to use it as an extension on a data file
previously translated to the language specified by that language code. For
example, our data file SUPPORT.FR may contain the French translations of
all the windows and text in our application. We may also have a file called
SUPPORT.DE that contains the German translations. After determining the

Getting Started with Zinc Programming 109

Globalization

Detecting the
locale

Building our
application

110

language code, we can create a file name, which in tum sets up the UI­
_WINDOW_OBJECT::defaultStorage. The system will then use that data
file automatically when loading windows. For a complete list of the ISO lan­
guage codes, see "Appendix H-ISO Language Codes" in the Programmer's
Reference, Volume 2.

We may want to detect at run time which locale the environment is using,
which will affect how our program formats dates, numbers, and times. Typi­
cally, we will not care about the locale, since Zinc objects format them­
selves. If we do need to know the locale, we can find out by inspecting the
global localeManager.defaultName variable, which will contain the two-let­
ter ISO locale or country code. For a complete list of ISO country codes see
"Appendix G-ISO Country Codes" in the Programmer's Reference, Vol. 2.

There are two considerations when building our applications. The first is
whether the application is using the Unicode character set. Zinc applications
do not need the Unicode character set to be globalized. Support for this char­
acter set is required only if the application supports double-byte characters.
If the application does support Unicode, though, the Zinc library must be
compiled for Unicode support. This is done by defining the
ZIL_UNICODE precompiler variable in the UI_ENV.HPP source file and
rebuilding Zinc Application Framework's libraries. ZIL_UNICODE must
be defined when building our application, as well.

The second consideration when building our application is how we choose to
localize it. If we choose to compile in a file containing the library globaliza­
tion data for a specific locale, we must link it in. If we choose to either hard­
code the globalization data or access it at run time, we need take no other
steps at compile time.

Shipping our application

In this section we talk about the files that we must ship with our application.
We discuss the requirements for both 8-bit character and 16-bit character
modes.

Getting Started with Zinc Programming

Non-Unicode
applications

Required files for
Unicode
applications

When shipping non-Unicode applications, we must ship the following files:

· The executable (.EXE);

· The data file (.DAT) containing resources created in the Designer, if we
use one.

· Any data files (U8N.DAT) with the library globalization data, if differ­
ent than our data file.

When shipping Unicode applications we must ship the following files:

· The executable (.EXE);

· The data file (.DAT) containing resources created in the Designer, if we
use one.

Any data files (U8N.DAT) with the library globalization data, if differ­
ent than our data file.

If our application uses the GFX graphics library to support DOS graphics,
we must also ship the UNICODE.FNT file. This file contains a font table
for most languages in the Unicode character set. Note that the GFX graphics
library is the only Zinc-supported DOS graphics library that supports the
Unicode character set. Therefore if our application must support DOS graph­
ics, we must use the GFX graphics library.

Conclusion

In this chapter, we've discussed how to globalize a Zinc application, includ­
ing enabling our objects and localizing our code for Unicode.

This is also the end of the section on Zinc's main concepts. In this section
we've learned about Zinc's architecture, its windows and window objects,
event handling and mapping, library classes, C++ features of Zinc, and glo­
balizing a program. In the next section, we'll begin learning how to write
Zinc programs.

Getting Started with Zinc Programming 111

Globalization

112 Getting Started with Zinc Programming

section two
Zinc programming

Getting Started with Zinc Programming 113

114 Getting Started with Zinc Programming

Chapter 9 ''Hello, Universe!"

Welcome to the section of this book on Zinc programming. This sec­
tion is full of tutorials and tips on how to write full-featured Zinc applica­
tions. We'll start out by writing a small Zinc program.

Most programmers who learn a new language or programming environment
will write a program that prints the phrase, "Hello, world," in a terminal win­
dow. But since our Zinc program can run on nearly every major platform in
the computer marketplace, we'll print the phrase, "Hello, Universe!" into a
text field in a graphical window.

Getting Started with Zinc Programming 115

"Hello, Universe!"

116

What we'll do

Here are the steps we'll take in writing HELLOl.CPP.

1. Load the library called UI_WIN.HPP to use Zinc's window object defi­
nitions and implementations.

2. Create a function called UI_APPLICATION::Main(), which sets up
the infrastructure of writing portable, event-driven applications.

3. Create a generic window with the title "Hello Window."

4. Add to the window the text "Hello, Universe!", and some other data,
including flags.

5. Add the window to the Window Manager, the control center for all win­
dows and window objects.

6. Call a function called Control(), which acts as the main event loop, get­
ting events from the system and dispatching them to the application.

Here's the source code to HELLOl.CPP:

II HELL01.CPP (HELLO)
II COPYRIGHT (C) 1990/1994. All Rights Reserved.
II Zinc Software Incorporated. Pleasant Grove, Utah USA
II May be freely copied, used and distributed.
#include <ui_win.hpp>
int UI_APPLICATION::Main(void)
{

UIW_WINDOW *window = UIW_WINDOW::Generic(2, 2, 40, 6,
"Hello Window"); I

*window
+ new UIW_TEXT(O, 0, 0, 0, "Hello, Universe!", 256,

WNF_NO_FLAGS, WOF_NON_FIELD_REGION) ;
*windowManager

+ window;
Control();
return (0);

Getting Started with Zinc Programming

Include files

When we compile the program and run the executable, we see a screen like
this:

-=1 Hello Window 1... 1'"
Hello. Universe!

The first step we took in HELLOl.CPP is declaring the include files
UI_WIN.HPP.

#include <ui_win.hpp>

In Zinc, Ut~WIN.HPP is the header file that, among other things, contains
the definitions for window objects. Zinc also contains other include files in
addition to UI_WIN.HPP for handling other types of Zinc information, for
example, information for list objects, for screen displays, and so forth.

These include files initialize information specific to Zinc-supported compil­
ers, freeing us from worrying about which files to include, and which not to
include. We can always use the same headers no matter what compiler we
use, making writing Zinc programs easier.

One Zinc include file, UI_EN\:HPP, initializes information for specific
environments. For example, it includes WINDOWS.H, which contains
information for Microsoft Windows; OS2.H, which contains information for
OS/2, and so forth. This is what allows your Zinc application to compile for
different environments. Here is a list of all Zinc's include files, and what
they do.

TABLE 11. Include files in Zinc

Include file

UCENV.HPP

UCGEN.HPP

UCDSP.HPP

UCMAP.HPP

What it contains or defines

All values and information for specific compilers and envi­
ronments

Low-level classes like user interface elements and lists

How to handle screen displays for different environments

Keyboard scan codes and virtual key mappings

Getting Started with Zinc Programming 117

"Hello, Universe!"

TABLE 11. Include files in Zinc

Include file

UCEVT.HPP

UCWIN.HPP

What it contains or defines

Basic infrastructure for event handling

Window objects

118

When we include the UI_WIN.HPP file, we also include the UI_EVT.HPP,
UI_MAP.HPP, UI_DSP.HPP, UI_GEN.HPP, and UI_ENV.HPP files. This
means we need only include UI_WIN.HPP to use all of Zinc's include
files.; under normal programming circumstances we'll find it highly unlikely
that we'll have to include any of those classes separately from
UI_WIN.HPP.

Getting Started with Zinc Programming

A new Main() The next step we took in HELLOl.CPP after declaring include files was to
create a function called MainO from the class VI_APPLICATION. Using
this function will save a lot of code if we want to write an application that
takes advantage of Zinc's benefits. Here's the code again:

int UI_APPLICATION::Main(void)
{

UIW_WINDOW *window = UIW_WINDOW::Generic(2, 2, 40, 6,
"Hello Window");

*window
+ new UIW_TEXT(O, 0, 0, 0, "Hello, Universe!", 256,

WNF_NO_FLAGS, WOF_NON_FIELD_REGION) ;
*windowManager

+ window;
Control ();
return (0);

Here's what this function does. Any meaningful Zinc program like
HELLOl.CPP uses a certain amount of infrastructure to display informa­
tion on the screen; enable windows to respond to events from the mouse,
keyboard, and the cursor; and to use and manage window objects-and to do
all these things across every environment Zinc supports. We could build that
infrastructure by hand for whatever environment under which we'd like to
run our applications, or we could merely use the
VI_APPLICATION::Main() function to create the infrastructure for us for
every environment Zinc supports.

In HELLOl.CPP, VI_APPLICATION saves us from having to write a lot
of code, specifically code for managing windows and events. For example,
the Window Manager, the part of HELLOl.CPP's infrastructure that han­
dles incoming events from the Event Manager, comes from
VI_APPLICATION. Also, Control(), the function that contains the main
event loop, comes from VI_APPLICATION. In short, VI­
_APPLICATION is a quick and easy way to create that infrastructure so we
don't have to create our own-and the infrastructure we needn't create is the
one that won't break. If you want to know more about
VI_APPLICATION::Main(), hang on-we'll discuss it further in just a
moment.

Getting Started with Zinc Programming 119

"Hello, Universe!"

Creating a
window and
adding a text
field

120

The next step we took in HELLOl.CPP in UI_APPLICATION::Main()
was to create a new window. To do this, we used a function in the Zinc
UIW_WINDOW class.

UIW_WINDOW *window = UIW_WINDOW::Generic(2, 2, 40, 6,
"Hello Window");

UIW_WINDOW is Zinc's class for working with windows and window
fields that we display on the screen. We've created a pointer to the
UIW_WINDOW class called window, then called the class's member func­
tion Generic() with some parameters, and assigned the result to window.
When we called Generic() with those parameters and assigned the result to
window, in a short line of code we created a full-fledged window with a bor­
der, a maximize button, a minimize button, a system button, and a title.

The next thing we did was to put some text into our window. Notice how we
added a pointer to an instance of a UIW_TEXT class to window with the
overloaded + operator:

*window
+ new UIW_TEXT(O, 0, 0, 0, "Hello, Universe!", 256,

WNF_NO_FLAGS, WOF_NON_FIELD_REGION);

The UIW_TEXT constructor contains more parameters, one of which is the
text, "Hello, Universe!," that we've seen displayed inside the window. The
instance ofUIW_TEXT also contains two flags, values that, when turned on
or off, affect the behavior of the object.

The first flag, WNF_NO_FLAGS, tells the object not to associate any special
flags with the text object. The second flag, WOF_NON_FIELD_REGION,
tells the object to ignore any parameters it receives concerning where to dis­
play itself and to use the remaining space in the window. If we hadn't
included this flag, the object would display "Hello, Universe!" wherever the
positional parameters told it to.

The last thing we did with our window was attach it to the Window Manager.
*windowManager

+ window;

The Window Manager is Zinc's method of managing how windows behave,
including their position and priority, and of accepting events from the Event
Manager and passing them in tum to the windows that need to respond to
those event. By attaching our window to the Window Manager, we placed
the window and its subobjects on the screen and gave it the ability to accept
events like "move the window."

Getting Started with Zinc Programming

Responding to
events

Let's take a step back from our code and look at a couple things. Notice that
we've followed a certain order when we worked with windows. We first cre­
ated the window, then we attached the text to the window, and after we fin­
ished taking care of the window we attached the whole concatenation to the
Window Manager. We followed this certain order because we wanted the
window to appear on the screen all at once, instead of a piece at a time. If we
hadn't followed this certain order the window would have displayed itself in
a messy, semi-organized manner.

Next, notice that we didn't explicitly create an instance of the Window Man­
ager, though we know one exists, since we added a window to it. We didn't
have to create an instance; UI_APPLICATION::Main() did it for us.
Again, UI_APPLICATION::Main() has saved us code while writing
HELLOl.CPP.

The next step we took in HELLOl.CPP after creating a window and adding
a text field was to call a function called ControlO. This function is the main
event loop, the central structure of HELLOl.CPP, which takes over the
application and waits for the user to create events.

Control ();

When the user sends the "quit" event by closing the window or by pressing
the appropriate keys, the main event loop quits the program.

The main event loop is how Zinc gives us the ability to easily write event­
driven programs, one of Zinc's major design goals-and by using the Con­
trol() function we'll save time and code that we'd otherwise spend writing a
main event loop by hand. Once we call Control(), we can sit back and let
UI_APPLICATION: :Main() get the events from the queue and route them
to the window we just added to the Window Manager.

Under the hood ofUI_APPUCATION::Main()

A little while ago, we introduced the idea of UI_APPLICATION::Main()
without saying much about it. Now let's fill in the details of what's going on
under the hood.

Getting Started with Zinc Programming 121

"Hello, Universe!"

What UI_APP
does

Main()

122

Right after we declared the proper include file, we created the function

int UI_APPLICATION::Main(void)

Notice that this function has displaced the main() function we'd write in a
non-Zinc program. Also, it comes from the Zinc class, DI_APPLICATION.
How does DI_APPLICATION::Main() work?

Every meaningful Zinc program includes a certain amount of infrastructure
to display information on the screen; respond to events from the mouse, key­
board, and the cursor; and manage window objects. What Zinc has given us
with DI_APPLICATION is a single function call to set up that infrastruc­
ture for use, giving us more time to write the core engine of our program.

The Programmer s Reference tells us that the class initializes the standard
control objects. This means using the DI_APPLICATION class will initial­
ize:

· the screen display;

· the Event Manager; and

• the Window Manager

In addition to setting up the infrastructure for us, DI_APPLICATION gives
us automatic portability between environments. Using DI_APPLICATION
lets us simply compile HELLOl.CPP to run under any environment with no
modifications because this class contains the code needed to compile under
all supported environments. If we didn't use DI_APPLICATION::Main(),
we'd have to duplicate Zinc's efforts to compile our program under
Microsoft Windows or any other supported platform.

Now that we know more about what DI_APPLICATION does for us, let's
look up in the Programmers Reference the actual function we called from
the DI_APPLICATION class-Main(). We'll find that Main() does two
things: it

• sets up the initial application windows

· calls or creates the main event loop.

Here's why Main() takes the place of main() in our program. First, all
operating environments don't support main() transparently-and every
C++ program ever written must have that function or it'll refuse to compile.
For example, if you've written programs for Microsoft Windows, you'll
know you need to start out your program with the function WinMain(), not
main().

Getting Started with Zinc Programming

When we write a Windows program, we must include some special
Microsoft libraries that, among other things, provide a maine) function,
which then call an undefined function called WinMain(), which, of course,
we define ourselves. This satisfies the requirement of C++, and therefore
your program will compile.

When we use VI_APPLICATION::Main() in a Zinc program, we're doing
something conceptually similar to what we just discussed. We're abstracting
the idea of maine) and WinMain() and generalizing the code required to
handle those functions in multiple environments. Obviously, Zinc has done
us a good tum by giving us one function for handling the Main() function in
programs that run under multiple operating systems.

Eventflow and Control()

One of the key concepts of HELLOl.CPP, and of Zinc applications in gen­
eral is that all Zinc applications are by design event driven. Zinc programs
wait for the user to create an event by pressing a key on the keyboard, or
manipulating the mouse-and when the user creates an event, the program
reacts by calling the appropriate function. This program flow that consists of
reacting to user input is the essence of Zinc's event-driven architecture.

If we wanted, we could get events and route them by hand-later we'll learn
how. But the VI_APPLICATION class allows us to include in
HELLOl.CPP a function called Control() that automatically gets and
routes events for us. All we must do is call Control() inside the Main()
curly braces.

But Control() may still seem a little mysterious. Here's what's going on
inside the main event loop Control() creates:

1. First, the user creates an event by pressing a keyboard key or by manipu­
lating the mouse.

2. Next, the loop gets the event from the Event Manager and sends it to the
Window Manager. The the Window Manager sends that information to
the "Hello, Universe!" window. For example, if we click on the system
button, the button that closes the window, we would create a "close"
event. In tum, the Event Manager would get this event, and pass it to the
Window Manager.

Getting Started with Zinc Programming 123

"Hello, Universe!"

The Event
Manager

124

3. Last, the Control() function examines the Window Manager's return
code. If it sees the "quit" event or if it sees that there are no more win­
dows attached to the Window Manager, it will quit the program. Other­
wise it will return to the first step-and start the main event loop all over
again.

HELLOl.CPP without VI_APPliCATION

If you looked through the source code to VI_APPLICATION, you'd find
that Zinc has written a huge amount of code to set up the display, the Event
Manager, and the Window Manager for every platform it supports. If we
didn't use VI_APPLICATION, we'd have to write a significant amount of
code to

· set up the display by hand for each environment under which we wanted
to run HELLOl.CPP;

· add by hand the keyboard, mouse, and cursor to the Event Manager;

• create by hand the Window Manager; and

· write a main event loop for routing events to the Window Manager.

Not only would we have to do these things by hand, we'd have to do some of
them once for each environment under which we planned to run
HELLOl.CPP. Like we said before, using VI_APPLICATION gives us
automatic portability between environments.

Writing a program without VI_APPLICATION::Main() means setting up
the Event Manager by hand and attaching input devices. Setting up the Event
Manager by hand requires we use one parameter, display, which directs the
input devices to display information on the screen. We tell the Event Man­
ager it can accept input from three devices, the keyboard, mouse, and cursor,
or we could derive our own input device and add it as well.

HELLOl.CPP only has one window, and so the Window Manager will
route all events to that window. In other programs we'll write, however, the
Window Manager will route events to the current window. This happens
transparently, with or without VI_APPLICATION: :Main(), and is a major
advantage to Zinc over other environments.

Getting Started with Zinc Programming

Shutting down
HELL01.CPP

Without UI_APPLICATION::Main(), we'd have to take care of one more
thing by hand-deleting the Window Manager, Event Manager, and display
to free up memory. We'd use the following code to delete the Window Man­
ager, Event Manager, and display:

II Clean up.
delete windowManager;
delete eventManageri
delete displaYi

Notice that we delete the Window Manager, Event Manager, and the display
in the reverse order of their construction. Since the Window Manager main­
tains pointers to the Event Manager and to the display; if we didn't delete it
first, it would have valid pointers pointing to deleted objects. Also, we'd
have to delete the Event Manager before the display, since the Event Man­
ager maintains a pointer to the display. One thing we don't have to delete are
objects attached to the event or window managers-the input devices, and
the "Hello, Universe!" window, for example, are automatically destroyed
when their respective manager is destroyed.

Conclusion

Writing HELLOl.CPP using UI_APPLICATION::Main() does a lot of
things for us. Zinc recommends that we use this function in our Zinc pro­
grams to save us time setting up Zinc's infrastructure, increase reliability by
eliminating unneeded code, and making it easy to set up a main event loop.

In the next chapter, we're going to expand HELLOl.CPP to include other
objects, including a help system and an error system.

Getting Started with Zinc Programming 125

"Hello, Universe!"

126 Getting Started with Zinc Programming

Chapter 10 Help and Error
Systems

1 the last chapter, we learned how to create a window using Zinc. In this
chapter, we'll extend HELLOl.CPP by adding windowed help and error
systems, an exit function, and a "Universe Information" window.

Using Zinc's help and error systems

Writing an exit function

Creating user interfaces programmatically

Getting Started with Zinc Programming 127

Help and Error Systems

The help system

128

The code is located in \zINC\TVTOR\HELLO\HELL02.CPP When we
compile the program and run the executable, we see a screen like this:

0;;;;;0 Hello Window I.'~J'"
Hello, Universe!

=1 Universe Information Window I.~J'"

Age: IReallv old. I==
IReallv heavy. I"Weight

Size: IReallv big. I
The Answer: 142 I

The universe is very complicated and not very well ~
understood (at least not bV this programmer). The

I-'above statistics should therefore be taken as
approximations. The answer given above is generally
thought to be correct. The problem, of course, is that
nobody knows what the question is. f---,

-+

The help system displays a window containing help information when the
user asks for help. Zinc does not use the VI_HELP_SYSTEM unless we
specifically ask for it. This way, we don't have to have the help system mod­
ules linked into our executables unless we tell Zinc to include it.

Getting Started with Zinc Programming

The following figure is an example of a help system window:

=1 Universe Information Help I~I ...
This window conlains informalion aboul lhe universe. Il uses lhe .!.following window objects:

....I

UP",_WINDOW
UIW_BORDER
UIW_MAXIMIZE_BUTTON
UIW_MINIMIZE_BUTTON
UIW_SYSTEM_BUTTON
UIW_TITLE
UIW_PR 0MPT
UIW STRING
UlW=INTEGER
UIW SCROLL BAR
UlW=TEXT -

---,

~

We include the help system in HELL02.CPP by creating a new instance of
VI_HELP_SYSTEM with three parameters.

UI_WINDOW_OBJECT::helpSystem = new UI_HELP_SYSTEM("hello.dat",
windowManager, HELP_GENERAL);

Getting Started with Zinc Programming 129

Help and Error Systems

130

Here's an explanation of the parameters we use to create a new help system.

· HELLO.DAT is the name of the binary help file that the Designer gener­
ates from a text file.

· windowManager is a pointer to the Window Manager. This argument
allows the help system to display information if it encounters an error
while initializing the help system.

· HELP_GENERAL is the default help context the Window Manager will
use if no context-specific help is available when requested. If we were
creating a help system with more than one help context, we'd need to
specify the name of the help context we wanted to use.

Notice that when we created a UI_HELP_SYSTEM object, we assigned it
to the static member variable of UI_WINDOW_OBJECT called helpSys­
tern. The reason we do this is that all of Zinc's window and window objects
derive from UI_WINDOW_OBJECT, and since helpSystem is a static
member variable, all windows and window objects we'll create will point to
the same help system.

We explained earlier in the chapter that the help system displays a window
containing help information when the user asks for help. Here are the steps
our window takes when the user requests help.

1. The user sends a message asking for help from an object, which receives
the message and, in tum, calls the help system with two arguments.

EVENT_TYPE UI_WINDOW_OBJECT::Event(const UI_EVENT &event)
{

case L HELP:
II Display help for the current window.
helpSystern->DisplayHelp(windowManager, helpContext);
break;

The two arguments the message uses are

. windowManager, a pointer to the Window Manager; and

. helpContext, the help context that specifies the text to display.

Getting Started with Zinc Programming

2. Next, the help system attaches its help window to the Window Manager,
which displays it:

void UI_HELP_SYSTEM: :DisplayHelp (UI_WINIX)W_ MANAGER *windawManager,
HELP_CONTEXT helpContext)

*windowManager + helpWindow;

If the help window is already on the screen, the Window Manager
updates its title and help text to current help information.

Where does the help information come from? HELL02.CPP stores help
text in the HELLO.TXT file, which resides on disk. Here's the help infor­
mation text:

--- HELP GENERAL
General Help
The second "Hello, Universe!" tutorial shows you
how to create two windows using zinc Application
Framework and how to initialize the help and error
systems.
For more information about one of the windows
presented in this application press <Fl> while
the window is at the front of the display.

--- HELP HELLO UNIVERSE- -
Hello Universe Help
This window simply has a greeting. It uses
the following window objects:

UIW_WINDOW \
UIW_BORDER \
UIW_MAXIMIZE_BUTTON \
UIW_MINIMIZE_BUTTON \
UIW_SYSTEM_BUTTON \
UIW_TITLE \
UIW_TEXT \

--- HELP UNIVERSE INFORMATION- -
Universe Information Help
This window contains information about the universe.
It uses the following window objects:

UIW_WINDOW \
UIW_BORDER \
UIW_MAXIMIZE_BUTTON \
UIW_MINIMIZE_BUTTON \
UIW_SYSTEM_BUTTON \
UIW_TITLE \
UIW_PROMPT \
UIW_STRING \

Getting Started with Zinc Programming 131

Help and Error Systems

UIW_SCROLL_BAR \
UIW_SCROLL_BAR \
UIW TEXT \

However, the help system doesn't directly retrieve this text; rather, it
retrieves a binary file that we must generate by running the text through the
Help Editor in the Designer.

When we convert HELLO.TXT, we get the following.

· HELLO.DAT, which contains the help information and help contexts.
This file is stored in binary form and should not be modified by the pro­
grammer. It is the only file HELL02.CPP will use, except, of course,
the executable itself.

· HELLO.HPP. This file contains the C++ definitions for the help con­
texts.

Each help context has some elements in common. They are:

· Help context name. This name is converted to a C++ constant and speci­
fies the help context index referenced in your code. This name must be
preceded by "---", which is used as a parsing token. The first help context
name in HELLO.TXT is HELP_GENERAL.

· Help context title. The text in the help window's title bar. It should
describe the help context; our first help context title is "General Help,"
describing help for the entire application.

· Help information. The text displayed in the help window. It should con­
tain all the information to help the user with what he is doing.

The HELLO.HPP file generated is shown below:

#ifdef USE HELP CONTEXTS
canst UI HELP CONTEXT HELP GENERAL

- - -
II General Help

canst UI_HELP_CONTEXT HELP_HELLO_UNIVERSE
II Hello Universe Help

canst UI_HELP_CONTEXT HELP_UNIVERSE_INFORMATION
II Universe Information Help

#endif

= Ox0001;

= Ox0002;

= Ox0003;

132

We must include the .HPP file in all our programs that use help indexes.
Here's the include statement in HELL02.CPP:

#include <ui_win.hpp>
#define USE HELP CONTEXTS
#include "hello.hpp"

Getting Started with Zinc Programming

Control flow of
the error system

The error system

The error system resembles the help system in that Zinc doesn't include it
unless we specifically ask for it. Below is one of HELL02.CPP's error win­
dows:

'd Error

o The number 44 is not in the range 42..42.

I' [oKl I ICancel I
We can create an error system by setting the value of the
UI_WINDOW_OBJECT: :errorSystem variable in the same way we did
with the help system:

Here's what happens when the user creates an error condition:

1. A window object calls the error system. In the example shown above,
UIW_INTEGER is the window object that calls the error system with
an error message from its error message table.

int UIW_DATE::Validate(int processError)
{

ZIL_ICHAR *errStr = myLanguage->GetMessage(errorCode);
if (errStr)
{

WOS_STATUS _woStatus = woStatus;
woStatus 1= WOS_INTERNAL_ACTION;
UIS_STATUS errorStatus =

errorSystern->ReportError(windowManager,
WOS_INVALID, errStr, stringNumber, rBuffer);

if (!FlagSet(_woStatus, WOS_INTERNAL_ACTION))
woStatus &= -WOS_INTERNAL_ACTIaN;

if (errorStatus == WaS_INVALID)
return (-1);1/ This will cause the number to be

II restored.
woStatus 1= WaS_INVALID;

Getting Started with Zinc Programming 133

Help and Error Systems

Exit function

134

2. The error system attaches a modal error window to the screen display:

UIS_STATUS UI_ERROR_SYSTEM::ReportError(UI_WINDOW_MANAGER
*windowManager, UIS_STATUS errorStatus, ZIL_ICHAR *format,
...)

*windowManager + window;

Modal windows prevent the user from interacting with any window other
than the current window-in this case the error window-until the win­
dow is closed. Since the error window is modal, it will receive all event
information until the user acknowledges the error and closes the window
by selecting OK or Cancel.

3. Once the user closes the window by selecting OK or Cancel, the error
system destroys the error window.

4. The object that sent the error request processes the error response and
program flow continues.

When a program is about to quit, sometimes we may want to call special
functions-cleanup functions for example-or perhaps merely inform the
user that the program will exit. Zinc has provided a way for us to do so. UI_­
WINDOW_MANAGER has a special member variable, exitFunction,
which is a function called when the user attempts to exit the program, or,
more precisely, when the Window Manager receives an L_EXIT or
L_EXIT_FUNCTION message. The exit function can have any function
name, but must have the following declaration:

static EVENT_TYPE ExitFunction(UI_DISPLAY *display,
UI_EVENT_MANAGER *eventManager, UI_WINDOW_MANAGER *windowManager)

This declaration gives the exit function pointers to the current display, Event
Manager, and Window Manager, which the function can use to draw to the
screen, post events, or display windows.

The example above displays a message window with an OK button and a
Cancel button. When the user presses the OK button, the program places an
L_EXIT message on the event queue, and the application ends. Otherwise,
the program simply removes the message window and continues. The fol­
lowing code shows the implementation of this exit function:

static EVENI'_ TYPE ExitFtmetion (ill_DISPlAY *display, ill_EVENI'_MANAGER *,
UI_WINDOW_MANAGER *windowManager)

ZAP MESSAGE WINDOW *window =- -

Getting Started with Zinc Programming

Multiple
windows

new ZAF_MESSAGE_WINDOW("Hello universe Tutorial",
UIW_ICON::_asterisklconName, ZIL_MSG_OK I ZIL_MSG_CANCEL,
ZIL_MSG_OK,
"This will close the Hello Universe application.");

EVENT_TYPE ccode = S_CONTlNUE;
II Get user response.
if (window->Control() == ZIL_DLG_OK)

ccode = L_EXIT;
II Control() removes window from the Window Manager but doesn't
I I delete it.
delete window;
return (ccode);

In the last chapter, we created this window with the accompanying code:

c;;;;;:>1 Hello Window
Hello. Universe!

UIW_WINDOW *window = UIW_WINDOW::Generic(2, 2, 40, 6,
"Hello Window");

*window
+ new UIW_TEXT(O, 0, 0, 0, "Hello, Universe!", 256,

WNF_NO_FLAGS, WOF_NON_FIELD_REGION);

To simplify this window's code, we'll use Generic() static functions. Two
Zinc objects have a Generic() function: UIW_WINDOW and UIW·
_SYSTEM_BUTTON. The UIW_WINDOW::Generic() member func­
tion automatically creates a window with a border, maximize button, mini­
mize button, system button, and title. The following function shows how we
can replace this code:

static UIW_WINDOW *HelloWorldWindowl()

II Create the standard Hello World! window.
UIW_WINDOW *window = UIW_WINDOW::Generic(2, 2, 40, 6,

"Hello World Window", NULL, WOF_NO_FLAGS, WOAF_NO_FLAGS,
HELP_HELLO_WORLD);

II Add the window objects to the window.
*window

+ new UIW_TEXT(O, 0, 0, 0, "Hello World!", 256,
WNF_NO_FLAGS, WOF_NON_FIELD_REGION);

Getting Started with Zinc Programming 135

Help and Error Systems

II Return a pointer to the window.
return (window);

Using this method, the new operator is not required for window creation.
The UIW_WINDOW::Generic() function actually calls the new operator
for the UIW_WINDOW object, as well as for all the default objects
attached to the window. It then returns a pointer to the UIW_WINDOW
class object.

The window created above contains a nonfield region text object. This
means that the text object occupies all of the remaining space of the window
not taken by the previously added window objects, the border, buttons, and
title. Under normal circumstances, a nonfield region object takes up the
entire remaining window space, and will cover up any field region objects.
However, more than one nonfield region object may reside with field region
objects within a single window.

Our Universe Information window is an example of a window that uses field
window objects to display information. This window and its code implemen­
tation is shown below:

~I Universe Information Window

136

Age: IIReally old.
:============:

Weight: IReally heavy.
~===::::::::=======:

Size: IReally big.
~===========:

The Answer: 142
'---------------'

The universe is very complicated and not very well
understood (at least not by this programmer). The
above statistics should therefore be taken as
approximations. The answer given above is generally
thought to be correct The problem. of course. is that
nobody knows what the question is. ..

static UIW_WINDOW *HelloWindow2(void)
{

II Create the universe information window.
UIW_WINDOW *window = UIW_WINDOW::Generic(5, 5, 52, 12,

"Universe Information Window", ZIL_NULLP(UI_WINDOW_OBJECT),
WOF_NO_FLAGS, WOAF_NO_SIZE, HELP_UNIVERSE_INFORMATION);

int answerValue = 42;
II Add the window objects to the window.
*window

+ new UIW_PROMPT(2, 1, "Age:")

Getting Started with Zinc Programming

+ new UIW_STRING(14, 1,35, "Really old.", 50)
+ new UIW_PROMPT(2, 2, "Weight:")
+ new UIW_STRING(14, 2, 35, "Really heavy.", 50)
+ new UIW_PROMPT(2, 3, "Size:")
+ new UIW_STRING(14, 3, 35, "Really big.", 50)
+ new UIW_PROMPT(2, 4, "The Answer:")
+ new UIW_INTEGER(14, 4,35, &answerValue, "42 .. 42")
+ &(*new UIW_TEXT(2, 6, 47, 4,

"The universe is very complicated and not very well understood "
"(at least not by this programmer). The above statistics should"
"therefore be taken as approximations. The answer given above"
"is generally thought to be correct. The problem, of course, is"
"that nobody knows what the question is.",

2048, WNF_NO_FLAGS, WOF_BORDER)
+ new UIW_SCROLL_BAR(O, 0, 0, 0, SBF_VERTICAL));

II Return a pointer to the window.
return (window);

Notice the difference between the code to create the text object in the first
window ...

new UIW_TEXT(O, 0, 0, 0, "Hello, Universe!", 256,
WNF_NO_FLAGS, WOF_NON_FIELD_REGION);

... and the code to create the text object in the second window.

new UIW_TEXT(2, 6, 47, 4,
"The universe is very complicated and not very well understood "
"(at least not by this programmer). The above statistics should"
"therefore be taken as approximations. The answer given above"
"is generally thought to be correct. The problem, of course, is"
"that nobody knows what the question is.",

2048, WNF_NO_FLAGS, WOF_BORDER)

Getting Started with Zinc Programming 137

Help and Error Systems

Program flow

Cleanup

138

The second code sample defines a position and size indicator, and does not
set the WOF_NON_FIELD_REGION flag. Instead, it uses WOF_BORDER
to display the boundaries of the field's region.

Notice that this program flow is the same as that discussed in the previous
tutorial, except that there are two windows on the screen instead of one. This
flow remains unchanged until an error occurs or until the user requests help,
when the help or error system adds its window to the Window Manager­
and then the program may display up to four windows.

Since we created new help and error systems, we must destroy them at the
end of the application. Although they are members of UI_WINDOW_­
OBJECT, they must be destroyed explicitly since they are static.

II Clean up.
delete UI_WINDOW_OBJECT::defaultStorage;
delete UI_WINDOW_OBJECT::helpSystem;
delete UI_WINDOW_OBJECT::errorSystem;

Conclusion

In this chapter, we learned how to create a user interface programmatically,
and to use a help and error system in a Zinc application. In the next chapter,
we'll create the same user interface using Zinc Designer, an interactive tool
for creating user interfaces visually.

Getting Started with Zinc Programming

Chapter 11 Using the Designer

Lthe last tutorial, we created a user interface programmatically. In this
tutorial, we'll create the same window in a manner of minutes and with a
single line of code using Zinc Designer.

The code for this tutorial is in \ZINC\TUTOR\HELLO\HELL03.CPP.

Getting Started with Zinc Programming 139

Using the Designer

140

What we'll do

We'll use Zinc Designer to accomplish nearly all of the steps in this tutorial.

1. Using the Designer, create a new persistent object file.

2. Using the Designer, create a window and edit its information.

3. Using the Designer, create a window object and edit its information.

Once the application is running, we should see the following on the screen:

<= Hello Window /...J ...
Hello. Universe!

=-1 Universe Information Window L...J ...

==
Age: IReally old. I
'Weight IReally heavy. I
Size: IReally big. I

The Answer: 142 I

The universe is very complicated and not very well ~
understood (at least not by this programmer). The
above statistics should therefore be taken as
approximations. The answer given above is generally
thought to be correct. The problem. of course. is that
nobody knows what the question is. --,

+

Getting Started with Zinc Programming

Creating a file

Using the Designer

Follow these steps to create a persistent object that will store the "Hello,
Universe!" windows:

1. Select Eile from the main control menu. This displays the following menu:

=1 ISO - Window Editor - <no file> 1 ... 1""
file .Edit ~indow Qbject tlelp

New... ;:glgIDIEJ1DI@-10-1~1~1r!!n1
Qpen...

~IE!JI '§PI ~I ffi§1-, Ic:.:J1 m1[:::]1.s.ave
Save As ...
~Iose pos: I =

place object:
1=

Qelete... size: I I
ereferences...

E""it

2. Select ~ew.. from the pop-up menu. After you select this item a new win­
dow appears:

Llz-_da_I -------"IiJ...! I [E3 c:

=1
Filename:

Ii
II

Lisl Files 01 Jype:

-
File, New...

Qireclories:

c:\ziI400

(d c:

....(§ ziI4~·.~.~,"·".·~~·.·.·.~.~-··-¥-

LJ bin

LJ demo

LJ design

il example

Driyes:

OK

~
I- Cancel

Help

f--;
+

0

3. Enter the file name by typing

hello

in the field adjacent to the Filename prompt. This is the file name the
Designer calls our file when we save it to disk.

4. Create the file by selecting the Q,K button. Now Zinc Designer does the
following:

. Creates a HELLO.DAT file that will store the "Hello, Universe!"
windows;

. Removes the ~ew.. window from the screen;

Getting Started with Zinc Programming 141

Using the Designer

Creating a
window

• Updates the control window's title to reflect the active HELLO.DAT
file.

.We created a window and its window objects in the last chapter by writing
some code. Now we're going to create the same window and window objects
with Zinc Designer by following these steps.

1. Select Window from the main control menu. Selecting this option causes
the following pop-up menu to be displayed:

stringlD: <

Clear
Clear All
Qelete...

lest...

2. Select .create from the pop-up window. Now a generic window appears
on the screen:

=-\ <untitled>

142

3. Size the window to a size that looks about right. You can adjust the size
later if necessary. You should make the window large enough to handle
the new title information and default "Hello, Universe!" text.

Getting Started with Zinc Programming

4. Enter an identification for the window by selecting Edit IOWect from
the main control menu or by double clicking the left mouse button on the
window. Selecting this option causes the window editor to be displayed:

=-1 UIW WINDOW - <untitled>

General I Sub·Objects I Position T Geometry T Advanced

----- Support Features ----- ~
Title: I<untitled>1 I [gI Border

Minlcon: I (None) ill [gI Maximize Bullon

[gI Minimize Bullon

[gI System Button -Name: I<UNTITLED> I o Geometry Management

Help: I(None) Iii o Vertical Scroll-B ar

o Horizontal Scroll-Bar

----- Type -----

@ DefaultI -oK~1 I Cancel~1 I I:!elp I 1\ un, no.' '+'

5. Enter

Hello Window

in the Title: field.

6. Enter the window identification by typing HELLO_UNIVERSE_­
WINDOW in the Name: field.

7. Save the identification by selecting the QK button.

The window should now look like this:

=-1 Hello Window

Getting Started with Zinc Programming 143

Using the Designer

Creating a
window object

We create the "Hello, Universe!" text the same way we created the window
in the last few steps:

1. Select the Text object button from the main control window's toolbar or
select OWect I Input I Text from the main control menu.

2. Place the text object in the middle of the "Hello, Universe!" window. The
window should now have a text field within its border:

=1 Hello Window

D

144

3. Change the text object's default information by

• calling the text object editor by double-clicking the left mouse button
on the text object

· typing

Hello, Universe!

in the field adjacent to the Text: prompt

· typing

256

in the field adjacent to the Length: prompt

· turning off the vertical scroll bar option

· turning off the Don't wrap text option

· turning on the nonfield region option in the Advanced options

Getting Started with Zinc Programming

The universe information window that we created programmatically in the
last chapter looked like this:

Creating
additional
windows

<=1 Universe Information Window

Age: IIR eally old_
;:::========~

Weight: IReally heavy_

~=========~
Size: IReally big_

:============~
The Answer: 1,-4_2 --'

The universe is very complicated and not very well .t.
~~~~~s~~~s\r~~es~s~u7~\~~r~~~r:r~irt~~~~r~~ The ....
approximations_ The answer given above is generally
thought to be correct The problem. 01 course. is that
nobody knows what the question is_ +'

Follow these steps to create this window in the Designer:

1. Create the window by selecting Window I!:reate from the control menu.
Make sure the window is large enough so that the accompanying field
information fits within the window's border.

2. Use the window editor to change the window title to read

universe Information Window

3. Change the window identification by calling the window editor and
entering UNIVERSE_INFORMATION_WINDOW as the Name.

4. Select Qk to exit the window editor.

5. Create the age prompt by selecting the Prompt button from the toolbar or
selecting Qbject I.static I~rompt from the control menu and place the
field at the left-top corner of the window. Call the prompt editor by dou­
ble-clicking on it with the mouse or by selecting Edit IQbject from the
control menu and enter

Age:

as the prompt's text.

6. Create the age string field and place it next to the age prompt. Enter

50

as the default length for the string field, and enter

Really old.

as the string's text.

Getting Started with Zinc Programming 145



Using the Designer

•

146

7. Create the weight prompt and place it under the Age prompt. Change the
prompt's text to

Weight: .

"How do I create an icon in the Designer, create a
window in code, and have the window minimize to the
icon?"

First, create an icon in the Image Editor of the Designer and save
it to a .DAT file. You must save the icon in the Image Editor, and
save the file opened in the Designer.

Next, assign UI_WINDOW_OBJECT::defaultStorage to point to
the .DAT file containing the icon image.

After that, create the window in code. Create a UIW_ICON object
with the saved image and set the icon object's
ICF_MINIMIZE_OBJECT and WOF_SUPPORT_OBJECT flags.
Add the icon object to the window. Add the window to the Window
Manager.

To test your handiwork, minimize the window to see the icon with
its assigned image.

8. Create the weight string field and place it next to the weight prompt.
Enter

50

as the default length for the string, and enter

Really heavy.

as the string's text.

9. Create the size prompt and place it under the weight prompt. Enter

Size:

as the prompt's text.

10. Create the size string and place it next to the size prompt. Set the length
for this object to

50

and enter

Getting Started with Zinc Programming



Saving the file

Really big.

as the string's text.

11. Create the Universe Information text field and place it under the size
prompt. Set the length to

256

and the default text to

The universe is very complicated and not very well understood
(at least not by this programmer). The above statistics should
therefore be taken as approximations. The answer given above is
generally thought to be correct. The problem, of course, is that
nobody knows what the question is.

To add a vertical scroll bar to the text field, check the Vertical Scroll Bar
checkbox.

12. Select the QK button to complete the changes to the window.

Now we're finished creating the Universe Information window.

The "Hello, Universe!" windows are saved when we select .Eile I Save from
the control menu. Here's what Zinc Designer does when the windows are
saved:

Updates the HELLO.DAT file. Contains the binary information associated
with the objects saved during the design session. Help contexts and window
objects like those in this and the last chapter live in the same .DAT file.

Creates the HELLO.CPP file. Contains the definition for the objectTable.
This structure provides read access points for objects saved to disk. The
entries inside this table depend on the types of objects that were created in
the Designer.

Creates the HELLO.HPP file. Contains the numeric identifications, which
are IDs associated with those strings we entered next to the stringID prompt
and the help context definitions. The string identification for each field
within a window is unique. Items within subwindows, combo boxes, or list
boxes have unique numeric identifications within that scope.

Getting Started with Zinc Programming 147



Using the Designer

Window access

Run time
features

148

The code used in this tutorial has the same initialization process as each pre­
ceding tutorial in that they all follow the same three steps:

· Create the display

· Create the Event Manager and add input devices

· Create the Window Manager

After the Window Manager is created, however, the program adds the two
universe information windows to the Window Manager:

II Add the two windows to the window manager.

UI WINDOW OBJECT *windowl =
- -
VI_WINDOW_OBJECT: :New( "hello.dat-HELLO_UNIVERSE_WINDOW");

VI WINDOW OBJECT *window2 =
- -
UI_WINDOW_OBJECT: : New ( "hello.dat-UNIVERSE_INFORMATION_WINDOW");

*windowManager

+ windowl

+ window2;

In the code above, we retrieve HELLO_UNIVERSE_WINDOW and
UNIVERSE_INFORMATION_WINDOW from the HELLO.DAT data
file, then add them to the Window Manager.

An alternative way of reading the objects from disk is shown below:

*windowManager

+ UI_WINDOW_OBJECT: :New( "hello.dat-HELLO_UNIVERSE_WINDOW")

+
UI_WINDOW_OBJECT: : New ( "hello. dat -UNIVERSE_INFORMATION_WINDOW" ) ;

This method allows for error correction. For example, if one of the windows
was not found in the file, New() will return a NULL value. When a NULL
value is added to the Window Manager, no change is made.

As we mentioned before, Zinc Designer created a HELLO.CPP code file.
This file must be compiled and linked with the HELL03 executable. It con­
tains an object table, used by window object constructors to read class infor­
mation from the data file.

The persistent window objects contain all the informa60n necessary to
ensure that the application runs as if we created the object programmatically,
as we did in the previous tutorial.

Getting Started with Zinc Programming



Conclusion

In this chapter we learned how to create a window in the Designer that we
created earlier programmatically. The Designer is a major benefit, since cre­
ating windows and window objects becomes easier when we can manipulate
them on screen the same way we would work with them while running an
application.

In the next chapter, we'll learn more about writing Zinc applications that use
events in both top-down and bottom-up operating environments.

Getting Started with Zinc Programming 149



Using the Designer

150 Getting Started with Zinc Programming



Chapter 12 Event flow

This tutorial demonstrates how Zinc handles system events in top-down
and bottom-up operating environments. When we're finished, we should
understand how window objects display information and receive input from
the user; how to check data entry with user functions; and how to write a
main event loop. Here we'll examine a dictionary program called
WORD2.EXE.

working with top-d6wn and bottom-up event flow

writing a user function to validate input

Getting Started with Zinc Programming 151



Event flow

Running the
program

Source code

152

What we'll do

Here are the steps we'll take in writing WORD2.CPP.

1. Create the DICTIONARY_WINDOW class and all its member func­
tions.

2. Create an instance of the DICTIONARY_WINDOW and add it to the
Window Manager.

3. The DICTIONARY_WINDOW creates a DICTIONARY, which loads
the data from disk.

4. When the user types a word and hits <Enter> we'll look the word up in
the dictionary.

To use the dictionary program, compile and run the application
WORD2.EXE. This program only knows the word good, bad, begin, and
end. To look up a word, type it in the Enter a word field and press <Enter>.
If the word is in the dictionary, the program will display the definition, ant­
onyms, and synonyms. If the word is not in the dictionary, it will display the
error message, "That word was not found in the dictionary." When you are
finished using the dictionary, exit the program by closing the window.

The source code for this program is located in \zINC\TUTOR\WORD, and
contains the following files:

· WORD2.CPP. Contains UI_APPLICATION::Main(), as well as the
implementation of the DICTIONARY_WINDOW, DICTIONARY,
and D_WORD classes.

· WORD2.HPP. Contains the declarations for the DICTIONARY_­
WINDOW, DICTIONARY, D_WORD, and _WORD classes.

· WORD.DCT. Contains the dictionary database file.

· *.DEF, *.RC. Contains the environment-specific definitions and
resources for compiling Zinc programs for environments other than
DOS.

· *.MAK. Contains the compiler-dependent makefiles associated with the
Word program. Consult "Appendix A-Compiler Considerations" for
information on compiling for each Zinc-supported platform.

Getting Started with Zinc Programming



Class definitions The dictionary window is implemented in a class called
DICTIONARY_WINDOW. Here's its definition:

class DICTIONARY WINDOW : public UIW WINDOW
{

public:
DICTIONARY_WINDOW(void);
-DICTIONARY_WINDOW(void);
int dictionaryOpened;

private:
DICTIONARY *dictionary;
UIW_STRING *inputField;
UIW_TEXT *definitionField;
UIW_STRING *antonymField;
UIW_STRING *synonymField;
static EVENT_TYPE LookUpWord(UI_WINDOW_OBJECT *string,

UI_EVENT &event, EVENT_TYPE ccode);
} ;

DICTIONARY_WINDOW uses the following member variables:

dictionaryOpened, which indicates if the data file was successfully
opened. Since constructors cannot return values, we must set a flag to
denote the dictionary status. This value is public so that the controlling
program can verify that the dictionary was created.

dictionary, the pointer to the dictionary that is created in the constructor
for DICTIONARY_WINDOW. This variable is used only by the
DICTIONARY_WINDOW class and therefore is private.

inputField, a pointer to the UIW_STRING field that is used to collect
the input word from the user. This variable is only used by the
DICTIONARY_WINDOW class and therefore is made private.

definitionField, a pointer to the UIW_TEXT field that is used to display
the definition for the input word. This variable is only used by the
DICTIONARY_WINDOW class and therefore is made private.

antonymField, a pointer to the UIW_STRING field that is used to dis­
play the antonyms for the input word. This variable is only used by the
DICTIONARY_WINDOW class and therefore is made private.

synonymField, a pointer to the UIW_STRING field that is used to dis­
play the synonyms for the input word. This variable is only used by the
DICTIONARY_WINDOW class and therefore is made private.

Getting Started with Zinc Programming 153



Event flow

154

Below is the definition for the DICTIONARY:

class DICTIONARY : public DI LIST
{

public:
int opened;
DICTIONARY(char *name);
static int FindWord(void *element, void *matchData);
D_WORD *First(void);
D_WORD *Get(const char *word);

} ;

DICTIONARY uses the following member variables:

· opened, which tells if the dictionary was successfully opened. Since con­
structors cannot return values, we must set a flag to denote the dictionary
status. This value is public so that the controlling program can verify that
the dictionary was created.

D_WORD is the dictionary class that contains the words in the dictionary.
Below is the definition for the D_WORD class:

class D WORD : public DI ELEMENT
{

public:
char *string;
char *definition;
DI_LIST antonymList;
DI_LIST synonymList;
D_WORD(FILE *file);
-D_WORD(void);
D_WORD *Next(void);

} ;

D_WORD uses the following member variables:

· string, which contains the actual word entry in the dictionary.

· definition, which contains the definition string of the word.

· antonymList, a list of antonyms that apply to the dictionary entry.

· synonymList, a list of synonyms that apply to the dictionary entry.

_WORD is a support class used to hold the words in the antonym and syn­
onym lists:

class WORD: public DI ELEMENT
{

public:
char *string;

Getting Started with Zinc Programming



_WORD(const char *_string);
-_WORD (void) ;
_WORD *Next(void);

} ;

_WORD uses the following member variable:

. string, a character string that contains a word.

Creating the window

We start out by deriving our DICTIONARY_WINDOW class from the
Zinc class UIW_WINDOW. Instead of using an instance of the existing
UIW_WINDOW class, our derived class will also handle input from and
output to the window fields and communicate with our dictionary.

When our program calls the DICTIONARY_WINDOW constructor, it cre­
ates the dictionary window. The DICTIONARY_WINDOW creates each
of the fields and adds them to the window using the C++ reserved word this
and the overloaded + operator. The DICTIONARY_WINDOW constructor
is shown below:

DICrrONARY_WINIXM: :DICTIONARY_WINIXM (void) : UIW_WINIXM (16, 6, 41, 14)
{

if (dictionaryOpened)

II Create the window fields.
inputField = new UIW_STRING(17, 1, 20, "", 40,

STF_NO_FLAGS, WOF_BORDER I WOF_AUTO_CLEAR,
DICTIONARY_WINDOW::LookUpWord);

definitionField = new UIW_TEXT(17, 3, 20, 4,"", 100,
TXF_NO_FLAGS, WOF_BORDER);

antonyrnField = new UIW_STRING(17, 8, 20, "", 50, TXF_NO_FLAGS,
WOF_BORDER) ;

synonyrnField = new UIW_STRING(17, 10, 20, "", 50,
TXF_NO_FLAGS, WOF_BORDER) ;

*this
+ new UIW_BORDER
+ new UIW MAXIMIZE BUTTON- -
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON

Getting Started with Zinc Programming 155



Event flow

156

+ new UIW_TITLE("Dictionary")
+ new UIW_PROMPT(2, 1, "Enter a word:")
+ inputField
+ new UIW_PROMPT(2, 3, "Definition:")
+ definitionField
+ new UIW_PROMPT(2, 8, "Antonyms:")
+ antonymField
+ new UIW_PROMPT(2, 10, "Synonyms:")
+ synonymField;

We add the objects in our dictionary window to the window inside the con­
structor so that when we create our DICTIONARY_WINDOW object, we
only have to write a few lines of code to display it on the screen. Here's the
code taken from the UI_APPLICATION::Main() function in the
WORD2.CPP file:

II Create the dictionary window.
DICTIONARY_WINDOW *dictionary = new DICTIONARY_WINDOW();

II If the dictionary was opened, add it to the window manager.
if (dictionary->dictionaryOpened)

*windowManager + dictionary;
else

dictionary->errorSystern->ReportError(windowManager, -1,
"The dictionary file 'WORD.DCT' was not found.");

delete dictionary;

If we add the objects, not in the constructor, but when we create an instance
of the DICTIONARY_WINDOW class, then we would duplicate code
each time we created an instance of that class. Adding the objects inside the
constructor lets us write less code and provides a stronger encapsulation of
data and code.

Getting Started with Zinc Programming



The user
function

Through the object's constructor, we can assign user functions to a string; the
string calls the user function when the string becomes current or noncurrent,
or when the user presses <ENTER>. Our user function compares the data in
the object's field to the words in the dictionary, and will display either the
word's definition and antonyms and synonyms for the word, or it will display
an error message that says the word was not found. Let's look at how we
assign the user function::

inputField = new UIW_STRING(17, 1, 20, "", 40, STF_NO_FLAGS,
WOF_BORDER I WOF_AUTO_CLEAR, DICTIONARY_WINDOW::LookUpWord);

When the UIW_STRING field is constructed, the last parameter,
DICTIONARY_WINDOW: :LookUpWord, tells our class instances about
the user function. In order for the compiler to generate an address for a user
function, we must declare our user functions as static. The user function
LookUpWord( ) has the following parameters that Zinc requires of all user
functions:

returnValueout is the value returned from the operation, and most often ccode

is the value returned. However, if the operation returns -1, the calling win­
dow object will be informed that some error occurred and the text will be
restored to its previous value.

objectin is a UI_WINDOW_OBJECT pointer to the object that invoked this

function. In this case, the calling object is a UIW_STRING field whose par­
ent is a DICTIONARY_WINDOW object.

eventin is the event that caused this function to be called.

ccodein is the logical interpretation of the event that caused this function to

be called.

Here's how we write LookUpWord( ):

EVENT_TYPE DICTIONARY_WINDOW::LookUpWord(
UI_WINDOW_OBJECT *object, UI_EVENT &event, EVENT_TYPE ccode)

Since the string field calls the user function when it receives the
S_CURRENT, S_NON_CURRENT, or L_SELECT messages, the first step is
to determine if the ccode is S_CURRENT. In the dictionary tutorial, unles's
the input string is selected, the function returns without doing anything.

Getting Started with Zinc Programming 157



Event flow

158

Here's the initial check in LookUpWord( ):

II Return if just entering.
if (ccode != L_SELECT)

return errorCode;

As the user function calls the dictionary to verify the input word, it must
have a pointer to the current dictionary object. Since the input string is
attached to the DICTIONARY_WINDOW, we can access the dictionary
window using the string's parent pointer. Here's how we get a pointer to the
correct instance:

DICTIONARY_WINDOW *dictionaryWindow =

(DICTIONARY_WINDOW *)object->parent;

Now that our user function has the dictionaryWindow pointer, we have
access to the public variables and functions of the
DICTIONARY_WINDOW class, including the variable dictionary, and it
can proceed with calling the dictionary to verify the input word. Now the
user function calls the function DICTIONARY::Get() through the dictio­
naryWindow pointer. This function will return a NULL if the word is not
found, or, if it is found, will return a pointer to a D_WORD structure that
contains the input word and its associated information; if the return value is a
valid pointer, DICTIONARY::Get( ) writes the word and its antonyms and
synonyms to the appropriate window fields by calling each field's DataSet( )
function. If the word isn't in the dictionary, our program will display an error
message and return a -1. Otherwise, we return a O.

Following events

Now that we understand how the program operates, let's follow how events
flow through the system. We can begin by following the event that's created
when the user presses the "G" key on the keyboard. Though we'll study our
Zinc dictionary running under DOS and Windows, our program running in
other operating environments will pass messages in the same way as they do
in the DOS and Windows examples, though event messages and their mean­
ings differ.

Getting Started with Zinc Programming



Event flow-DOS

1'1

When the user presses the "0" key, the computer places the character in the
computer's keyboard buffer. Here's the code in our dictionary program that
actually gets the event from the buffer.

EVENT_TYPE ccode;
UI_EVENT event;
do

II Get input from the user.
eventManager->Get(event);
II Send event information to the window manager.
ccode = windowManager->Event(event);

} while (ccode != L_EXIT && ccode != S_NO_OBJECT);

As eventManager->Get( ) executes, it polls each of the devices attached to
the Event Manager. If the keyboard or another device has placed an event in
its buffer, Zinc creates a VI_EVENT structure, fills it with the event, and
puts on the end of the event queue.

Let's assume that there were no other events on the queue when the program
placed the "0" key event on the queue. The Get( ) function takes the event
variable and fills it with the "0" event. When program control returns from
the Get() function, the call to windowManager->Event( ) passes the "0"
event to the Window Manager.

"How can I intercept an event that is filtered?"

If the message is environment-specific, you must trap it in your derived
object's Event( ). If you want to convert the message to a logical event,
you must place in the event map table assigned to the derived object a
mapping for the message

Let's take a look at what happens when the Window Manager receives the
"0" key, or any other event under DOS. First, the Window Manager sends
the event to the current window object. If the Window Manager can process
it, it does. Otherwise it passes it to its current child, which attempts to pro­
cess it. If it can't, it passes it down, and so forth. This is top-down process­
ing.

Getting Started with Zinc Programming 159



Event flow

Event flow­
Windows

160

If the event carries a specified region like a mouse click, the Window Man­
ager checks to see if another object should become current. If so, the Win­
dow Manager makes that object current, and passes the event to that object.
If no window can handle the event, the Window Manager just returns an
S_UNKNOWN message to the system, and the event is ignored.

Now back to our dictionary program. When the user presses the "G" key, the
Window Manager's current object is the dictionary window. The window
receives the event and sends it to its own current object, the UIW_STRING
field. The string's Event( ) function receives the event from the window, and
calls UI_WINDOW_OBJECT::LogicaIEvent() to look for a logical map­
ping of the event. Once the LogicalEvent( ) function determines the event is
a "G" keystroke, the character is copied into the string's memory buffer and
the string is updated on the screen. A control code is then returned to the
object's parent and finally to the Window Manager which returns to the main
do loop, where the sequence starts over again.

The Microsoft Windows version of Zinc is simpler than the DOS version. In
contrast to DOS, which simply dumps user input in a buffer to wait for a pro­
gram to use it, Windows handles all the input from the user. This means Zinc
need only interpret the messages, and need not handle the events.

When a UIW_STRING field is created, Zinc creates an actual Windows
string object. In the Windows version, Zinc serves as a layer between the
existing Windows system and the user application that was written using
Zinc. This model allows programs to be ported easily to any environment
Zinc supports.

In order to follow an event through the Zinc system while running under
Windows, we must revisit how Windows passes messages. Windows puts
messages on a Windows message queue, which can dispatch those messages
directly to the current field on the current object. Messages are passed to an
object with a special member function known as a "callback" function,
which is the Windows equivalent of Zinc's Event( ) function.

Now consider the example of the "G" key being pressed while a
UIW_STRING field is current. Look at the "do" loop in the function
UI_APPLICATION::Main( ):

EVENT_TYPE ccode;
Dr_EVENT event;
do

II Get input from the user.

Getting Started with Zinc Programming



eventManager->Get(event);
II Send event information to the window manager.
ccode = windowManager->Event(event);
while (ccode != L_EXIT && ccode != S_NO_OBJECT);

At some point in the execution of the program, Windows creates a message
and puts it on the Windows message queue. When eventManager->Get( ) is
called, it doesn't return until Windows has created a message and had put it
on the Windows message queue. Once eventManager->Get() returns, the
call to windowManager->Event( ) instructs Windows to dispatch the mes­
sage. When Windows dispatches the message, Windows calls the current
window object's event function, UIW_STRING::Event() in this case, say­
ing that the user pressed the character "G." When the current window
object's event function receives the "G" message, just as in DOS, it deter­
mines whether or not it can interpret the event. If it can, it does so, and then
passes it back to Windows so that the "G" character may be painted on the
screen. If it cannot, it returns an S_UNKNOWN and the event goes unproc­
essed. This is bottom-up processing.

Conclusion

In this chapter, we've seen how objects display infonnation and receive
input from the user, how we can use user functions to check data entry, and
we've seen more about how Zinc handles events. Further, now that we know
how our dictionary application works, we'll find it easier to use in the next
chapter, where we'll write a program to store and retrieve data in the Zinc
data file.

Getting Started with Zinc Programming 161



Event flow

162 Getting Started with Zinc Programming



Chapter 13 The Zinc Data File

In the last chapter, we learned how events flow by watching how our dic­
tionary program responded to events. In this tutorial, we'll use a modified
version of the dictionary program to learn how to use the Zinc data file to
store data on disk and retrieve it later. To do so, we'll use as a springboard
the dictionary program we used in the last chapter. Then we'll modify it to
allow us to create and delete our own entries, modify them, and save them to
a file on the disk.

the data file

adding and deleting objects to and from the data file

Getting Started with Zinc Programming 163



The Zinc Data File

Running the
program

What we'll do

Here are the steps we'll take in writing WORD3.CPP.

1. Load the window from the .DAT file and create the dictionary. Once
we've loaded the window, assign each button the same static user func­
tion.

2. Create the member functions.

3. Create an instance of the DICTIONARY_WINDOW and add it to the
Window Manager.

4. Process user updates and queries.

5. If the user quits the application, commit the data file to disk, close the
temporary file, and then free up the memory the program used.

Compile the source code and run the executable. You should see the follow­
ing window on the screen:

'=1 Dictionary L·J ...

Entel a word:

Definition:

Antonyms:

Synonyms:

I I

o

164

LOOKUP I I ~AVE I I )lELETE

At this point, the dictionary database will be empty. To add words to the dic­
tionary, simply type the word, its definition, and an antonym and synonym in
the appropriate fields, and press the ~ave button at the bottom of the win­
dow. To look up a word you have entered, type it in the Enter a word: field
and press the Lookup button. To delete a word, type it in the Enter a word:
field and press the !!elete button When finished using the dictionary, select
!:lose from the system button's pop-up menu and exit the program.

Getting Started with Zinc Programming



Source code

Program flow

The source code for our tutorial is located in \zINC\TUTOR\WORD, and
contains the following files:

WORD3.CPP. Contains the main event loop inside UI_APPLI­
CATION::Main(), as well as the implementation of the DIC­
TIONARY_WINDOW, and D_ENTRY classes.

WORD3.HPP. The declarations for the DICTIONARY_WINDOW,
DICTIONARY, and D_ENTRY classes.

WORD_WIN.CPP. The object table for the objects we created in the
Designer.

WORD_WIN.DAT. The data file created in the Designer. Contains the
data for creating the dictionary window and its fields.

· WORD_WIN.HPP. The header information for WORD WIN.DAT and
its help file.

· *.DEF, *.RC. The definition and resource files when compiling for dif­
ferent environments.

· *.MAK. The compiler-dependent makefiles.

Using UI_APPLICATION::Main()'s built-in main event loop, help sys­
tem, and error handling, our program flow is simple. The first step is to cre­
ate a new error system. Next we create the DICTIONARY_WINDOW,
which creates a new dictionary. Once created, we attach the dictionary win­
dow to the Window Manager if the load goes well; if the load fails, we ask
the error system to report an error to the user. Once we've set these things
up, we can tum over event handling to Zinc with UI_APPLICA­
TION::Control(). And when the program flow falls through Control(), we
delete the error system we've created.

Here's the code we used to set up UI_APPLICATION::Main().

int UI_APPLICATION::Main(void)
{

II The UI_APPLICATION constructor automatically initializes the
II display, eventManager, and windowManager variables.
II This line fixes linkers that don't look for main in the .LIBs.
UI_APPLICATION::LinkMain();
II Initialize the error system.
UI_WINDOW_OBJECT::errorSystem = new UI_ERROR_SYSTEM;
II Create the dictionary window.
DICTIONARY_WINDOW *dictionary = new DICTIONARY_WINDOW ( "word.dat");
if (!FlagSet(dictionary->woStatus, WOS_READ_ERROR))

*windowManager + dictionary;
else

Getting Started with Zinc Programming 165



The Zinc Data File

Class definitions

166

UI_WINDOW_OBJECT::errorSystem->ReportError(windowManager,
WOS_NO_STATUS,
"An error was encountered trying to open word_win.dat");

return (1);
}

II Process user responses.
UI_APPLICATION::Control();
II Clean up.
delete UI_WINDOW_OBJECT::errorSystem;
return (0);

The dictionary window is implemented In a class called
DICTIONARY_WINDOW. Here's its definition:

class EXPORT DICTIONARY WINDOW : pUblic UIW WINDOW
{

public:
DICTIONARY_WINDOW(char *dictionaryName);
-DICTIONARY_WINDOW(void);
EVENT_TYPE Event(const UI_EVENT &event);

private:
DICTIONARY *dictionary;
UIW_STRING *inputField;
UIW_TEXT *definitionField;
UIW_STRING *antonymField;
UIW_STRING *synonymField;
static EVENT_TYPE ButtonFunction(UI_WINDOW_OBJECT *item,

UI_EVENT &event , EVENT_TYPE ccode);
} ;

DICTIONARY_WINDOW contains the input, definition, antonym, and
synonym fields, as well as the lookup, save, and delete buttons. This class
uses private member variables, accessible only to itself. They are:

· dictionary, the pointer to the dictionary itself. The dictionary is created in
the constructor for DICTIONARY_WINDOW.

inputField, a pointer to the UIW_STRING field. Collects input from the
user.

· definitionField, a pointer to the UIW_TEXT field. Displays the defini­
tion of the input word.

· antonymField, a pointer to the UIW_STRING field. Displays antonyms
of the input word.

· synonymField, a pointer to the UIW_STRING field. Displays synonyms
for the input word.

Getting Started with Zinc Programming



It also includes a static user function, ButtonFunction( ), that is called when
the button is selected. It accepts the following parameters:

• object, an object of class VI_WINDOW_OBJECT,

· event, a structure of type VI_EVENT, and

· ccode, the event type.

The D_ENTRY is the entry in the data file that contains the data we enter in
DICTIONARY_WINDOW's fields. Here's the definition for the
D_ENTRY class:

class D ENTRY
{

public:
int wasLoaded;
char *word;
char *definition;
char *antonym;
char *synonym;
D_ENTRY(const char *name , ZIL_STORAGE *file,

VIS_FLAGS sFlags = VIS_READ);
-D_ENTRY() ;
static D_ENTRY *New(const char *name , ZIL STORAGE *file,

VIS_FLAGS sFlags = VIS_READ);
void Save ( ) ;

private:
ZIL_STORAGE_OBJECT *object;

} ;

D_ENTRY uses the following member variables:

· wasLoaded, a flag that denotes whether or not the entry was loaded.

• word, a string that contains the entry in the dictionary.

· definition, a string that contains the definition string for the word.

· antonym, a list of antonyms that apply to the dictionary entry.

· synonym, a list of synonyms that apply to the dictionary entry.

DICTIONARY derives from ZIL_STORAGE, which contains methods for
saving and loading data to and from a data file.

DICTIONARY has the following parameter:

· name, which is the name of the .DAT file being used as the dictionary
data file.

Getting Started with Zinc Programming 167



The Zinc Data File

Using the
Designer to
create the
window

168

Creating the user inteiface

The first thing we'll do is use Zinc Designer to recreate the main window
and save it in the file WORD_WIN.DAT. Follow these steps:

1. First, create a new file in the Designer. Select .Eile I~ew, and then type
WORD_WIN.DAT for the filename. Click the OK button to create the
file.

2. Then create a new window by selecting Window I !:reate. Select the
string object icon, located at the upper left of the Designer tool bar. Then
drag and drop four string fields on the window.

The Designer gives each string field a default string ID of the form
FIELD_I, FIELD_2, and so forth. In order to access a particular field
programmatically, we need to specify that string's ID. But the defaults
don't help us remember which field is which, so let's change the string
IDs to something we can remember.

3. To change each string ID, bring up one at a time the edit window of each
string field by double-clicking on the background of the window. Select
the notebook tab called Sub-Objects, which will bring up a vertical list
of all the subobjects in the window. Find the ones marked FIELD_1,
FIELD_2, and so forth. In the vertical list, double-click on the first one,
and a new window will pop up that contains several fields for informa­
tion related to that subobject. Enter the appropriate string ID in each
Name field-use DCT_INPUTfor the first one, then change the string
IDs of the other fields to DCT_DEFINITION, DCT_ANTONYM, and
DCT_SYNONYM.

4. Create some buttons and change the string IDs of our buttons. To change
the Lookup button's stringID, double-click on the window's background,
click on the Sub-Objects notebook tab, and select the first button in the
list. Enter DCT_LOOKUP_BUTTON in the Name field. Likewise,
change the Save button's string ID to DCT_SAVE_BUTTON, and the
Uelete's button to DCT_DELETE_BUTTON.

Getting Started with Zinc Programming



Wiring up the
interface

The Event()
function

DICTIONARY_WINDOW

Now that we've set up the window, the next step is to "wire up" the interface
so that we can get data in and out of the fields and cause each button to call
the static user function. We do this in the implementation of
DICTIONARY_WINDOW by setting up pointers to the string fields so we
can access their contents programmatically, and by assigning each button the
same static user function.

Here's how we wire up the interface.

1. First, we create a pointer to each string field. Then we call the window's
Information( ) function with the I_GET_STRINGID_OBJECT request
that tells the Information( ) function to return a pointer to the object
whose stringID matches the stringID passed in the second parameter of
the Information( ) function call. We also use the string ID of each field
so the Information( ) function knows from which field to get the text.

II Set up the pointers to the window fields.
inputField = (UIW_STRING *}Information(I_GET_STRINGID_OBJECT,

"DCT_INPUT") ;
definitionField = (UIW_TEXT *}Information(I_GET_STRINGID_OBJECT,

"OCT_DEFINITION") ;
antonymField = (UIW_STRING *)Information(I_GET_STRINGID_OBJECT,

"DCT_ANTONYM") ;
synonymField = (UIW_STRING *)Information(I_GET_STRINGID_OBJECT,

"DCT_SYNONYM" ) ;

The next thing is to connect the buttons to the static user function.

2. Create a pointer to a button.

3. Then call the window's Get( ) function with the numberID assigned to
the ,Lookup button, which is DCT_LOOKUP_BUTTON. The Get()
function will return a pointer to a UIW_BUTTON object.

II Set the user functions to the buttons.
UIW_BUTTON *button;
button = (UIW_BUTTON *)Get(DCT~OOKUP_BUTTON);

button->userFunction = DICTIONARY_WINDOW::ButtonFunction;
button = (UIW_BUTTON *)Get(DCT_SAVE_BUTTON);
button->userFunction = DICTIONARY_WINDOW::ButtonFunction;
button = (UIW_BUTTO *)Get(DCT_DELETE_BUTTON);
button->userFunction = DICTIONARY_WINDOW::ButtonFunction;

The Event( ) function is where all the action takes place in our tutorial. It
traps the events generated when the user selects a button and performs the
appropriate action.

Getting Started with Zinc Programming 169



The Zinc Data File

ZIL_STORAGE
OBJECT

The constructor

The New
function

The Save
function

170

The D_ENTRY class

The dictionary entry is an instance of the D_ENTRY class, which encapsu­
lates the data in the dictionary and provides methods for creating a new entry
and saving an existing entry to a file.

The D_ENTRY class contains a private member variable called object, of
type ZIL_STORAGE_OBJECT that can be stored in the data file. We'll
use it in conjunction with DICTIONARY, which derives from
ZIL_STORAGE, to load and store data in the file.

Although D_ENTRY contains a ZIL_STORAGE_OBJECT member vari­
able, we must set up two functions in order for it to access the data file.
These functions are New( ) and Save( ).

The constructor for the D_ENTRY class takes the following three parame­
ters:

name, the name of the storage object.

file, the file containing the object. If the object is not found in the file, the
member wasLoaded is set to FALSE. Otherwise, wasLoaded is set to TRVE
and the constructor retrieves the object from the data file.

flags, which indicates whether the object is to be loaded or created. If the
program finds the entry, and if we set the VIS_CREATE flag, it will delete
the existing entry so the program can save the new entry.

When the program finds an existing entry in the data file, it loads the word,
its definition, its antonyms, and its synonyms.

When the program looks up a word in the dictionary and reads in the entry
from the data file, it calls the function D_ENTRY::New(), which creates a
new object. (New() is a static member function of D_ENTRY, not the new
operator of C++.) The reason for having a static New( ) function is so the
function can return a value indicating if the object was created successfully
or not.

The purpose of the Save( ) function is to save the object into a file. The fol­
lowing listing shows how the function stores the words:

void D_ENTRY::Save(void)
{

II Store the field information.

Getting Started with Zinc Programming



object->Store(word);
object->Store(definition);
object->Store(antonym);
object->Store(synonym);

When Save() is called, object->Store() writes the data to storage. UI_­
STORAGE actually writes the data to a temporary file and not to the actual
data file~ that work is done in UI_STORAGE::Save( ), found in the destruc­
tor for the DICTIONARY class. The destructor is called after the user sends
us the "quit" event, and the Control( ) function returns control to us.

The DICTIONARY class

The dictionary class handles the tasks of saving and loading the data to and
from the data file. To do so, DICTIONARY derives from ZIL_STORAGE,
which reads and writes Zinc data files.

We can think of ZIL_STORAGE, and therefore DICTIONARY as well, as
a file system that can change directories, make new directories, and add and
delete resources. The main difference between a ZIL_STORAGE class and
a regular file system is that ZIL_STORAGE lets us save and retrieve persis­
tent objects as well as items or objects of different types.

DICTIONARY doesn't actually save the data file when we press the .save
button~ as we learned previously, instead it caches it in a temporary file until
the program falls through the Control( ) function. Then the destructor saves
the data file using the Save() function it inherited from ZIL_STORAGE.
Using the Sayee ) function is easy. We gave the function the name of the file
to save in the constructor when we loaded the .DAT file; therefore we only
need to call the function with the parameter 1. This tells the function to save
the data file.

l

Getting Started with Zinc Programming 171



The Zinc Data File

172

Conclusion

In this chapter, we learned how to use the Zinc data file, and how to add
objects to it. This chapter also gave us some more practice on how to use
windows created in the Designer, and how to connect code to an interface. In
the next chapter, we'll learn how to extend an existing Zinc object with new
functionality.

Getting Started with Zinc Programming



Chapter 14 Virtual List

DiSPlaYing records from a database is a common programming task
often complicated by the fact that the database may have many more records
than can fit in memory at once. So, to display many records a virtual list is
needed. A virtual list does not attempt to load all the records at once. Instead,
it only loads those that are visible at any given time. In this chapter we will
learn how to use a Zinc object, UIW_TABLE, to create a virtual list.

creating a virtual list

using the UIW_TABLE class

Getting Started with Zinc Programming 173



Virtual List

Running the
program

174

What we'll do

Here are the steps we'll take in writing VLIST.CPP.

1. Create a UIW_TABLE. The UIW_TABLE class has built in virtual
capability, so no new functionality is required on our part.

2. Create the UIW_TABLE_HEADERs that are used to label the columns
and the rows.

3. Create the UIW_TABLE_RECORDs that are used to display the infor­
mation in the headers and in the table. Add all fields to the table records.

4. Create the user functions that the table records will call when they need
to update their data.

Compile the source code and run the executable. You should see the follow­
ing window on the screen:

=>1 Dictionary I... ...
'Word Definition

Bad Nol achieving an adequale slandard.
~
.-I

Bell
Hollow objecl which rings.

Benefit
Help received. charily enlerlainmenl.

Belray
Reveal wanted informalion; deceive.

Bilious
Bad-lempered; relaling 10 bile.

Bind '---,
Tie logelher; unile; wrap; obligale. ..

The table is a nonfield region so it occupies the entire window. The table has
three headers: a column header that contains a label identifying the defini­
tion column; a corner header that contains a label identifying the word col­
umn; and the row header, which contains the words. The definitions appear
as records in the table. Each definition record contains a multi-line text
object.

All movement is handled by the table. We can scroll the table up and down
using either the scroll bar or the keyboard. Table keystrokes are native to
each environment, but typically are the equivalent of <Ctrl+Up Arrow> and
<Ctrl+Down Arrow>.

Getting Started with Zinc Programming



Source code

Analyzing the
source code

The application retrieves the necessary data from disk whenever a new
record scrolls into view.

All fields in this tutorial are view only, so you won't be able to edit any
information.

· VLIST.CPP Contains all the source code for the virtual list. This
includes the following functions ..

LoadRecord ( )
RecordFunction()
RowHeaderFunction()
UI_APPLICATION::Main()

· VLIST.TXT. Contains 100 records that are dynamically read from disk
when needed by the virtual list.

· *.DEF, *.RC. The environment specific definition and resource files
required when compiling for environments Zinc supports.

· *.MAK. The compiler-dependent makefiles used to build VLIST.CPP.

The first section in the source file, VLIST.CPP, contains some pre-compiler
variable definitions and some global variable declarations.
RECORD_LENGTH is the length of each record in the data file. In our appli­
cation we are using fixed-length records. RECORD_LENGTH is different
across environments due to how each environment handles the end-of-line
character.

file is the file handle of the data file, VLIST.TXT.

maxRecords is the number of records in the data file.

The next section of the source file contains the definitions of the support
functions used in our application. The LoadRecord() function loads a
record from the data file. It takes three parameters. The first parameter is the
record number to load. The second parameter is a text buffer where the func­
tion is to place the word. The third parameter is a text buffer where the func­
tion is to place the definition.

RecordFunction( ) is a user function associated with the
UIW_TABLE_RECORD used to display the definitions. This function is
called by the UIW_TABLE_RECORD just as any user function is, when
the object becomes current, is selected, or becomes noncurrent. In addition

Getting Started with Zinc Programming 175



Virtual List

176

to being called at these times, however, a table record user function is also
called when the record needs to load its data. We will discuss this in further
detail below, where we discuss how the table operates.

RowHeaderFunction( ) is a user function associated with the
UIW_TABLE_RECORD used to display the words.

The last section in the source file contains the UI_APPLICATION­
::Main( ) function definition:

int UI_APPLICATION::Main()
{

UI_APPLICATION::LinkMain();
maxRecords = 100;
file = fopen("vlist.txt", "rb");
UIW_WINDOW *window = UIW_WINDOW::Generic(3, 2, 53, 13,

"Dictionary") ;
UI_WINDOW_OBJECT *rowPrompt, *definition;
UIW_TABLE *table = new UIW_TABLE(l, 1, 40, 10, 1, 0, 100,

ZIL_NULLP(void) , 100, TBLF_NO_FLAGS, WOF_NON FIELD REGION
WOF_NO_ALLOCATE_DATA) ;

UIW_TABLE_HEADER *cornerHeader = new
UIW_TABLE_HEADER(THF_CORNER_HEADER);

UIW_TABLE_HEADER *colHeader = new
UIW_TABLE_HEADER (THF_COLUMN_HEADER) ;

UIW_TABLE_HEADER *rowHeader = new
UIW_TABLE_HEADER(THF_ROW_HEADER);

*cornerHeader
+ &(*new UIW_TABLE_RECORD(8, 1)

+ new UIW_PROMPT(l, 0, "Word"));
*colHeader

+ &(*new UIW_TABLE_RECORD(40, 1)
+ new UIW_PROMPT(l, 0, "Definition"));

*rowHeader
+ &(*new UIW_TABLE_RECORD(12, 2, RowHeaderFunc)

+ (rowPrompt = new UIW_PROMPT(l, 0, "")));
*table

+ new UIW_SCROLL_BAR(O, 0, 0, 0, SBF_CORNER)
+ new UIW_SCROLL_BAR(O, 0, 0, 0, SBF_VERTICAL)
+ new UIW_SCROLL_BAR(O, 0, 0, 0, SBF_HORIZONTAL)
+ cornerHeader
+ colHeader
+ rowHeader
+ &(*new UIW_TABLE_RECORD(37, 2, RecordFunction)

+ (definition = new UIW_TEXT(l, 0, 35, 2, '''', 80,
WNF_NO_FLAGS, WOF_VIEW_ONLY)));

rowPrompt->StringID("ROW_PROMPT");
definition->StringID( "DEFINITION");
*window

Getting Started with Zinc Programming



Program flow

Table structure

+ table;
*windowManager

+ window;
II Process user. responses.
UI_APPLICATION::Control();
fclose (file) ;
return (0);

This is where we set up the application by opening the data file, creating the
window, the table, and all the subobjects of the table, and processing the user
events.

When the application starts, it creates a window, places a table on the win­
dow, and adds the window to the Window Manager. As the table is display­
ing a record for the first time-for example, when the table is first coming
up or as a new record is scrolled into view-the table record's user function
is called to load the data. All events are handled by the table and its subob­
jects.

Using the UIW_TABLE object

In keeping with the philosophy of Zinc, the UIW_TABLE object offers us a
good deal of flexibility-a record can consist of a single field, as it does in
this application, or it can be made up of many different fields. The table can
have a single column, or it can be made up of dozens of columns, as a
spreadsheet might be. The table can handle memory allocation for you, or
you can take care of it yourself.

Along with all this flexibility, however, comes a certain amount of complex­
ity. So we're going to devote the rest of this chapter to a discussion of the
basics of using the UIW_TABLE.

When we break it down, we find that a table consists of records of data and
some labels identifying each field III the data records. The
UIW_TABLE_RECORD class displays records, and the UIW_TABLE_-

Getting Started with Zinc Programming 177



Virtual List

HEADER class displays the column and row labels. All data manipulation
is handled at the table record level. And lastly, standard Zinc window objects
comprise data and label fields. Here's a representation of a table object:

header

Label

record

record

header

Label

Object 1

object

Label

Object 2

The table record

The table header

178

header

A table record, similar to a window, is simply a collection of fields that are in
some way related. In fact, the UIW_TABLE_RECORD class derives from
UIW_WINDOW, and we create and add fields to the table record just as
would add window objects to a window. When creating a table record we
specify its height and width and associate a user function with it. We will
talk about the user function later when we discuss how we get data into a
record.

The table header is like a small table that appears in a special area of the
table. Instead of being used to input and output data, though, the header only
displays information, usually describing the contents of the column or row

Getting Started with Zinc Programming



Adding records
to the list

Adding fields to
the records

with which it is associated. The header appears down the left edge of the
table, in the upper-left corner of the table, or across the top of the table,
depending on the table header's flag setting. Often, several fields are needed
in a header, typically because the data being described by the header consists
of several fields. For this reason, we add each label field to a table record and
add the table record to the header. The table header is, in turn, added to the
table. Our application only uses one field in the header, but we can see this
hierarchy of additions in the code:

UIW TABLE HEADER *rowHeader = new- -
UIW_TABLE_HEADER(THF_ROW_HEADER);

*rowHeader
+ &(*new UIW_TABLE_RECORD(12, 2, RowHeaderFunc)

+ (rowPrompt = new UIW_PROMPT(l, 0, "")));

*table

+ rowHeader

You may have noticed that only one UIW_TABLE_RECORD was added to
the table and to each of the table headers.

*table

+ &(*new UIW_TABLE_RECORD(37, 2, RecordFunction)
+ (definition = new UIW_TEXT(l, 0, 35, 2, "", 80,

WNF_NO_FLAGS, WOF_VIEW_ONLY)));

If the dictionary we displayed in our application has 100 records, and if there
were typically 5 or more records displayed at any given time, how did the
one record become 1OO? The answer lies in one of the most useful features
of the table object, its built-in virtual capability. We only add one record, but
the table makes it look as if there are many records. The details of how it
does this are not relevant to our discussion, but in a nutshell it makes a copy
of the record we add and then uses that copy to draw images of all the
records except the current one.

Each field of data, whether it is a label on a header or a part of a data record,
is created using a window object. If we place the object in a header, using a
UIW_PROMPT is usually sufficient, since this data can never be edited.
The fields in a data record, however, will often both display information and
collect information from the user. These fields can be just about any window
object.

Getting Started with Zinc Programming 179



Virtual List

Getting the data
into the fields

180

To set the fields in a record, simply create them and add them to the table
record just as you would add them to a window. Their size and position
parameters are used to place the object within the region of the table record,
and their other flag settings will affect their operation and appearance. Let's
look at our definition record:

+ &(*new UIW_TABLE_RECORD(37, 2, RecordFunction)
+ (definition = new UIW_TEXT(l, 0, 35, 2, "", 80,

WNF_NO_FLAGS, WOF_VIEW_ONLY)));

The definition record only contains a UIW_TEXT object. We can see from
the parameters that it is placed one cell from the left of the table record, is 35
cells wide and two cells tall. It has a maximum length of 80 characters, is
view only, and has no border.

If we look at the header used to label the definition record we will see how
the two are related:

*colHeader
+ &(*new UIW_TABLE_RECORD(37, 1)

+ new UIW_PROMPT(l, 0, "Definition"));

The label is created using a UIW_PROMPT that is placed one cell from the
left of the table record, so it aligns with the text of the definition field.

So, if most of the data we see is actually only an image of the fields, and if
we only add one table record to the table or header, how does the data get
there?

There are several ways to place data into the table. One way is to pass the
data in to the UIW_TABLE constructor. This, of course, won't work if there
is more data than can fit in memory at one time. This also only provides data
for the data in the table, but not for the headers. We wanted all of our data to
come from the data file so we didn't give the table any memory and we set
its WOF_NO_ALLOCATE_DATA flag so that it would not attempt to allo­
cate memory for our data. We can see this in the call to the UIW_TABLE
constructor:

UIW_TABLE *table = new UIW_TABLE(l, 1, 40, 10, 1, 0, 100,
ZIL_NULLP(void) , 100, TBLF_NO_FLAGS, WOF_NON_FIELD_REGION
WOF_NO_ALLOCATE_DATA) ;

If we wanted to initialize some data at the beginning, we could have passed
in a data block-for example, an array of structures, each containing data for
a single record-and indicated how many records of data that block con­
tained.

Getting Started with Zinc Programming



Another way to get data into the records is by using user functions with the
table records. This is the method we used in VLIST. Whenever a table
record needs to have its data set, it calls the user function. Let's look at the
definition field's user function, RecordFunction( ):

EVENT_TYPE RecordFunction(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode)

if (ccode == S_SET_DATA)
{

ZIL_ICHAR definition[80];
LoadRecord(event.rawCode, ZIL_NULLP(ZIL_ICHAR), definition);
object->Get("DEFINITION")->Information(I_SET_TEXT,

definition) ;
}

return (ccode);

As we mentioned earlier, in addition to the usual times that a user function is
called, a user function associated with a table record is called when the table
record needs its data set. In our user function we check to see if the ccode is
S_SET_DATA, the message we'll get when we need to set the record's data.
If it is, we call LoadRecord( ) to load the record from disk. The record num­
ber is passed in event.rawCode. If the table record had any memory allocated
for its data-VLIST does not, since we neither passed any to the table con­
structor, nor set the WOF_NO_ALLOCATE_DATA flag for the table-the
pointer to this data would be passed in event.data. After we get the definition
back from LoadRecord() we get a pointer to the text object in the table
record that displays the definition and set its data with our definition. And
the table takes care of the rest. If we wanted to, we could use this user func­
tion to save data whenever the object was becoming noncurrent or perform
some other action if the object is selected.

A third way of updating a record's data is similar to using the user function.
Instead of the user function, however, we could derive our own table record
class and trap the S_SET_DATA event in its Event( ) function.

Getting Started with Zinc Programming 181



Virtual List

182

Conclusion

N ow that we've learned how to write a virtual list and how to use event
map tables, we'llieam about deriving our own custom device classes. This
will give us the ability to write programs that respond to user input in ways
we can define.

Getting Started with Zinc Programming



Chapter 15 Deriving a Device

In this chapter, we'll learn how to derive our own device. We'll create a
macro device that will watch the events flowing through the system to see if
the user presses certain macro keys. If the user does press a macro key, the
device will enter some text into a text object.

how to work with input devices

how to write a simple keyboard macro

how to inmalize the macro device class and its base class

Getting Started with Zinc Programming 183



Deriving a Device

Source code

Program
execution

184

What we'll do

The source code for this program is located in the \zINC\TUTOR\MACRO
subdirectory, and contains the following files:

· MACRO.CPP This file contains the macro device member functions
MACRO_HANDLER::Event() and MACRO_HANDLER::Poll(),
as well as the main program loop inside UI_APPLICATION::Main().

· *.DEF, *.Re. The environment specific definition and resource files.

· *.MAK. The compiler-dependent makefiles. See "Appendix A-Com­
piler Considerations" for information on compiling for each Zinc-sup­
ported platform.

Let's begin by looking at how the keyboard macro works. To do this, com­
pile and run the application MACRO.EXE. The following window should
appear on the screen:

=1 Text Window 1 ... 1'"
~
i-'

~

+

The current object in the window is a text object, which, in this case, is a
nonfield region that takes up the entire region within the window. In addition
to a text object, this program has four macro keys.

TABLE 12. Macro keys and their function

Keys Function

<FS> Enters the text "Macro #1." into the text window.

<F6> Enters the text "Macro #2." into the text window.

<F7> Enters the text "Macro #3." into the text window.

<F8> Enters the text "Macro #4." into the text window.

Getting Started with Zinc Programming



Class definitions The macro device is implemented in a class called MACRO_HANDLER.
Here's its definition:

const EVENT_TYPE E_MACRO = 89;
struct MACRO PAIR

RAW_CODE rawCode;
char *macro;

} ;

class MACRO_HANDLER public UI_DEVICE
{

public:
MACRO_HANDLER(MACRO_PAIR *_ffi3.croTable);
EVENT_TYPE Event(const UI_EVENT &event);

private:
MACRO_PAIR *macroTable;
MACRO_PAIR *currentMacro;
int offset;
void Poll (void) ;

} ;

MACRO_HANDLER uses the following definitions and member vari­
ables:

. E_MACRO, a constant value that uniquely identifies the macro device.
Zinc predefines the values for the keyboard, mouse, and cursor devices,
but leaves other values open for input devices that we design ourselves.
We'll discuss later in this chapter the significance of the value 89.

. MACRO_PAIR, a structure that allows us to define a keyboard/macro
equivalent pair. Below is the definition of the four macro keys we will
use in our sample program:

MACRO_PAIR macroTable[]
{

{ FS, "Macro #1." },
{ F6, "Macro #2." },
{ F7, "Macro #3." },
{ F8, "Macro #4." },
{ 0, NULL}

} ;

Getting Started with Zinc Programming 185



Deriving a Device

Program flow

186

The entry { 0, NULL} is an end-of-array indicator. In addition, F5, F6,
F7 and F8 in the array above requires us to define a constant value called
USE_RAW_KEYS. This definition allows us to have access to the raw
scan codes defined in UI_MAP.HPP.

· macroTable, a pointer to the table that contains the rawCode/macro pairs
to be matched.

· currentMacro, a pointer to the current, or active, macro. This value is
reset whenever a new macro key is pressed.

• offset, a value that gives the position within the currentMacro->macro
character array. We use this when the macro device places a keyboard
event into the Event Manager's event queue.

The code sample and the corresponding steps show how the macro device
works after we attach it to the Event Manager.

1. When the programmer calls eventManager->Get(), it calls the device's
Poll( ) function. The first thing the Poll( ) function does is get the next
event waiting to be processed from the event queue so it can determine if
it is a macro key. The code for this step is shown below.

void MACRO_HANDLER::Poll(void)
{

II See if any events are in the event manager's event queue.
DI_EVENT event;
static int emptyQueue = TRUE;

if (emptyQueue)
emptyQueue = eventManager->Get(event,

Q_NO_POLL I Q_NO_BLOCK I Q_NO_DESTROY I Q_BEGIN);

When calling eventManager->Get(), we need to ensure we don't disrupt
normal event handling; we do this by calling Get( ) with four parameters,
Q_NO_POLL, Q_NO_BLOCK, Q_NO_DESTROY, and Q_BEGIN.

The Q_NO_POLL flag prevents the Event Manager from polling any
other input devices. Since we are receiving user input while in a function
of an input device, we must be careful to not poll input devices, causing
unwanted recursion.

The Q_NO_BLOCK flag protects against stopping program execution
until an event is detected. We set this since we only want to check the
event queue to see if an event is available. If there is an event in the
queue, the function returns a value of O. Otherwise, it returns a negative
value.

Getting Started with Zinc Programming



The Q_NO_DESTROYflag prevents the Get() function from destroying
the contents of the queue merely by looking for special keyboard events.
This flag allows us to examine the events without removing them from
the queue.

Q_BEGIN lets our function get events from the beginning, rather than the
end, of the queue.

2. The second step is to check for events specific to a particular environ­
ment. If our program receives these types of events, they are mapped to
the generic Zinc event format for processing. Here's an example of how
our program maps events for some operating systems.

II Check for environment-specific keyboard events.
#if defined (ZIL_MSWINDOWS)

if (state = D_OFF && !errptyQueue && event.type = E_MSWINroVS &&
event.message.message == WM_KEYDOWN)

#elif defined (ZIL_OS2)
if (!emptyQueue && event.type == E_OS2 &&

event.message.msg == WM_CHAR)

#elif defined (ZIL_MOTIF)
if (!emptyQueue && event.type == E_MOTIF &&

event.message.type == KeyPress)

#endif

}

3. This step determines if a macro key was pressed, and if so, which one.
The program only executes this step if the device is not already process­
ing a macro key. If the user has pressed a valid macro key, the program
shuts off all other input devices, so they won't feed more information into
the queue while we are putting into the queue our macro events.

Next, the original macro key is removed from the Event Manager's event
queue and the macro device is enabled.

4. The program only executes the fourth step if the macro device is enabled.
Once the macro device is enabled, it feeds one event into the event queue
each time its Poll( ) routine is called, but only if there are no other events
waiting to be processed by the Event Manager. Once the macro device

Getting Started with Zinc Programming 187



Deriving a Device

Base class
initialization

188

runs out of input information, it changes its state to D_OFF. This pre­
vents the fourth step from being executed until another macro key is
pressed.

II Put macro information into the event queue.
if (state ~~ D_ON && emptyQueue)

5. The main program loop processes all event information, including the
macro key expansions, by calling windowManager->Event( ). The main
program loop exits if the L_EXIT message is received, or it returns to the
first step to get the next event.

The MACRO_HANDLER class constructor is an inline function.

class MACRO HANDLER : public VI DEVICE
{

public:
MACRO_HANDLER(MACRO_PAIR *_rnacroTable) : UI_DEVICE(E_MACRO, D_OFF),

rnacroTable(_rnacroTable) { installed = TRUE; }

We call UI_DEVICE's class constructor before any we set any class-spe­
cific information. It requires the specification of the device's type,
E_MACRO, and its initial state, D_OFF.

The Event Manager uses the input device type to determine the device's
order in the list. Input devices are arranged in the device list in ascending
type order. The order of the four input devices we attached to the Event Man­
ager is:

· UID_KEYBOARD. Its value is 10, the number associated with the con­
stant variable E_KEY.

· UID_MOUSE. Its value is 30, the number associated with the constant
variable E_MOUSE.

· UID_CURSOR. Its value is 50, the number associated with the constant
variable E_CURSOR.

· MACRO_HANDLER. We assigned it the value 89, so that it would be
the last device in the list.

Here's why the macro handler should be the last device in the list. Its Poll( )
function must review any activity since the last call to
eventManager->Get( ).

Getting Started with Zinc Programming



Initializing
member
variables

For example, if the user presses <FS>, the keyboard's Poll( ) function will
put the character <FS> into the Event Manager's event queue.

Later, the macro device's Poll() function will be called. When it is, the
macro handler will find the <FS> value entered by the keyboard.

If we assign the macro handler a lower number than that assigned to the key­
board, the macro handler will always check the event queue before the key­
board feeds its information and will never see the <FS> key, and it will be
passed to the main control before the macro handler is called again.

The initial state of the macro device needs to be off so that the program
doesn't think macro information is being fed into the event queue. The Event
Manager does not look at the state of devices, but devices generally use the
information internally to determine what types of operations to perform. The
macro device can be either on or off.

1. D_OFF When the macro device is not placing events into the event
queue, it sets itself to this state.

2. D_ON. When the macro device places events into the event queue, it sets
itself to this state.

The Event Manager and VI_DEVICE set three other variables:

enabled, a second-level state indicator. VI_DEVICE sets this variable to be
TRUE, but the macro device ignores it.

display, a pointer to the screen display created in the main event loop. Not
set until the macro device is attached to the Event Manager. The macro
device does not use display.

eventManager, a pointer to the Event Manager where the macro device is
attached. The macro device uses this pointer to make queries on and place
events in the event queue.

The class member macroTable is initialized to point to the constructor argu­
ment _macroTable. This variable is the search table for keyboard/macro
expansions. The array specified in this argument must not be destroyed until
the class is destroyed by the Event Manager.

The last thing the class constructor does is override the base class member
installed. The value specified is TRUE. This value is not used by the Event
Manager, but it does provide consistency when checking for device installa­
tion.

Getting Started with Zinc Programming 189



Deriving a Device

The Poll function

•

190

The class members currentMacro and offset are not set until the state of the
device changes to D_ON.

We mentioned MACRO_HANDLER::Poll() function earlier in this chap­
ter. Poll( ) functions do the following:

1. Feed information to or get information from the Event Manager's event
queue. The keyboard, mouse, cursor, and timer devices all have poll rou­
tines that feed information into the event queue.

2. Pass control to an object periodically. Some environments Zinc supports
don't multitask, and so using a poll routine in those environments ensures
the program will poll all devices each time it calls the eventManager->
Get( ) function. The cursor device uses a poll routine to paint and remove
an XOR region to the screen, simulating a blinking cursor. It does this by
keeping track of time intervals and blinking the cursor at regular inter­
vals .

"How do I install hotkeys?"

Any prompt or selectable object such as a button or menu item
can have a hot key. If the object is attached to a window added to
the window manager, all you need to do is place the '&' before the
desired hotkey in the object's text. If you want the object to
respond to special characters, such as '#,' you may need to copy
the library's hotKeyMapTable and add entries for the special char­
acters. The Iibrary's hotKeyMapTable is defined in G_WIN.CPP.

If you want to place the hot key object in a group, list, or child win­
dow, pass HOT_KEY_SUB_WINDOWto the parent object's
HotKey( ) function. This tells the parent window to search its sub­
objects for a match on the hot key. For more details, see
UI_WINDOW_OBJECT::HotKey() in the Programmer's Refer­
ence, Volume 1.

The macro device feeds information to and gets information from the Event
Manager. When the device is on, it feeds information into the event queue
and checks the input when it is off.

Getting Started with Zinc Programming



Responding to
events

Enhancements

The MACRO_HANDLER::Event() function is defined below:

class MACRO HANDLER : public DI_DEVICE
{

public:
EVENT_TYPE Event(const DI_EVENT &eVent)i

This routine must be declared by the macro device since the base
UI_DEVICE declares it a virtual function.

class DI DEVICE : public DI_ELEMENT

public:
virtual EVENT_TYPE Event(const DI_EVENT &event) = Oi

Generally, we use Event( ) functions to change the state of an input device.

Now that we have discussed the design and implementation of a macro
device, let's look at some variations we could implement to make the class
more powerful.

1. Stuff the input buffer all at once, rather than one character at a time. This
could be accomplished by modifying the Poll( ) routine to put all macro
characters into the event queue in one step. The benefits of this method
are that it simplifies the process of the macro device and that it prevents
the need for disabling all other input devices. The problem with this
implementation is twofold.

First, the macro may fill the input buffer, in which case we will have to
write code to wait until the buffer is not full. Second, the macro may
itself contain a character that is a macro key. This would require modifi­
cation to our member variables and may cause recursion of macro events.

2. Modify the static variables UIW_STRING::pasteBuffer and UIW­
_STRING::pasteLength to contain the macro, then send an L_PASTE
message through the system. This implementation's only drawbacks
would be wiping out the old information in the global paste buffer and
that the receiving object may not be a simple text field, like the window
created in our application.

3. Extend the macro device to enable the addition or deletion of macro
pairs. This could be accomplished by overloading the + and - operators
for the MACRO_HANDLER class.

4. Extend the macro pair to handle logical, system, or normal keyboard
information. In this implementation, we would modify the definition of
MACRO_PAIR.macro to support UI_EVENT information, rather than

Getting Started with Zinc Programming 191



Deriving a Device

192

simple character values. In addition, we would probably want to write an
editor so that the macro could be edited and modified easily. This would
require setting up an edit window using the UIW_WINDOW class that
contained the macro key, a list of mapping events, and menu items or but­
tons that would let us add to, delete from, or modify the contents of the
list.

Conclusion

N ow that we've learned how the keyboard macro device works, we'll
learn to derive our own custom display classes. This will give us the ability
to write displays built around third-party graphics libraries and will teach us
more about the display class.

Getting Started with Zinc Programming



Chapter 16 Customized Displays

In order to display infonnation on the screen under each of the operating
environments Zinc supports, we use a display object to handle drawing
chores. Writing display classes from scratch would consume a great amount
of time, so Zinc designed VI_DISPLAY, which is an abstract class that
describes basic behaviors of drawing but leaves the implementation up to us.
Here we will use VI_DISPLAY to derive a display class for a specific
graphics library, VI_BGI_DISPLAY.

the basics of designing of a display class

initializing the display class and its base class

giving a display class custom behavior

Getting Started with Zinc Programming 193



Customized Displays

Using the class

Source code

194

What we'll do

All display classes derive from VI_DISPLAY, which handles the details of
the display. But VI_DISPLAY doesn't automatically know what those
details are; we need to define those behaviors in our derived display,
UI_BGI_DISPLAY. To tell VI_DISPLAY about those details, we must take
three steps.

1. Decide which virtual functions contained in VI_DISPLAY we'll imple­
ment in our derived display, VI_BGI_DISPLAY.

2. Determine the coordinate system. This depends on whether the display is
running in text or graphics modes. The coordinate system is always left­
top, zero-based, where {O,O} is the coordinate of the left-top comer of the
screen, and where the type of display and the mode in which it is running
determines the right-bottom coordinates.

3. Define clip regions, or identifying rectangular regions of the screen
where windows overlap. For example, if two windows were attached to
the screen, the display would contain several rectangular regions with
different identifications. Most environments handle drawing routines as
well as clipping.

A display class defines some methods for drawing on the screen. We begin
defining those methods by deciding basic properties of the screen like the
types of fonts, the number of columns and lines, and whether the display is
color or monochrome. Then we declare the behaviors we want our display
class to use, behaviors like starting up the display, and others like drawing
lines, polygons, or rectangles.

The source code for this example is located in \zINC\TVTOR\DISPLAY,
and contains:

· TEST.CPP, a test program.

· BORLAND.MAK, the makefile associated with the test program.

· D_BGIDSP.CPP, located in \ZINC\SOVRCE, contains the BGI class
constructor, destructor, and associated display member functions.

To derive the VI_BGI_DISPLAY class, we need the graphics display
library GRAPHICS.LIB, and its BGI files, EGAVGA.BGI, CGA.BGI, and
HERC.BGI, provided with the Borland compiler. Even if we're not using

Getting Started with Zinc Programming



the Borland compiler, or even if we won't derive our own display later on,
we can stillieam the design and implementation of display classes by study­
ing this chapter.

Besides setting up information needed for working with screens,
VI_DISPLAY initializes the following member variables:

• installed, which tells whether the display has been installed. By default,
VI_DISPLAY sets it to FALSE. We need to tell our derived display con­
structor to set this variable to be TRUE if the graphics display installs
correctly.

· isMono, which tells whether the display is operating in monochrome
mode.

• cellWidth and cellHeight, the width and height values of a cell coordi­
nate. If the program is running in text mode, cellWidth and cellHeight are
1. Otherwise, the values of cellWidth and cell Height are determined by
the graphics mode and default font size. For example, the
VI_BGI_DISPLAY class constructor sets cellWidth to 7 and cellHeight
to 23.

· columns and lines, the columns or lines the display contains. The follow­
ing table shows BGI's values for columns and lines:

TABLE 13. BGI display values

Display Columns Lines

Text 80 25

40 25

80 43

80 50

CGA 320 200

MCGA 320 200

EGA 350 480

VGA 640 480

· preSpace denotes the size in pixels of the white space between the top
border of a string field and the tallest character. By default, preSpace is
set to 2.

• postSpace denotes the size in pixels of the white space between the bot­
tom border of a string field and the lowest character. By default,
postSpace is set to 2.

Getting Started with Zinc Programming 195



Customized Displays

Initializing the
base class

196

· miniNumeratorX and miniDenominatorX determine the width of a mini­
cell. miniNumeratorX is set to 1 and miniDenominatorX is set to 10.
These values default to 1/l0th of a cellwidth. Mini-cells provide for more
precise positioning of objects and are available in graphics modes only.

· miniNumeratorY and miniDenominatorY determine the height of a mini­
cell. miniNumeratorY is set to 1 and miniDenominatorY is set to 10.
These values default to 1/1Oth of a cellheight. Mini-cells provide for
more precise positioning of objects and are available in graphics modes
only.

· backgroundPalette is a pointer to the background color palette. When ini­
tialized, this static pointer points to the VI_PALETTE structure,
_backgroundPalette, contained in G_DSP.CPP.

· xorPalette is a pointer to the XOR color palette. When initialized, this
static pointer points to the VI_PALETTE structure, _xorPalette, con­
tained in G_DSP.CPP.

· colorMap is a pointer to the normal color palette. When initialized, this
static pointer points to the VI_PALETTE structure, _colorMap, con­
tained in G_DSP.CPP.

Since our derived display uses VI_DISPLAY's methods, we must first ini­
tialize VI_DISPLAY before we initialize VI_BGI_DISPLAY. To initialize
it, we call inside of VI_BGI_DISPLAY the VI_DISPLAY constructor with
three arguments, isText, _operatingSystem, and _windowingSystem.

UI_DISPLAY (FALSE , _operatingSystem, _windowingSystem)

When we call this function, VI_DISPLAY sets up then information needed
for working with screens. To be able to write display classes, we need not
understand what VI_DISPLAY does-we can treat VI_DISPLAY as a
black box.

This black box notion is a benefit of Zinc and of object orientation in gen­
eral. It allows us to use the functionality of another class without having to
understand how it works. All we need to know is how to pass parameters and

Getting Started with Zinc Programming



Initializing
UI BGI DISPLAY

arguments into the class and let it do our work for us. If not for Zinc's true
object orientation, writing our own display class would mean duplicating
much of the work Zinc has already done.

Here's where we pass parameters and arguments into VI_DISPLAY's con­
structor. isText is the first variable in the constructor, which tells whether a
text display will be created-since we're creating a graphics display, this
value is FALSE. We'll already know the values for the _operatingSystem and
_windowingSystem variables before we write the class.

After initializing VI_DISPLAY to use its methods for working with screens,
we have to initialize VI_BGI_DISPLAY's member variables. Below are the
steps VI_BGI_DISPLAY's constructor follows to initialize them.

1. Register the system, dialog, and small fonts contained in the .CUR files
in \zINC\SOVRCE. We can modify these fonts with the Borland font
editor, and we must compile them with the Borland utility
BGI20BJ.EXE, which translates them to .OBJ files. Once translated,
the fonts are linked automatically into the program.

II Register the system, dialog and small fonts linked in.
BGIFONT BGIFont = {O, 0, 1, 1, 1, 1, 0, 0 };
BGIFont.font = registerfarbgifont(SmallFont);
if (BGIFont.font >= 0)
{

BGIFont.charSize = 0;
BGIFont.maxwidth = 10;
BGIFont.maxHeight = 11;
UI_BGI_DISPLAY::fontTable[FNT_SMALL_FONT] = BGIFont;

}

BGIFont.font = registerfarbgifont(DialogFont);
if (BGIFont.font >= 0)
{

BGIFont.charSize = 0;
BGIFont.maxWidth = 11;
BGIFont.maxHeight = 11;
UI_BGI_DISPLAY::fontTable[FNT_DIALOG_FONT] = BGIFont;

}

BGIFont.font = registerfarbgifont(SystemFont);
if (BGIFont.font >= 0)
{

BGIFont.charSize = 0;
BGIFont.maxWidth = 11;
BGIFont.maxHeight = 13;
UI_BGI_DISPLAY::fontTable[FNT_SYSTEM_FONT) = BGIFont;

Getting Started with Zinc Programming 197



Customized Displays

198

2. Determine the type of display. In the Borland graphics library we can
determine the type of display by calling detectgraph( ). The driver and
mode arguments of the constructor allow us to override this default detec­
tion.

II Find the type of display and initialize the driver.
if (driver == DETECT)

detectgraph(&driver, &mode);
int tDriver, tMode;

3. Find the display's graphics driver. The current working directory is the
first place we look, and the second is the originating directory of the pro­
gram. If these fail, we use the VI_PATH object to search the directories
specified by the environment variable PATH. If the driver cannot be
found, the installed flag remains FALSE, and we drop out of the initial­
ization process.

II Use temporary path if not installed in main().
int pathInstalled = searchPath ? TRUE : FALSE;
if (!pathInstalled)

searchPath = new UI_PATH;
canst char *pathName = searchPath->FirstPathName();
do

tDriver = driver;
tMode = mode;
initgraph(&tDriver, &tMode, pathName);
pathName = searchPath->NextPathName();

} while (tDriver == -3 && pathName);
if (tDriver < 0)

return;
driver = tDriver;
mode = tMode;

II Delete path if it was installed temporarily.
if (!pathInstalled)

delete searchPath;
searchPath = NULL;

4. Set up columns, lines, and maxColors variables that we discussed earlier.

columns = getmaxx() + 1;
lines = getmaxy() + 1;
maxColors = getmaxcolor() + 1;

Getting Started with Zinc Programming



Display
destructor

Drawing on the
screen

5. Set up the default font, initialize eellWidth and eellHeight, fill the back­
ground screen, and define the new display region, which is, in our case,
the entire screen. Since the display was successfully installed, the con­
structor sets installed to TRUE.

II Fill the screen according to the specified palette.
SetFont(FNT_DIALOG_FONT);
cellWidth = (fontTable[FNT_DIALOG_FONT).font == DEFAULT_FONT) ?

TextWidth( "M", ID_SCREEN, FNT_DIALOG_FONT) : I I Bitmap font.
TextWidth( "M", ID_SCREEN, FNT_DIALCG_FONI') - 2; I I Stroked font.

cellHeight = TextHeight(NULL, ID_SCREEN, FNT_DIALOG_FONT) +
preSpace + postSpace + 4 + 4; II 4 above and 4 below the text.

SetPattern(backgroundPalette, FALSE);
setviewport(O, 0, columns - 1, lines - 1, TRUE);
bartO, 0, columns - 1, lines - 1);

II Define the screen display region.
Add (NULL, new UI_REGION_ELEMENT(ID_SCREEN, 0, 0, columns - 1,

lines - 1));
installed = TRUE;

The class destructor for UI_BGI_DISPLAY only has to do a small amount
of work-it need only restore the display by calling closegraph(), which
restores the screen.

UI_BGI_DISPLAY::-UI_BGI_DISPLAY(void)
{

II Restore the display.
if (installed)

closegraph ( ) ;

The Rectangle( ) function

To show how to draw on the screen, let's examine the
UI_BGI_DISPLAY::Rectangle() function. All drawing functions,
Rectangle( ) included, work similarly-first we set up a draw region, then
we draw inside of it. Here are the steps this function, or a rectangle function
for any other display class, will take.

Getting Started with Zinc Programming 199



Customized Displays

200

1. Set up the desired draw region. In our Rectangle( ) function, we've spec­
ified two regions. The first region is where we draw the rectangle, other­
wise called the fill region. We define this region with four coordinates:
left, top, right, and bottom. The second region is specified by clipRegion,
which describes where the drawing should be clipped. The clip region
associates the screen identifications of window objects with a window. A
window may contain several different window objects, such as buttons,
title bar, and borders, but all the objects share the same identification,
which ensures that one window object does not draw over another.

The way we ensure that window objects don't draw over one another is to
specify a clipRegion that is the true coordinates of the object that wants
to draw to the screen. The object's true screen coordinates are contained
in the public UI_WINDOW_OBJECT::true.

II Assign the rectangle to the region structure.
DI_REGION region, tRegion;
if(!RegionInitialize(region, clipRegion, left, top, right, bottom))

return;

II Draw the rectangle on the display
int changedScreen = FALSE;

2. Identify. Determine which areas of the screen have the same identifica­
tion as that passed down by the screenID argument. To do this, our pro­
gram walks through the list of region elements and checks their
identifications with screen/D's. If the IDs match, and if the screen region
and the region specified overlap, the program executes the third step.

for (UI_REGION_ELEMENT *dRegion = First();
dRegion;
dRegion = dRegion->Next())
if (screenID == ID_DIRECT I I

(screenID == dRegion->screenID &&

dRegion->region.averlap(region, tRegion)))

if (screenID == ID_DIRECT)
tRegion = region;

if (!changedScreen)
{

changedScreen = VirtualGet(screenID, region. left,
region.top, region.right, region.bottom);

SetPattern(palette, xor);
}

3. Clip. The best way would be to set up all the clip regions at once and then
draw the image. Unfortunately, the BGI graphics library does not support
multiple clip regions, and so we must walk through the list of regions and

Getting Started with Zinc Programming



Information
member
functions

display the image each time we find an overlapping region. Note that for
operating systems that associate a handle with a window object, screenID
is set to the window handle.

setviewport(tRegion.left, tRegion.top, tRegion.right,
tRegion.bottom, TRUE);

if (fill && xor)11 Patch for Borland bar() xor bug.
{

for (int i = 0; i < tRegion.right - tRegion.left; i++)
line(i, top - tRegion.top, i, bottom - tRegion.top);

}

else if (fill)
bar(left - tRegion.left, top - tRegion.top,

right - tRegion.left, bottom - tRegion.top);
for (int i = 0; i < width; i++)

rectangle(left - (tRegion.left - i), top ­
(tRegion.top - i), right - (tRegion.left + i),
bottom - (tRegion.top + i));

if (screenID == ID_DIRECT)
break;

}

4. Draw. The low-level display calls depend on the type of function, such as
Rectangle( ), Ellipse( ), Polygon( ), and whether the fill parameter is
TR UE or FALSE.

void UI_BGI_DISPLAY::Rectangle(SCREENID screenID, int left, int top,
int right, int bottan, canst UI_PAIEITE *palette, int width, int fill,
int xor, const UI_REGION *clipRegion)

{

5. Update the screen quickly with VirtualGet( ) and VirtualPut( ). Briefly,
these functions allow us to optimize repetitive drawing tasks by copying
part of the display into a buffer, draw into the buffer, and then copy the
modified data out of the buffer and onto the screen. For more details, see
"VI_BGI_DISPLAY" in the Programmer's Reference.

II Update the screen.
if (changedScreen)

virtualPut(screenID);

The display has two information functions. TextHeight(), gets the maxi­
mum height of a string using a specific font. If the font parameter, logical­
Font, has an entry in the font table, its associated value is returned.
Otherwise, the Borland textheight() function is called. TextWidth() gets
the width of the text displayed in the current font. Its operation is similar to
that of TextHeight( ).

Getting Started with Zinc Programming 201



Customized Displays

202

int UI_BGI_DISPLAY::TextHeight(const char *string, SCREENID,
LOGICAL_FONT logicalFont)

logicalFont &= OxOFFF;
SetFont(logicalFont);
if (fontTable[logicalFont].maxHeight)

return (fontTable[logicalFont].maxHeight);
else if (string && *string)

return (textheight((char *)string);
else

return (textheight( "Mq"));

int UI_BGI_DISPLAY::TextWidth(const char *string, SCREENID,
LOGICAL_FONT logicalFont)

if (! string II ! (*string)
return (0);

SetFont(logicalFont & OxOFFF);
int length = textwidth((char *)string);

return (length);

Graphic display information functions must return the width and height of a
string in pixel values. In addition, the text width or height should be
returned, not the cell height and cell width defined by the eel/Width and eel/­
Height values.

Conclusion

In this chapter, we learned how to derive a display class from
UI_DISPLAY, for a specific graphics library, UI_BGI_DISPLAY. If we had
had to write UI_BGI_DISPLAY from scratch, we would have spent a lot
more time. In the next chapter, we'll learn how to use Zinc's ability to detect
language and locale at run time and change the locale of an object according
to user input.

Getting Started with Zinc Programming



Chapter 17 Using Locales

In this chapter we will begin our discussion of how to globalize a Zinc
application. We start by learning how to work with locales.

In this tutorial, we learn how to write a program for a department of Interpol,
which maintains offices in France, Germany, and the United States, and
whose responsibility is to track bank robberies in those countries. The Inter­
pol MIS director asks us to write an Incident Report program that allows
Interpol agents to record the date of the crime, the institution robbed, and the
amount stolen. Since the program might be deployed in any of the Interpol
international offices, and since the agents will record robberies in those
countries, they must be able to record the type of currency stolen with the
appropriate currency symbol.

detecting the system locale

setting an object's locale

Getting Started with Zinc Programming 203



Using Locales

Running the
program

204

What we'll do

Here are the steps we'll take in writing INTRPOLl.CPP.

1. Load the report window from the .DAT file.

2. Determine what the system's default locale is and update the window
accordingly.

3. Display the window.

4. If the user selects a different locale for the amount field, update the
field's locale information and exchange the value for the new setting.

Compile the source code and run the executable. You should see the follow­
ing window on the screen:

~I Report Window ITt...

Ineidenl Dale: 108/1011994 I
Inslilulion: I I
Amount: 1$100_00 I

Ius Dollars 10

By default, the date and the currency symbol use the system's locale. So if
the Interpol agent is running the application in Germany on a computer with
a German configuration, the date will appear in the normal German fashion,
and the amount will use the deutschemarks currency symbol. But if the Ger­
man Interpol agent records a robbery that took place in France, the program
will allow him to update the amount field with the currency symbol for
francs. Note that the date field remains in the format specified by the sys­
tem's configuration.

Getting Started with Zinc Programming



Source code

Analyzing the
source code

The source code for our tutorial is located in \zINC\TUTOR\GLOBAL,
and contains the following files:

· INTRPOLl.CPP. Contains the main event loop inside
UI_APPLICATION: :Main( ), as well as the implementation of the
REPORT_WINDOW class.

· INTRPOLl.HPP. Contains the declaration for the REPORT_­
WINDOW class and application constants and events.

· IPOLWINl.CPP. The object table for the objects we created in the
Designer.

· IPOLWINl.DAT. The data file created in the Designer. Contains the
data for creating the report window and its fields.

· IPOLWINl.HPP. The header information for the window and its fields
that we created in the Designer.

· *.DEF, *.RC. The definition and resource files when compiling for dif­
ferent environments.

· *.MAK. The compiler-dependent makefiles.

The header file has three sections, INTRPOLl.HPP. The first section
defines the following country identifiers:

canst int GERMANY = 0;
canst int UNITED_STATES = 1;
canst int FRANCE = 2;

These country name constants are used to locate the proper exchange rate
data when switching locales. We'll talk more about these constants later.

The next section contains some definitions for events specific to this applica­
tion:

canst ZIL_USER_EVENT LOCALE_FIRST
canst ZIL USER EVENT GERMAN LOC- - -
canst ZIL USER EVENT US LOC- - -
canst ZIL_USER_EVENT FRANCE_LOC
canst ZIL USER EVENT LOCALE LAST- - -

= 10000;
10000;
10001;

= 10002;
= 10010;

The program places these user-defined events on the event queue when the
user changes locales by selecting an option from the combo box. We will
trap these events in the REPORT_WINDOW::Event() function.

Getting Started with Zinc Programming 205



Using Locales

206

The third section contains the definition for REPORT_WINDOW, the class
used to display our reports. REPORT_WINDOW maintains a pointer to the
amount field and the current locale name, since they are used fairly often. It
also contains the Event( ) function and a ConvertAmount( ) function which
is used to update the amount field when the user selects a new locale. Here's
the definition for the REPORT_WINDOW class:

class REPORT WINDOW : public UIW WINDOW
{

public:
REPORT_WINDOW (ZIL_ICHAR *narne);
-REPORT_WINDOW(void);
EVENT_TYPE Event(const UI_EVENT &event);

protected:
void ConvertAmount(EVENT_TYPE ccode);

private:
UI_WINDOW_OBJECT *arnountField;
ZIL_ICHAR *currentLocaleNarne;

} ;

REPORT_WINDOW uses the following member variables:

. amountField, a pointer to the UIW_BIGNUM used to display the
amount.

. currentLocaleName, a string pointer that contains the two-letter ISO
locale name currently displayed.

The main source file, INTRPOLl.CPP, contains four sections. The first
section includes the header files:

#include <ui_win.hpp>
#include "intrpoll.hpp"
#include "ipolwinl.hpp"

Note that we included the header file generated by the Designer as well as
the header file that has our application-specific code.

The second section sets up data:

II Create static strings used in application.
static ZIL_ICHAR _USLocaleString[] {'U', 'S', 0 };
static ZIL_ICHAR _DELocaleString[] = { 'D', 'E', 0 };
static ZIL_ICHAR _FRLocaleString[] = { 'F', 'R', 0 };
static ZIL_ICHAR _arnountFieldNarne[] = {

'A','M','O','U','N','T','_','F','I','E','L','D', O};

static ZIL_ICHAR _convertBoxNarne[] = {
'C','O','N','V','E','R','S','I','O','N','S', O};

static ZIL_ICHAR _fileNarne[] = {

li','p','o','l','w','i','n','l','.','d','a','t', O}i

Getting Started with Zinc Programming



static ZIL_ICHAR _windoWName[ 1 = {

'R','E','P','O','R','T',' ','W','I','N','D','O','w', O}i

II Table for exchange rates and to identify locales.
static struct EXCHANGE

int country;
ZIL_ICHAR *ISOLocaleName;
ZIL_RBIGNUM exchangeRatei

}_exchange [ 1
{

{ GERMANY, _DELocaleString,
{UNITED_STATES, _USLocaleString,
{ FRANCE, _FRLocaleString,
{ -1, ZIL_NULLP(ZIL_ICHAR), 1.0 }

} i

1. 5 },

1. 0 },

0.5 },

The first part of this data initialization creates Unicode-compatible strings
for use in the application. The second part creates a structure that is used to
look up exchange rates and identify locales.

The third part of the main source code file contains the definitions for the
REPORT_WINDOW member functions. We will discuss the important
parts of these functions when we look at the interface, below.

The fourth section is the definition of the UI_APPLICATION::Main()
function:

int UI_APPLICATION::Main(void)

II The UI_APPLICATION constructor automatically initializes the
II display, eventManager, and windowManager variables.
II This line fixes linkers that don't look for main in the
II .LIBs.

UI_APPLICATION::LinkMain()i
II Create derived window.
UI_WINDOW_OBJECT::defaultStorage = new

ZIL_STORAGE_READ_ONLY(_fileName)i
UIW_WINDOW *window = new REPORT_WINDOW(_windowName)i
II Add window to the window manager.
*windowManager

+ windowi
II Process user responses.
UI_APPLICATION::Control( )i

II Clean up.
delete UI_WINDOW_OBJECT::defaultStoragei
return (0);

Getting Started with Zinc Programming 207



Using Locales

Program flow

Wiring up the
interface

208

We create a UI_STORAGE_READ_ONLY object to which we assign the
UI_WINDOW_OBJECT::defaultStorage. This is the .DAT file that con­
tains the Report Window. We won't describe the creation of the window
using the Designer-if you need to review this process, see "Using the
Designer" on page 139. UI_APPLICATION::Main() also creates the
Report Window and adds it to the Window Manager. The rest of this func­
tion you should be familiar with by now.

Using UI_APPLICATION::Main()'s built-in main event loop, our pro­
gram flow is simple. We load the report window from the .DAT file and add
it to the Window Manager. The report window determines what the system's
locale is and updates its combo box accordingly. If the user selects a differ­
ent locale from the combo box, the combo box option places a message on
the event queue, which the REPORT_WINDOW::Event( ) function uses.
Then the event function updates the amount field.
REPORT_WINDOW::Event() passes all other events back to its base
class, UIW_WINDOW::Event( ).

REPORT_WINDOW

Once we've created the window, the next step is to "wire up" the interface so
that we can trap user events and change the amount field's locale when the
user requests it. In the constructor for REPORT_WINDOW we get a
pointer to the amount field so that we can change its locale and value. We
then get the initial locale being used by the system by inspecting localeMan­
ager.defaultName. localeManager is a global, static instance of
ZIL_LOCALE_MANAGER. This object maintains all the application's
locales.

Once we determine the system locale, the constructor determines if the
application supports the locale by looking for the locale name in the
_exchange structure. If the application does not support that locale, we set
the application's locale to be the first entry in the structure as a default.

Getting Started with Zinc Programming



Changing
locales

After we have a valid locale for the field, we update the combo box so when
the application comes up, its selection matches the contents of the amount
field by inspecting each object attached to the combo box, comparing its
value to the current locale. Once we find the proper selection, we simply re­
add it to the combo box. This makes it the current selection.

The REPORT_WINDOW::Event() function is the heart of the application.
While it doesn't have much code in it, all our functionality really exists
there.

Whenever the user selects a locale option from the combo box, a message is
put on the event queue because the combo box options are UIW_BUTTONs
with the BTF_SEND_MESSAGE flag set. The event that is put on the queue
is one of the events that we defined in the header file. After that event is
pulled off the queue and sent to the Window Manager by the
UI_APPLICATION::Control() function, the Window Manager will route
the event to the Report Window. We trap for those messages in the Event( )
function:

EVENT_TYPE REPORT_WINDOW::Event(const UI EVENT &event)
{

II Get the logical event.
EVENT_TYPE ccode = LogicalEvent(event);
II Check to see if the event is one of ours.
H (ccode >= LOCALE_FIRST && ccode <= LOCALE_LAST)

ConvertAmount (ccode) ;

II If it's not our event, pass it to the UIW_WINDOW base class.
else

ccode = UIW_WINDOW::Event(event);
return (ccode);

Any other messages are passed to the base class's Event( ) function so that
the object can process them properly.

When we get a message to change the locale, we call
REPORT_WINDOW::ConvertAmount(), passing it the message we
received. The most important thing ConvertAmount( ) does is set the locale
for the amount field. It does this by getting a pointer to the ZIL_BIGNUM
used by the UIW_BIGNUM object, and then calling the ZIL_BIGNUM's
SetLocale( S) function:

II Set the new locale.
arnount->SetLocale(_exchange[newLocale].ISOLocaleNarne);

Getting Started with Zinc Programming 209



Using Locales

210

The rest of the code in ConvertAmount( ) is related to changing the mone­
tary value using the exchange rates, and so we won't discuss that here.

Conclusion

In this chapter, we learned how to detect which locale the system is using
and how to set which locale a particular instance of an object is using. We
also learned how to set a combo box entry. In the next chapter we will extend
this tutorial and learn how to switch languages at run time.

Getting Started with Zinc Programming



Chapter 18 Using Languages

In the last chapter we began a discussion of globalizing applications by
learning how to use locales. In this chapter we will continue by learning how
to work with languages in our application. We will continue with the Interpol
example we began in the last chapter and expand it to allow switching of lan­
guages at run time.

detecting the system language

setting the application language

Getting Started with Zinc Programming 211



Using Languages

Running the
program

212

What we'll do

Here are the steps we'll take in writing INTRPOL2.CPP.

1. Determine what the system's default language is and load the proper win­
dow.

2. Display the window.

3. If the user selects a different language for the application, load the new
window and delete the old window.

Compile the source code and run the executable. You should see this win­
dow:

=1 Report Window - English 1."'1'"
Language

Ineidenl Dale: I0811 0/1994 I
Inslilulion: I I
Amount 1$100.00 I

lu.s. Dollars 1[!)

Notice that this window is the same as the one we saw in the last chapter,
except that this window has a pull-down menu. By default, the window uses
the language used by the system if our program supports that language. So if
the Interpol agent happens to work in Germany on a computer with a Ger­
man configuration, the program will detect that and bring up a German win­
dow will appear. If the user selects a new language from the pull-down
menu, a the program will load a new window in that language and the dis­
card the old window.

Getting Started with Zinc Programming



Source code

Analyzin9 the
source code

The source code for our tutorial is located in \ZINC\TUTOR\GLOBAL,
and contains the following files:

· INTRPOL2.CPP. Contains the main event loop inside
UI_APPLICATION::Main(), as well as the implementation of the
REPORT_WINDOW class.

· INTRPOL2.HPP. Contains the declaration for the REPORT_­
WINDOW class and application constants and events ..

· IPOLWIN2.CPP. The object table for the objects we created in the
Designer.

· IPOLWIN2.EN, IPOLWIN2.DE, IPOLWIN2.FR. The data files cre­
ated in the Designer. Each contains the data for creating the report win­
dow and its fields for the language identified by the file's extension.

· IPOLWIN2.HPP. The header information for the window and its fields
that we created in the Designer.

· *.DEF, *.Re. The definition and resource files when compiling for dif­
ferent environments.

· *.MAK. The compiler-dependent makefiles.

We've defined several new events to allow INTRPOL2.HPP to changing
languages:

canst ZIL USER EVENT LANGUAGE FIRST =
- - -

canst ZIL USER EVENT GERMAN LANG
- - -

canst ZIL USER EVENT ENGLISH LANG- - -
canst ZIL USER EVENT FRENCH LANG- - -
canst ZIL USER EVENT LANGUAGE LAST

- - -

canst ZIL USER EVENT DELETE OBJECT
- - -

10020;
10020;
10021;
10022;
10030;

10040;

The first five user-defined events are those the program places on the event
queue when the user changes languages by selecting an option from the pull­
down menu. We will trap these events in the
REPORT_WINDOW::Event() function.

The last event is used to delete the old window when a new language is
selected. We trap this event in the REPORT_WINDOW::Event() function,
as well.

We added several new strings to INTRPOL2.CPP to accommodate differ­
ent languages:

static ZIL_ICHAR _enLanguageString[] = { 'e', 'n', 0 };
static ZIL_ICHAR _deLanguageString[] = { 'd', 'e', 0 };

Getting Started with Zinc Programming 213



Using Languages

214

static ZIL_ICHAR _frLanguageString[] = { 'f', 'r', 0 };

The JileName string changed slightly to reflect the different .DAT files
being used.

The _exchange structure expanded to include an entry for the language:

II Table for exchange rates and to identify locales.
static struct EXCHANGE

int country;
ZIL_ICHAR *ISOLocaleName;
ZIL_ICHAR *ISOLanguageName;
ZIL_RBIGNUM exchangeRate;

}_exchange[]
{

{ GERMANY, _DELocaleString, _deLanguageString, 1.5 },
{ UNITED_STATES, _USLocaleString, _enLanguageString, 1.0 },
{ FRANCE, _FRLocaleString, _frLanguageString, 0.5 },
{ -1, ZIL_NULLP(ZIL_ICHAR), ZIL_NULLP(ZIL_ICHAR), 1.0 }

} ;

A new global function, CreateWindow(), was added to the application.
This function takes an identifier which specifies which entry in the
_exchange table corresponds to the language in use. The function then
obtains the language name from the table, creates a new default storage, and
loads the proper Report Window.

The REPORT_WINDOW::Event() function is the only member function
that changed for this application. We added two sections to the function: one
to change languages and the other to handle the deletion of the old Report
Window. We will discuss how these are accomplished when we talk about
the interface below.

The last section that changed in INTRPOL2.CPP is the
VI_APPLICATION: :Main( ) function, which we updated to check for the
system's language and then to load an appropriate window:

II Get default system language name. languageManager is a
II global library variable that contains all the ZIL_LANGUAGE
II objects.
ZIL_ICHAR *currentLanguageName = languageManager.defaultName;
II Locate the entry in the EXCHANGE structure for the default
II language.
int currentLanguage = -1;
for (int i = 0; _exchange[i].ISOLocaleName; ++i)
{

if (strcmp(_exchange[i].ISOLanguageName,
currentLanguageName) == 0)

Getting Started with Zinc Programming



Program flow

Wiring up the
interface

currentLanguage = i;

II If system language doesn't correspond to one supported by the
II application, then use a default language.
if (currentLanguage == -1)

currentLanguage = 0;

II Add window to the window manager.
*windowManager

+ CreateWindow(currentLanguage);

If the system's language is not supported by the application, we assign a default
language and load the window. We will discuss this later on in the chapter.

Using UI_APPLICATION::Main()'s built-in main event loop, our pro­
gram flow is simple. We first determine the system's language and load the
proper Report Window from the .DAT file and add it to the Window Man­
ager. If the user selects a different language from the pull-down menu, the
menu item places a message on the event queue which is routed to the
REPORT_WINDOW::Event() function. The proper window is then
loaded and displayed and the old window deleted. All other events that we
don't handle are passed by REPORT_WINDOW::Event() back to the base
class UIW_WINDOW: :Event( ).

REPORT_WINDOW

Once we've created the window, the next step is to "wire up" the interface so
that we can trap user events and change the application's language when the
user requests it In UI_APPLICATION::Main(), we look at the system's
language and determine if it is one that the application supports. To get the
language we simply inspect languageManager.defaultName. languageMan­
ager is a global, static instance of ZIL_LANGUAGE_MANAGER. All
languages used by the application are maintained by this object. We deter­
mine if the application supports the language by looking for the language
name in the _exchange structure. If the application dos not support that lan­
guage, we set the language to be the first entry in the structure as a default.
We then load the proper window.

Getting Started with Zinc Programming 215



Using Languages

Changing
languages

216

Whenever the user selects a language option from the pull-down menu, a
message is put on the event queue because the pop-up items options have the
MNIF_SEND_MESSAGE flag set. The event that is put on the queue is one
of the events that we defined in the header file. After that event is pulled off
the queue and sent to the Window Manager by the
UI_APPLICATION::Control() function, the Window Manager will route
the event to the Report Window. We trap those messages in the Event()
function:

II Change language.
else if (ccode >= LANGUAGE_FIRST && ccode <= LANGUAGE_LAST)

II Delete old default storage.
delete UI_WINDOW_OBJECT::defaultStorage;
II Determine language to load.
int currentLanguage = -1;
for (int i = 0; _exchange[ij.ISOLocaleName; ++i)
{

if (_exchange[i).country + LANGUAGE_FIRST == ccode)
currentLanguage = i;

}

II Change the application's default language.
languageManager.LoadDefaultLanguage(

_exchange[currentLanguage).ISOLanguageName);
II Create new window.
*windowManager

+ CreateWindow(currentLanguage);

II Cause current window to be subtracted.
UI_EVENT tEvent;
tEvent.type = S_SUBTRACT_OBJECT;
tEvent.data = this;
eventManager->Put(tEvent);
II Cause current window to be deleted.
tEvent.type = DELETE_OBJECT;
tEvent.windowObject = this;
eventManager->Put(tEvent);

When a message to change languages arrives, the first thing the function
does is delete the old default storage. It then locates the proper entry in the
_exchange table for the new language. To set the application's language it
calls languageManager.LoadDefaultLanguage(). This will cause all
library strings to be displayed in the new language. After setting the applica­
tion's language we call CreateWindow(), which loads the new window.

Getting Started with Zinc Programming



The Event( ) function then puts two messages on the event queue to remove
the old language window. We can't simply delete the window because the
program is running in an instance of the window. Nor can we simply place
an S_CLOSE message on the event queue, because by the time the program
will processed it, the current window will be the new language window. So
we have to subtract and delete the window ourselves.

The first event we place on the event queue is S_SUBTRACT_OBJECT This
event is processed by the Window Manager when it receives it from the
VI_APPLICATION: :Control( ) function. The second message placed on
the queue is DELETE_OBJECT, which is one that we defined for this appli­
cation. It will be handled by the new Report Window's Event( ) function.

The section that handles the DELETE_OBJECT message is the second new
part of the Event( ) function:

II Delete old window.
else if (eeode == DELETE_OBJECT)

delete event.windowObjeet;

As usual, any events that we don't handle are passed to the base class
Event( ) function.

Conclusion

In this chapter, we learned how to detect which language the system is
using and how to set which language the application is using. We also
learned one technique for switching windows at run time. In the next chap­
ter, we'll learn about the design of a large, complex Zinc application.

Getting Started with Zinc Programming 217



Using Languages

218 Getting Started with Zinc Programming



Chapter 19 Program Design

In this chapter, we'll learn how to write a complex program using Zinc.
Our program, called ZincApp, contains several objects that perform special­
ized tasks, and communicate with the main control window by sending mes­
sages. The main control window then responds to these messages by calling
certain member functions.

design of a large application

using event map tables

using accelerator keys

Getting Started with Zinc Programming 219



Program Design

Source code

220

What we'll do

Here's what we'll do in this chapter.

1. Discuss ZincApp's design and implementation.

2. Examine what happens when the user selects each option.

ZincApp source is located in ZINC\TUTOR\zINCAPP. Here's a list of
ZincApp's source code components and what each contains:

· ZINCAPP.CPP. The main program loop, and the main() or WinMain()
function.

· ZINCAPP.HPP. Definition of the display, window, event, and help mes­
sages that pass through the system when the user selects a pop-up item
from the main control window. Also contains the declarations for the
ZINCAPP_WINDOW_MANAGER, CONTROL_WINDOW, and
EVENT_MONITOR classes.

· CONTROL.CPP. Contains member functions which we'll use to create
the main control menu and to handle all main control throughout the pro­
gram. Here are those member functions:

CONTROL_WINDOW::CONTROL_WINDOW( ),
CONTROL_WINDOW::Event( ),
CONTROL_WINDOW::Message( ),
ZINCAPP_WINDOW_MANAGER::Event( ),
ZINCAPP_WINDOW_MANAGER::ExitFunction( )

· SUPPORT.CPP. The object table that must be compiled with the pro­
gram since persistent window objects are to be used.

· SUPPORT.DAT. The binary data file created by Zinc Designer, which
contains the help context and persistent window object information.

· SUPPORT.HPP. The help context constant information used to associate
a help context with a window. It also contains the persistent object identi­
fication values entered as the stringID field for each object in the .DAT
file.

· DISPLAY.CPP. Contains the CONTROL_WINDOW::Option_Display()
member function. Changes the type of display.

Getting Started with Zinc Programming



Program
specification

· EVENT.CP~ Contains the CONTROL_WINDOW::Option_Event( ) and
EVENT_MONITOR() member functions. Process all the messages that
are produced when an Event menu item is selected from the main control
window.

· HELP.CPP. Contains the CONTROL_WINDOW: :OptionHelp( )
member function. It processes all of the messages that are produced when
a Help menu item is selected from the main control window.

· WINDOW.CPP. Contains the
CONTROL_WINDOW::OptionWindow() member function. This
function invokes the proper window that was selected from the main con­
trol window by processing all the messages that are produced when a
menu item is selected.

· *.DEF, *.Re. The environment-specific definition and resource files
required when compiling for other environments ..

· *.MAK. The compiler-dependent makefiles associated with ZincApp.

ZincApp provides a single control window, with pull-down items in a pull­
down menu displaying selections. This control window gives the user easy
access to all functions. We could write ZincApp with multiple windows, but
then it might suffer from a common malady of graphical user interfaces
called "windowitis," where the application's functionality is spread over too
many windows.

=1 Zinc Application I·)'"
.c.ontrol Window Event Help

Getting Started with Zinc Programming 221



Program Design

222

The control window controls the pull-down items, which in turn control
items within their scope. For example, the control window may pass control
to a pull-down item that handles screen functionality. In turn, this pop-up
item may send a message through the system, requesting that some other
object perform some action.

each item has a call function or a send message function

Design and implementation

ZincApp consists of several parts:

• the Event Manager, which contains the event queue;

· the ZincApp window manager class, derived from the Zinc Window
Manager;

· the event monitor, which receives events from the ZincApp Window
Manager and displays them;

· various pull-down menu options, which place a message on the queue
when selected;

· and the Control Window, which contains the member functions that
allow ZincApp to respond to user input.

Here's what happens when we launch ZincApp.

1. The CONTROL_WINDOW constructor sets up the window and menu
items. Here's a partial listing of the constructor:

CONTROL_WINDOW::CONTROL_WINDOW(void) : UIW_WINDOW(O, 0, 76, 6,
WOF_NO_FLAGS, WOAF_LOCKED)

Getting Started with Zinc Programming



II Control menu items.
static UI_ITEM controlItems[]
{

S_REDISPLAY,VOIDF(CONTROL_WINDOW::Message),
"&Refresh\tShift+F6", MNIF_NO_FLAGS },
O,VOIDF(O),"",MNIF_NO_FLAGS },II item separator
L_EXIT_FUNCTION,VOIDF(CONTROL_WINDOW::Message),
"E&xit\tAlt+F4" ,MNIF_NO_FLAGS },

{ 0, 0, 0, ° }II End of array.
} ;

II Attach the sub-window objects to the control window.
*this

+ new UIW BORDER
+ new UIW MAXIMIZE BUTTON- -
+ new UIW MINIMIZE BUTTON

- -
+ new UIW_SYSTEM_BUTTON(SYF_GENERIC)
+ new UIW_TITLE("Zinc Application")
+ &(*new UIW_PULL_DOWN_MENU

+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS,
controlltems)

+ new UIW_PULL_DOWN_ITEM("&Display", WNF_NO_FLAGS,
displayItems)

+ &(*new UIW_PULL_DOWN_ITEM("&Window", WNF_NO_FLAGS)
+ controlObjects
+ inputObjects
+ selectObjects)

+ new UIW_PULL_ro-m_lTEM( "&Event", WNF_NO_FLAGS, eventItens)
+ new UIW_PULL_ID'VN_ITEM( "&Help", WNF_NO_FLAGS, helpItans));

}

Part of the task of the control window's constructor is to initialize the
VI_ITEM array contained in each pull-down item in the control win­
dow's menu bar. This array contains:

The message. The first field in the VI_ITEM structure. For example, the
first 1;,ontrol menu item, ,Refresh, contains the message S_REDISPLAY,
which will pass through the system whenever the user selects the 1;,on­
troll Refresh menu item.

The user function. Called when the user selects a menu item. All menu
items specify CONTROL_WINDOW::Message( ) as their user func­
tion.

The string information. The text displayed on the screen. The string for
the ,Refresh menu item is "&Refresh\tShift+F6." We'll discuss the
"Shift+F6" portion of the string later in this chapter. Note that this hotkey
only works in DOS.

Getting Started with Zinc Programming 223



Program Design

224

The menu item flags. These control how the menu items look and act. For
example, MNIF_CHECK_MARK tells the menu item to display a check
mark to the left of the menu item's text when selected.

2. When the user selects an option, two events are generated. The first is the
system event, handled top down or bottom up, according to the type of
operating environment. The second is the event that a pull-down menu
will place on the event queue for retrieval by the control window.

The control window responds to events by overriding the Event( ) virtual
function in the base UIW_WINDOW class. Here it is:

class CONTROL_WINDOW : public UIW WINDOW
{

public:
CONTROL_WINDOW(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);

Then member functions inside the control window then call the appropri­
ate member function, passing the event. type of the event as a parameter:

class CONTROL_WINDOW : public UIW WINDOW
{

protected:
void OptionDisplay(EVENT_TYPE item);
void OptionEvent(EVENT_TYPE item);
void OptionHelp(EVENT_TYPE item);
void OptionWindow(EVENT_TYPE item);

} ;

Depending on the circumstances, however, one member function of the
control window will send a message through the system, whereas another
may call another member function. For example, OptionDisplay( )
doesn't reset the display, but sends a message through the system instead.
Conversely, OptionEvent( ) creates an event monitor object with a mem­
ber function without creating an additional message.

The control window will receive four types of messages:

• Display option messages. Generated when a ;Qisplay menu item has
been selected from the main control window. They are processed by
the OptionDisplay( ) member function.

· Window option messages. Generated when a Window menu item has
been selected from the main control window. Processed by the
OptionWindow( ) member function.

· Event option messages. Generated when an ,Event menu item has
been selected from the main control window. Processed by the
OptionEvent() member function.

Getting Started with Zinc Programming



Accelerator keys

. Help option messages. Generated when a Help menu item has been
selected from the main control window. Processed by the
OptionHelp( ) member function.

The UIW_WINDOW: :Event( ) member function processes all other
messages. Note that the Window Manager automatically processes the
control option messages, since they represent operations handled by the
Window Manager.

ZincApp uses two accelerator keys:

<Shift+F6>. Causes the Window Manager to clear the screen and to redis­
play each window attached to the Window Manager's list of window objects.

<Alt+F4>. Causes the exit application window to appear on the screen.

The CONTROL_WINDOW::Event( ) function contains the implementa­
tion of the accelerator keys.

EVENT TYPE CONTROL_WINDOW::Event(const VI EVENT &event)

II Check for an accelerator key.
EVENT_TYPE ccode = event. type;
if (ccode == L_EXIT_FUNCTION)

eventManager->Put(VI_EVENT(L_EXIT_FUNCTION));
if (ccode == E_KEY)
{

II Define the set of accelerator keys.
static struct ACCELERATOR_PAIR

RAW_CODE rawCode;
LOGICAL_EVENT logicalType;
acceleratorTable[] =

{ SHIFT_F6,S_REDISPLAY },
{ ALT_F4,L_EXIT_FUNCTION },
{ 0, 0 }II End of array.

} ;
for (int i = 0; acceleratorTable[i].rawCode; i++)

if (event.rawCode == acceleratorTable[i].rawCode)
{

VI_EVENT tEvent(acceleratorTable[i].logicalType);
eventManager->Put(tEvent);11 Put the accelerator key
return (ccode);11 into the system.

}

II Process the event according to its type.
if (ccode >= MSG_HELP)

Getting Started with Zinc Programming 225



Program Design

226

OptionHelp(event.type);11 Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent(event.type);11 Event menu option selected.
else if (ccode >= MSG_WINDOW)

OptionWindow(event.type);11 Window menu option selected.
else if (ccode >= MSG_DISPLAY)

OptionDisplay(event.type); II Display menu option selected.
else if (ccode >= MSG_CONTROL)
{

UI_EVENT tEvent(event.type);
eventManager->put(tEvent);11 Put the accelerator key

}

else
ccode = UIW_WINDOW::Event(event);11 Unknown event.

II Return the control code.
return (ccode);

Here's what happens when the user presses an accelerator key:

1. CONTROL_WINDOW::Event() receives the event from the Window
Manager.

2. If the event is a normal key, the control window searches its list of raw
code/logical type pairs.

3. If an accelerator key is detected, its logical value is placed into the Event
Manager. The Window Manager interprets its value when the main pro­
gram loop gets the next key using eventManager->Get( ). The definition
of the two accelerator keys is gi ven by the acceleratorTable static array
shown above. Note that the accelerator keys are available only when the
main control window is the front window.

Getting Started with Zinc Programming



General
program flow

What happens when the user selects one of the options in the menu bar?
Though the Zinc window manager handles the .control option, the control
window handles the others in steps one through four. At the fifth step, how­
ever, the control window calls a different member function associated with
the option that the user selected.

ULEVENT_MANAGER

Main event loop

ZINCAPP_WINDOW_MANAGER

CONTROL_WINDOW: :MESSAGE

~ return

• event flow

•

Getting Started with Zinc Programming 227



Program Design

228

1. After the user selects a menu item, the UIW_POP_UP_ITEM::Event()
function calls the CONTROL_WINDOW::Message( ) function.

EVENT_TYPE UIW_BUTTON::Event(const UI EVENT &event)
{

case L SELECT:
case L END SELECT:

UI_EVENT tEvent = event;
if (userFunction)

(*userFunction)(this, tEvent, ccode);

The pop-up item's Event( ) function passes some arguments to
Message(). Those arguments are

· a pointer to the selected display option, this;

· a copy of the event that caused the user function to be called, tEvent;
and

· the logical interpretation, ccode, of the event that caused Event( ) to
be called. Notice the variable tEvent needs to be a copy of event,
since it's a constant variable whose values cannot be modified.

2. The CONTROL_WINDOW::Message() function sends a request to
remove the temporary display options menu by sending an
S_CLOSE_TEMPORARY message to Event Manager and thereby
through the system. It then sends the display request through the system
by setting event. type to be the menu item's value, for example, to one of
the MSG_DISPLAYvalues defined in the displayOptions array, and send­
ing this message through the system.

EVENT_TYPE CONTROL_WINOOW: :Message (UI_WINOOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode)

if (ccode == L_SELECT)
{

for (UI_WINDOW_OBJECT *tObject =
object->windowManager->First();
tObject && FlagSet(tObject->woAdvancedFlags,
WOAF_TEMPORARY) ;

tObject = tObject->Next())
object->eventManager->Put(UI_EVENT(S_CLOSE_TEMPORARY));
event.type = ((UIW_POP_UP_ITEM *)object)->value;
object->eventManager->Put(event);

}

return (ccode);

Getting Started with Zinc Programming



3. Control returns to the main event loop, first by exiting
CONTROL_WINDOW::Message( ), and then by exiting the Event( )
virtual functions of the UIW_POP_UP_ITEM,
CONTROL_WINDOW, and ZINCAPP_WINDOW_MANAGER
classes.

4. eventManager->Get() gets two messages that the program generates
from the event queue. The first message is S_CLOSE_TEMPORARY.
Responding to this message, the Window Manager removes the display
options menu from the screen.

5. The second message tells the control window which menu option the
user selected. In the following parts of this chapter, we'll examine what
the control window does when it receives one of these messages.

Control

=-1 Zinc Application 1"'1·
Control Window Event Jjelp

Refresh Shift+F6 I
Exit AIt+F4 I

This item contains ZincApp's control options, Refresh and Exit, which
refresh the screen and allow the user to exit the application. The
CONTROL_WINDOW constructor initializes these options here:

CONTROL_WINDOW::CONTROL_WINDOW(void) : UIW_WINDOW(O, 0,
76, 6, WOF_NO_FLAGS, WOAF_LOCKED)

II Control menu items.
static UI_ITEM controlItems[]
{

S_REDISPLAy,VOIDF(Message),"&Refresh\tShift+F6",
MNIF_NO_FLAGS },
0, VOIDF(O),"", 0 },II item separator
L_EXIT_FUNCTION,VOIDF(Message),"E&xit\tAlt+F4",
MNIF_NO_FLAGS },

{ 0, 0, 0, 0 }II End of array.
} ;

Getting Started with Zinc Programming 229



Program Design

230

II Attach the sub-window objects to the control window.

*this

+ new UIW BORDER

+ new UIW MAXIMIZE BUTTON- -

+ new UIW MINIMIZE BUTTON
- -

+ new UIW_SYSTEM_BUTTON(SYF_GENERIC)

+ new UIW_TITLE( "Zinc Application")

+ &(*new UIW_PULL_DOWN_MENU

+ new UIW_PULL_DOWN_ITEM( "&Control", WNF_NO_FLAGS,

controllterns)

+ new UIW_PULL_DOWN_ITEM( "&Display", WNF_NO_FLAGS,

displayItems)

+ &(*new UIW_PULL_DOWN_ITEM( "&Window", WNF_NO_FLAGS)

+ controlObjects

+ inputObjects

+ selectObjects)

+ new UIW_PULL_DOWN_ITEM( "&Event", WNF_NO_FLAGS,

eventItems)

+ new UIW_PULL_DOWN_ITEM( "&Help", WNF_NO_FLAGS,

helpItems) ) ;

Getting Started with Zinc Programming



Control program
flow

What happens when the use~ selects the .control option? First, the window
executes steps one through four of the general program flow. Then it exe­
cutes a fifth step.

..
e (ventlooP

ZINCAPP_WINDOW_MANAGER

CONTROL_WINDOW: :Control

~ return

• event flow

•
1. The UIW_POP_UP_ITEM: :Event( ) function calls the

CONTROL_WINDOW: :Message( ) function.

2. The CONTROL_WINDOW: :Message( ) function sends a request to
remove the temporary display options menu by sending an
S_CLOSE_TEMPORARY message through the system.

3. Control returns to the main event loop.

Getting Started with Zinc Programming 231



Program Design

4. eventManager->Get() gets two messages that the program generates.
The first message it gets is S_CLOSE_TEMPORARY.

5. The second message it gets is the value of the menu item from event. type,
which it passes to the Window Manager by calling
windowManager->Event(). When the Window Manager receives the
following messages, it performs the corresponding actions:

. S_REDISPLAY-Clears the screen and redisplays each window in
the Window Manager's list of window objects.

. L_EXIT_FUNCTION-The Window Manager calls the
CONTROL_WINDOW::ExitFunction( ) function, which displays
an exit window on the screen.

=1

o
Zinc Application

This will close the ZincApp lulorial.

!OK' Cancel

232

If the user selects Q,K, the Window Manager sends an L_EXIT message
through the system. The main program breaks from the main loop and
exit the application.

Note that in the £,ontrol option, the Window Manager and not the control
window responds to the message.

Getting Started with Zinc Programming



Display options

....1 Zinc Application I...J·
~ontrol Display Y'lindow Event Help

1-25x40 text mode
2-25x80 text mode
1-(43/50)x80 text mode
~-Graphics mode

This menu item, available only under DOS, contains ZincApp's display
options, initialized by the CONTROL_WINDOW constructor. Here's that
part of the constructor.

static UI_ITEM displayItems[]
{

#if defined (ZIL_MSDOS)
{ MSG_25x40_MODE,Message,"&1-25x40 text mode",

MNIF_NO_FLAGS },
MSG_25x80_MODE,Message,"&2-25x80 text mode",
MNIF_NO_FLAGS },
MSG_43x80_MODE,Message,"&3-(43/50)x80 text mode",
MNIF_NO_FLAGS },
MSG_GRAPHICS_MODE ,Message, "&4-Graphics mode" ,MNIF_NO_FLAGS },
MSG_WINDOWS_MODE,Message,"&5-Windows 3.X mode",
MNIF_NON_SELECTABLE },

#endif
{ 0, 0, 0, a }II End of array.

} ;

II Attach the sub-window objects to the control window.
*this

+ new UIW BORDER
+ new UIW MAXIMIZE BUTTON

- -
+ new UIW MINIMIZE BUTTON- -
+ new UIW_SYSTEM_BUTTON(SYF_GENERIC)
+ new UIW_TITLE("Zinc Application")
+ &(*new UIW_PULL_DOWN_MENU

+ new UIW_PULL_rx::mN_ ITEM( "&Control", WNF NO FLAGS, controlltems)
+ new UIW_PULL_ro-m_ITEM( "&Display", WNF_NO_FLAGS, displayItens)
+ &(*new UIW_PULL_DOWN_ITEM( "&Window", WNF_NO_FLAGS)

+ controlObjects
+ inputObjects
+ selectObjects)

+ new UIW_PULL_OOWN_ITEM( "&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_OOWN_ITEM( "&Help", WNF_NO_FLAGS, helpItems);

Getting Started with Zinc Programming 233



Program Design

Display program
flow

What happens when the user selects the Qisplay option? First, the control
window executes steps one through four of the general program flow. At the
fifth step, however, it calls the OptionsDisplay( ) member function.

('
• Main event loop

~ return

• event flow

•
ZINCAPP_WINDOW_MANAGER

CONTROL_WINDOW::OptionDisplay

•

234

1. The UIW_POP_UP_ITEM::Event() function calls the
CONTROL_WINDOW::Message( ) function.

2. The CONTROL_WINDOW::Message() function sends a request to
remove the temporary display options menu by sending an
S_CLOSE_TEMPORARY message through the system.

3. Control returns to the main event loop.

Getting Started with Zinc Programming



4. eventManager->Get() gets two messages that the program generates.
The first message it gets is S_CLOSE_TEMPORARY.

ULEVENT_MANAGER ~ return

• event flow

Main event loop

~

ZINCAPP_WINDOW_MANAGER

"

•
ICONTROL_WINDOW::OptionDisplay 10

5. The second message it receives is the display message determined by the
selected menu item. This message is passed by the main loop to the Win­
dow Manager, then is sent by the Window Manager to
CONTROL_WINDOW::Event() since the control window is the front
window on the screen. The control window evaluates event. type-in this
case a MSG_DISPLAY message-which results in calling the
OptionDisplay( ) member function.

EVENT_TYPE CONTROL_WINDOW::Event(const DI_EVENT &event)
{

Getting Started with Zinc Programming 235



Program Design

236

II Process the event according to its type.
if (ccode >= MSG_HELP)

OptionHelp(event.type); II Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent(event.type); II Event menu option selected.
else if (ccode >= MSG_WINDOW)

OptionWindow(event.type); II Window menu option selected.
else if (ccode >= MSG_DISPLAY)

OptionDisplay (event. tyPe ); I I Display menu option selected.
else

ccode = UIW_WINDOW::Event(event); II Unknown event.

II Return the control code.
return (ccode);

}

6. The OptionDisplay( ) member function evaluates the item's value,
which was passed down through the item argument, to determine which
type of display has been requested. At this stage, however, no display is
recreated. Instead, an S_RESET_DISPLAY is generated and passed
through the system. We must create and delete displays at the highest
level of the program, since that is where we initialized the display object,
and since that is where the program destroys the display when it goes out
of scope. The following code shows how this message is sent:

void CONTROL_WINDOW::OptionDisplay(EVENT_TYPE item)
{

#if defined (ZIL_MSDOS)
II Set up the default event.
UI_EVENT event(S_RESET_DISPLAY, TDM_NONE);

II Decide on the new display type.
if (item == MSG_25x40_MODE)

event.rawCode = TDM_25x40;
else if (item == MSG_25x80_MODE)

event.rawCode = TDM_25x80;
else if (item == MSG_43x80_MODE)

event.rawCode = TDM_43x80;

II Send a message to reset the display.
II (Code resides in main program loop).
eventManager->Put(event);

#endif

Getting Started with Zinc Programming



UI EVENT_MANAGER

o
• Main event loop

~

ZINCAPP_WINDOW_MANAGER

7. Control returns once again to the main event loop by exiting the associ­
ated Event( ) functions.

8. The main loop picks up the S_RESET_DISPLAY message by calling
eventManager->Get( ). This message causes the program to

· tell the Event and window managers that the old display is about to
be deleted. This allows them to uninitialize any display dependent
information they may have.

· construct the new display, the type of which is determined by
event. rawCode .

· After the display has been reset, we must set event.data to point to
the new display object, and call the Event and Window managers so
they can reinitialize themselves using the new display and coordinate
system.

II wait for user response.
EVENT_TYPE ccode;
UI_EVENT event;
do

II Get input from the user.
eventManager->Get(event);
II Check for a screen reset message.
if (event. type == S_RESET_DISPLAY)

Getting Started with Zinc Programming 237



Program Design

238

#if defined(ZIL_MSDOS)
event.data = NULL;
II Tell the managers we changed the display.
windowManager->Event(event);
eventManager->Event(event);
delete display;
if (event.rawCode == TDM_NONE)
{

display = new UI_GRAPHICS_DISPLAY;
if (!display->installed)
{

delete display;
display = new UI_TEXT_DISPLAY;

}

else
display = new UI_TEXT_DISPLAY(event.rawCode);

II Tell the managers we changed the display.
event.data = display;
eventManager->Event(event);
ccode = windowManager->Event(event);
windowManager->screenID = window->screenID;

#endif
}

else
ccode = windowManager->Event(event);

while (ccode != L_EXIT && ccode != S_NO_OBJECT);

If we examine the CONTROL_WINDOW::OptionDisplay() member
function and the code in the main event loop, we'll find we could have
removed the OptionDisplay() function if we were to intercept all
MSG_DISPLAY messages in the main loop. The reason we did not put the
display code in the main loop is mainly an issue of consistency. Up until this
point, we have let the control window and associated member functions han­
dle the program specific messages. In this case we are generating a system
message from the display member function, then intercepting the request at
the main level before letting the Window Manager process it.

Getting Started with Zinc Programming



Window options

=1 Zinc Application I,.J·
Control Window Event Help

I ~ont,"1 obj'et'

:1
input objects
1ielection objects

This item contains ZincApp's window options, initialized by the
CONTROL_WINDOW constructor. Here's that part of the constructor.

II Create the objects submenu.

UIW_rop_UP_ITEM *controlCbjEct.s = new UIW_rop_UP_ITEM( "&Control cbjEct.s");

*controlCt>jects

+ new UIW_fOP_UP_ITEM( "&Button winc::b.v••• ", MNIF_I'D_:FL,rC,S, BI'F_I'D_:FL,rC,S,

IDF_I'D_FUIGS, CCNI'ROL_WINIX:W: :IvEssage, MSG_BUITKI'LWINIX:W)

. + new UIW_rop_UP_ITEM( "&Generic winc::b.v••• ", MNIF_I'D_:FL,rC,S, BI'F_I'D_FUIGS,

IDF_I'D_FUIGS, CCNI'ROL_WINIX:W: :Message, MSG_GENERIC_WINIX:W)

+ nev UIW_rop_UP_ITEM( "&lcon wi.nclcM••• ", MNIF_I'D_FUIGS, BIT_I'D_FUIGS,

IDF_I'D_FUIGS, CCNI'ROL_WINIX:W: :Message, MSG_lcn'LWINIX:W)

+ nev UIW_roP_UP_ITEM( "&MOl winc::b.v••• ", MNIF_I'D_FUlGS, BI'F_I'D_FUlGS,

WOF_NO_FLAGS, CONTROL_WlNDOW::Message, MSG_MDl_WlNDOW);

UIW_rop_UP_ITEM * inputCt>jects = nev UIW_rop_UP_ITEM( "&Inp..rt cbjects");

*inputCt>jects

+ nev UIW_roP_UP_ lTEM( "&Date winclcM••• ", MNIF_I'D_FUIGS, BIT_ID_FLAGS,

IDF_ID_FUIGS, CCNI'ROL_WINIX:W: :Message, MSG_DATE_WINIX:W)

+ new UIW_fOP_UP_ITEM( "&Nurrber winc::b.v••• II, MNIF_I'D_:FL,rC,S, BI'F_I'D_:FL,rC,S,

IDF_ID_FUIGS, CCNI'ROL_WINIX:W: :IvEssage, MSG_NUMBER_WINIX:W)

+ new UIW_rop_UP_ITEM( "&String winc::b.v••• ", MNIF_I'D_FLAGS, BI'F_I'D_:FL,rC,S,

IDF_I'D_FUIGS, CCNI'ROL_WINIX:W: :Message, MSG~_WINIX:W)

+ nev UIW_rop_UP_lTEM( "&Text wi.nclcM••• ", MNIF_I'D_FUIGS, BI'F_I'D_FUIGS,

IDF_ID_FUIGS, CCNI'ROL_WINIX:W: :Message, MSG_ 'I'E}IT_ WINIX:W)

+ nev UIW_rop_UP_lTEM( "&Tirre wi.nclcM••• ", MNIF_I'D_FUIGS, BIT_ID_FUIGS,

IDF_I'D_FUlGS, CCNI'ROL_WINIX:W: :Message, MSG_TIME_WINIX:W);

UIW_fOP_UP_ITEM *selectCbjEct.s = new UIW_fOP_UP_ I'ffM( "&Selection cbjEct.s");

*seloctCbjects

+ nev UIW_roP_UP_ITEM( "&Carbo Box winda.v••• ", MNIF_I'D_FUlGS,

BIT_I'D_FUIGS, IDF_I'D_FUIGS, cc:NI'ROL_WINIX:W: :Message,

MSG_a:r·a:U:DX_WINIX:W)

+ nev UIW_rop_UP_ITEM( "&List wi.nclcM••• ", MNIF_I'D_FUIGS, BI'F_ID_FUIGS,

WOF_NO_FLAGS, CONTROL_WlNDOW::Message, MSG_LlST_WlNDOW)

+ new UIW_rop_UP_ITEM( "&Menu winc::b.v••• ", MNIF_I'D_FUIGS, BI'F_ID_:FL,rC,S,

WOF_NO_FLAGS, CONTROL_WlNDOW::Message, MSG_MENU_WlNDOW)

+ new UlW_POP_UP_lTEM( "&Tool Bar window••• ", MNlF_NO_FLAGS,

Getting Started with Zinc Programming 239



Program Design

240

BTF_NO_FLAGS, WOF_NO_FLAGS, CONTROL_WINDOW::Message,

MSG_TOOL_BAR_WINDOW);

II Attach the sub-window objects to the control window.

*this

+ new UIW BORDER

+ new UIW MAXIMIZE BUTTON- -
+ new UIW MINIMIZE BUTTON- -

+ new UIW_SYSTEM_BUTTON(SYF_GENERIC)

+ new UIW_TITLE( "Zinc Application")

+ &(*new UIW_PULL_DOWN_MENU

+ new UIW_PULL_DOWN_ ITEM( "&Control", WNF_NO_FLAGS, controlltems)

+ new UIW_PULL_DOWN_ITEM( "&Display", WNF_NO_FLAGS, displayItems)

+ &(*new UIW_PULL_DOWN_ITEM("&Window", WNF_NO_FLAGS)

+ controlObjects

+ inputObjects

+ selectionObjects)

+ new UIW_PULL_DOWN_ITEM( "&Event", WNF_NO_FLAGS, eventIterns)

+ new UIW_PULL_DOWN_ITEM( "&Help", WNF_NO_FLAGS, helpItems));

Getting Started with Zinc Programming



Window
program flow

What happens when the user selects the Window option? First, the control
window executes steps one through four of the general program flow. At the
fifth step, however, it calls the OptionsWindow( ) member function.

ULEVENT_MANAGER

('
• Main event loop

ZINCAPP_WINDOW_MANAGER

~ return

• event flow

•
1. The UIW_POP_UP_ITEM: :Event( ) function calls the

CONTROL_WINDOW: :Message( ) function.

2. The CONTROL_WINDOW: :Message( ) function sends a request to
remove the temporary display options menu by sending an
S_CLOSE_TEMPORARY message through the system.

3. Control returns to the main event loop.

Getting Started with Zinc Programming 241



Program Design

242

4. eventManager->Get() gets two messages that the program generates.
The first message it gets is S_CLOSE_TEMPORARY.

5. The second message it gets is the window request of the selected menu
item. This message is passed by the main loop to the Window Manager
and is then dispatched by the Window Manager to
CONTROL_WINDOW::Event() since the control window is the front
window on the screen. The control window evaluates event. type, which
is, in this case a MSG_WINDOW message-resulting in the
OptionWindow( ) member function being called.

EVENT TYPE CONTROL_W1NDOW::Event(const U1 EVENT &event)

II Process the event according to its type.
if (ccode >= MSG_HELP)

OptionHelp(event.type)i II Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent(event.type)i II Event menu option selected.
else if (ccode >= MSG_W1NDOW)

OptionWindow(event.type)i II Window menu option selected.
else if (ccode >= MSG_D1SPLAY)

OptionDisplay(event.type)i II Display menu option selected.
else

ccode = U1W_W1NDOW::Event(event)i II Unknown event.
II Return the control code.
return (ccode) i

Getting Started with Zinc Programming



~ return

.. event flow

Main event loop

~

ZINCAPP_WINDOW_MANAGER

CONTROL_WINDOW

"

•
ICONTROL_WINDOW::OptionWindow I0

6. The OptionWindow( ) member function evaluates the item's value,
passed down through the item argument, to determine which type of win­
dow the user has requested. Then it calls the member function that con­
structs the appropriate window. Finally, it attaches the window to the
Window Manager using the overloaded + operator. The following code
shows how:

void CONTROL_WINDOW::OptionWindow(EVENT_TYPE item)
{

II Get the specified window.
UI_WINDOW_OBJECT *object = NULL;

Getting Started with Zinc Programming 243



Program Design

244

switch(itern)

{

case MSG_DATE_WINDOW:

object = UIW_WINDOW: :New( "support. dat-WINDOW_DATE " );

break;

case MSG GENERIC WINDOW:- -
object = UIW_WINDOW: :New( "support.dat-WINDOW_GENERIC");

break;

case MSG ICON WINDOW:

object = UIW_WINDOW: :New( "support.dat-WINDOW_ICON");

break;

case MSG LIST WINDOW:

object = UIW_WINDOW: :New( "support.dat-WINDOW_LIST");

break;

case MSG_COMBO_BOX_WINDOW:

object = UIW_WINDOW: :New( "support.dat-WINDOW_COMBO_BOX");

break;

case MSG MENU WINDOW:

object = UIW_WINDOW: : New( "support.dat-wINDOW_MENU") ;

break;

case MSG_NUMBER_WINDOW:

object = UIW_WINDOW: :New( "support.dat-WINDOW_NUMBER");

break;

case MSG STRING WINDOW:

object = UIW_WINDOW: :New( "support.dat-WINDOW_STRING");

break;

case MSG TEXT WINDOW:

object = UIW_WINDOW: :New( "support.dat-WINDOW_TEXT");

break;

case MSG_TlME WINDOW:

object = UIW_WINDOW: : New( "support.dat-WINDOW_TlME");

break;

case MSG BUTTON WINDOW:

object = UIW_WINDOW: :New( "support.dat-WINDOW_BUTTON");

break;

case MSG TOOL BAR WINDOW:

object = UIW_WINDOW: : New( "support.dat-WINDOW_TooL_BAR");

break;

case MSG MDI WINDOW:

object = UIW_WINDOW: :New( "support.dat-WINDOW_MDI");

break;

}

II Add the window object to the window manager.

if (object)

*windowManager + object;

Getting Started with Zinc Programming



The object variable is a UI_WINDOW_OBJECT pointer, not a
UIW_WINDOW pointer. This generic declaration allows us to expand the
program to attach other nonwindow objects, for example, an icon.

Now the new window becomes the front window, which processes all subse­
quent events until the user requests a change. A description of the types of
windows presented in this menu item follows:

Generic. This window shows the basic window objects that are usually pro­
vided as default objects to a window. These objects include:

· the window's border (UIW_BORDER),

· the maximize button (UIW_MAXIMIZE_BUTTON),

· the minimize button (UIW_MINIMIZE_BUTTON),

· the system button (UIW_SYSTEM_BUTTON), and

· the title bar (UIW_TITLE).

Button. Shows standard buttons, radio buttons, check boxes, and bitmapped
buttons.

Combo box. Shows two combo box objects, one of which was implemented
with string objects, and the other with bitmapped buttons.

Date. Shows the many variations of the date class.

Icon. Shows several types of icons that we can attach either to a parent win­
dow or to the screen.

List. Shows a horizontal and vertical list.

Menu. Shows pull-down menus. The source code shows you how to create
and attach pull-down and pop-up items into pull-down menus.

Number. This window shows several UIW_BIGNUM objects.

String. This window shows several types of string objects that can be created
with Zinc Application Framework. These objects include the basic
UIW_STRING class, two types of UIW_FORMATTED_STRING class
objects, and a multi-line text field, UIW_TEXT, that only occupies part of
its parent window.

Text. This window shows a full-window implementation of a UIW_TEXT
object and an associated vertical scroll bar.

Getting Started with Zinc Programming 245



Program Design

246

Time. This window shows the many variations that can be used with the
ZIL_TIME class.

Tool bar. This window shows a tool bar object that contains various window
objects.

Event options

=-1 Zinc Application I~J·
Control Window Event Help

I fvent monitor I

This item contains ZincApp's event options, initialized by the
CONTROL_WINDOW constructor. Here's that part of the constructor.

static UI_ITEM eventltems[] =

{

MSG_EVENT_MONITOR,VOIDF(CONTROL_WINDOW::Message),
"&Event monitor"MNIF_NO_FLAGS },

{ 0, 0, ° }II end of array
} ;

II Attach the sub-window objects to the control window.
*this

+ new UIW BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW MINIMIZE BUTTON- -
+ new UIW_SYSTEM_BUTTON(SYF_GENERIC)
+ new UIW_TITLE("Zinc Application")
+ &(*new UIW_PULL_DOWN_MENU

+ new UIW_PULL_DOWN_ITEM( "&Control", WNF_NO_FIAGS, controllterns)
+ new UIW_PULL_DOWN_ITEM( "&Display", WNF_NO_FIAGS, displayIterns)
+ &(*new UIW_PULL_DOWN_ITEM( "&Window", WNF_NO_FLAGS)

+ controlItems
+ inputItems
+ selectItems)

+ new UIW_PULL_DOWN_ITEM( "&Event", WNF_NO_FLAGS, eventItems)
+ new UIW_PULL_DOWN_ITEM( "&Help", WNF_NO_FLAGS, helpItems));

Getting Started with Zinc Programming



Event program
flow

What happens when the user selects the Event option? First, the control win­
dow executes steps one through four of the general program flow. At the
fifth step, however, it calls the OptionsEvent( ) member function.

ULEVENT_MANAGER

(
• Main event loop

ZINCAPP_WINDOW_MANAGER

CONTROL_WINDOW: :OptionEvent

~ return

.. event flow

•
1. The UIW_POP_UP_ITEM::Event() function calls the

CONTROL_WINDOW::Message( ) function.

2. The CONTROL_WINDOW::Message( ) function sends a request to
remove the temporary display options menu by sending an
S_CLOSE_TEMPORARY message through the system.

3. Control returns to the main event loop.

Getting Started with Zinc Programming 247



Program Design

248

4. eventManager->Get() gets two messages that the program generates.
The first message it gets is S_CLOSE_TEMPORARY.

5. The second message received is MSG_EVENT, which the main loop
passes to the Window Manager, which in tum passes it to
CONTROL_WINDOW::Event(), since the control window is the front
window on the screen. Then control window evaluates event. type-in
this case the MSG_EVENT message-and calls the OptionEvent()
member function.

EVENT TYPE CONTROL_WINDOW::Event(const UI EVENT &event)

II Process the event according to its type.
if (ccode >= MSG_HELP)

OptionHelp(event.type);11 Help menu option selected.
else if (ccode >= MSG_EVENT)

OptionEvent(event.type);11 Event menu option selected.
else if (ccode >= MSG_WINDOW)

OptionWindow(event.type);11 window menu option selected.
else if (ccode >= MSG_DISPLAY)

OptionDisplay(event.type);11 Display menu option selected.
else

ccode = UIW_WINDOW::Event(event);11 Unknown event.
II Return the control code.
return (ccode);

Getting Started with Zinc Programming



~ return

• event flow

Main event loop

~

ZINCAPP_WINDOW_MANAGER

CONTROL_WINDOW

"I CONTROL_WINDOW::OptionEvent I0
The OptionEvent( ) member function creates the event monitor window
and attaches it to the window manager. The following code shows how
this is done.

void CONTROL_WINDOW::OptionEvent(EVENT_TYPE item)
{

II Create the event rronitor and attach it to the window manager.
*windowManager

+ new EVENT_MONITOR;

Getting Started with Zinc Programming 249



Program Design

Monitoring
library events

250

At this point the event monitor, which we encounter in the next section,
becomes the front window of the application, and will process all subse­
quent events directly or indirectly.

In order to monitor events, we derived two classes, EVENT_MONITOR
and ZINCAPP_WINDOW_MANAGER.

Event Monitor. The event monitor shows which messages the library is pro­
cessing. The Windows version of the event monitor window has five sec­
tions:

· Message. The hex value of the Windows message. We could have imple­
mented a translation table that displayed the message in human-readable
form.

• wParam. The event's wParam value.

• [Paramo The event's [Param value.

· Position. The event's Position value.

· Last event. The interpreted value of the last event. This can be any Zinc
event or logical event, or it could be a keyboard or mouse code.

The class EVENT_MONITOR contains the implementation of this win­
dow, and ZINCAPP.HPP contains the definition of EVENT_MONITOR.
Its members are shown below:

class EVENT MONITOR : pUblic UIW WINDOW
{

public:
EVENT_MONITOR(void);
EVENT_TYPE Event(const UI_EVENT &event);

private:
#if defined(ZIL_MSDOS)

UIW_PROMPT *keyboard[3];
UI_EVENT kEvent;
UIW_PROMPT *mouse[3];
UI_EVENT mEvent;

#elif defined(ZIL_MSWINDOWS)
UIW_PROMPT *windowsMessage[5];
MSG wMsg;

#elif defined(ZIL_OS2)
UIW_PROMPT *windowsMessage[5];
QMSG oMsg;

#elif defined(ZIL_MOTIF)
UIW_PROMPT *motifMessage[3];
XEvent xEvt;

Getting Started with Zinc Programming



The event
monitor

#elif defined(ZIL_MACINTOSH)
UIW_PROMPT *rnacintoshMessage[5];
EventRecord mEvent;

#endif
UIW_PROMPT *systern;
UI_EVENT sEvent;

} ;

The EVENT_MONITOR derives from the base class VIW_WINDOW,
therefore inheriting the ability to receive message information, and giving us
the ability to remove easily the event monitor window from the screen.
When we attach the event monitor window to ZincApp's window manager, it
receives all events that pass through the system-after the front window has
processed the event, allowing the front window to process the event nor­
mally.

If we were to derive the event monitor from VI_DEVICE as we did in the
MACRO_HANDLER tutorial, it would receive only raw input information.
By positioning ourselves in the window manager, we are able to see, not
only raw events, but how an object interprets raw events. This allows us to
see firsthand one of the benefits of Zinc, how Zinc objects handle events in
the context of what the object knows how to do.

=-1 Event monitor I..J ...

Message: 0200

wParam: 0000

IParam: OOOOOOOc

Position: 16 35

last event: MSW'indows

For example, pressing the mouse button on the title bar produces a series of
messages ending in "Move." Pressing the mouse button in a text field, how­
ever, produces the message "Begin mark." If we had derived
EVENT_MONITOR from VI_DEVICE, we would see only a "mouse
down" message.

The EVENT_MONITOR::Event() function can receive two types of
events . The first type is messages passed to the window during executioN.
These messages would be passed to the window if it were the front window

Getting Started with Zinc Programming 251



Program Design

252

on the screen, or if a mouse message overlapped the window's screen region.
The second type of messages are sent to the event monitor after they have
been processed by the window manager. In addition, these special events are
packaged by the window manager into a new event, and in turn passed to the
member function. The window manager packages these events this way:

· event. type is the logical event returned by the receiving object.

· event. rawCode is always OxFFFF if the event has already been passed to
the front window. This special value lets us determine whether the origi­
nal message was intended for the event monitor window (if it is front
window on the screen) or whether the event has already been passed
through the system.

· event. data is the original event that was passed through the system.

EVENT_MONITOR::Event() has four parts that check for normal, key­
board, mouse, and logical events, for all the environments ZincApp sup­
ports.

1. The first part of EVENT_MONITOR::Event( ) sets up the event infor­
mation and determines whether the event window should interpret the
event, or whether it should pass the event to UIW_WINDOW.

EVENT TYPE EVENT_MONITOR::Event(const UI EVENT &event)

II See if it is a normal event.
if (event.rawCode 1= OXFFFF)

return (UIW_WINDOW::Event(event));

2. In the second part, keyboard and kEvent, available only in DOS, contain
information about the last key that was pressed. kEvent keeps track of the
last event for optimization so that only those parts of the key that have
changed will be updated. When the program calls EVENT_MONITOR­
::Event() routine, it changes these variables to reflect the new event,
which it passes as an argument to the event monitor's Event( ) function.
The code responsible for this change is shown below:

EVENT TYPE EVENT_MONITOR::Event(const UI EVENT &event)

UI EVENT *tEvent = (UI_EVENT *)event.data;

II Check for new keyboard event.
if (tEvent->type == E_KEY)
{

char string [32];

Getting Started with Zinc Programming



if (kEvent.rawCode != tEvent->rawCode)
{

sprintf(string, "%04x", tEvent->rawCode);
keyboard[O]->Inforrnation(SET_TEXT, string);

}

if (kEvent.key.shiftState != tEvent->key.shiftState)
{

sprintf(string, "%02x", tEvent->key.shiftState);
keyboard[l]->Inforrnation(SET_TEXT, string);

}

if (kEvent.key.value != tEvent->key.value)
{

sprintf(string, "%c", tEvent->key.value);
keyboard[2]->Inforrnation(SET_TEXT, string);

}

kEvent = *tEvent;
}

3. In the third part, _mouse and mEvent, also available only in DOS, contain
information about the last mouse event. They work just like the keyboard
variables keyboard and kEvent, except that they maintain mouse informa­
tion. For optimization, mEvent keeps track of the last event, so that
EVENT_MONITOR::Event() will update only those parts of the mouse
event that have changed. When the program calls EVENT_MONITOR::­
Event( ), it passes as an argument the changes in the event. Below is the
code that does this:

EVENT_TYPE EVENT_MONITOR::Event(const UI_EVENT &event)
{

UI EVENT *tEvent = (UI_EVENT *)event.data;

II Check for new mouse event.
else if (tEvent->type == E_MOUSE)
{

char string [32] ;
if (mEvent.rawCode != tEvent->rawCode)
{

sprintf(string, "%04x", tEvent->rawCode);
mouse[O]->Inforrnation(SET_TEXT, string);

}

if (mEvent.position.column != tEvent->position.column)
{

sprintf(string, "%03d", tEvent->position.column);
mouse[l]->Inforrnation(SET_TEXT, string);

}

if (mEvent.position.line != tEvent->position.line)
{

sprintf(string, "%03d", tEvent->position.line);
mouse[2]->Inforrnation(SET_TEXT, string);

Getting Started with Zinc Programming 253



Program Design

254

mEvent = *tEvent;
}

4. The fourth part of EVENT_MONITOR::Event( ) contains variables
that keep track of events that the event monitor window receives. The
difference between this part and the other parts is that this part can keep
track of events for each operating environment Zinc supports, whatever
that might be. For example, if the native operating environment is Win­
dows, it keeps track of Windows events; if the native operating environ­
ment is Macintosh, it keeps track of Macintosh events; and so forth. Here
are those variables:

o windowsMessage and wMsg contain the information from the last
event that was received by the event monitor in the Windows envi­
ronment.

o windowsMessage and oMsg contain the information from the last
event that was received by the event monitor in the OS/2 environ­
ment.

o motifMessage and xEvt contain the information from the last event
that was received by the event monitor in the Motif environment.

o macintoshMessage and mEvent contain the information from the last
event that was received by the event monitor in the Motif environ­
ment.

For optimization reasons, still other variables, wMsg, oMsg, xEvt, and
mEvent, keep track of the last event for optimization so that only those
parts of the event that have changed will be updated. When the program
calls the EVENT_MONITOR::Event( ) routine, it changes these vari­
ables to reflect the new event, which it passes as an argument to the event
monitor's Event( ) function. Below is the code responsible for this
change in Windows:

EVENT_TYPE EVENT_MONITOR::Event(const VI_EVENT &event)
#elif defined(ZIL_MSWINDOWS)
if (tEvent->type == E_MSWINDOWS)
{

MSG msg = tEvent->message;
char string[ 32] ;
if (wMsg.message != msg.message)
{

sprintf(string, "%04x", msg.message);
windowsMessage[O]->Information(I_SET_TEXT, string);

}

if (wMsg.wParam != msg.wParam)

Getting Started with Zinc Programming



sprintf(string, "%04x", msg.wParam);
windowsMessage[l]->Information(I_SET_TEXT, string);

}

if (wMsg.lParam != msg.lParam)
{

sprintf(string, "%08x", msg.1Param);
windowsMessage[2]->Information(I_SET_TEXT, string);

}

if (wMsg.pt.x != msg.pt.x)_
{

sprintf(string, "%d", msg.pt.x);
windowsMessage[3]->Information(I_SET_TEXT, string);

}

if (wMsg.pt.y != msg.pt.y)
{

sprintf(string, "%d", msg.pt.y);
windowsMessage[4]->Information(I_SET_TEXT, string);

wMsg = msg;

5. _system and sEvent contain information about the last interpreted event
that was returned by the window object. These variables work just like
the mouse variables mouse and mEvent except that the information is
maintained for the logical or system event. The variable sEvent keeps
track of the last event for optimization so that only changes in the event
cause the event field to be updated. When program calls
EVENT_MONITOR::Event(), it changes these variables to reflect the
new event, by passing it as an argument to the event monitor's Event( )
function. Below is a partial list of the event/string pair table:

EVENT_TYPE EVENT_MONITOR::Event(const UI_EVENT &event)
{

VI_EVENT *tEvent = (VI_EVENT *)event.data;

// Declare the event type/name pairs.
static struct EVENT PAIR

ZIL_LOGICAL_EVENT type;
char *name;
eventTable[] =

/ / Raw events.
E_MSWINDOWS, "MSWindows" },
E_OS2, "OS/2" },
E_MOTIF,"Motif" },
E_MACINTOSH, "Macintosh" },
E_KEY, "Key" },

Getting Started with Zinc Programming 255



Program Design

The ZincApp
window manager

256

{ E_MOUSE, "Mouse" },
{ E_CURSOR,"Cursor" },
II System events.
{ S_ERROR, "Error" },
{ S_UNKNOWN, "Unmapped Event" },
{ S_NO_OBJECT,"No object" },

II Logical events.
{ L_EXIT, "Exit" },
{ L_VIEW, "View" },
{ L_SELECT, "Select" },

The event monitor window we just described receives all interpreted mes­
sages by attaching itself to the Zinc Window Manager class, ZINCAPP_­
WINDOW_MANAGER. This class is the second part of what makes it
possible for us to intercept events without disrupting their normal flow.
ZINCAPP.HPP contains the definition of the ZINCAPP­
_WINDOW_MANAGER class, shown below:

class ZINCAPP_WINDOW_MANAGER : public UI_WINDOW_MANAGER
{

public:
ZINCAPP_WINDOW_MANAGER(UI_DISPLAY *display,

UI_EVENT_MANAGER *eventManager)
UI_WINDOW_MANAGER(display, eventManager,

ZINCAPP_WINDOW_MANAGER::ExitFunction) { }
virtual EVENT_TYPE Event(const UI_EVENT &event);

private:
static EVENT_TYPE ExitFunction(UI_DISPLAY *display,

UI_EVENT_MANAGER *eventManager, UI_WINDOW_MANAGER
*windowManager);

} ;

Here some information about ZINCAPP_WINDOW_MANAGER.

. UI_WINDOW_MANAGER is the base class. This allows us to get all
interpreted messages before they pass to the main control loop, and to
send the event information to the event monitor window, if it exists.

. ZINCAPP_WINDOW_MANAGER( ) is the ZincApp window man­
ager constructor. It calls the base UI_WINDOW_MANAGER with the
display and eventManager supplied by its arguments but also provides an
exitFunction pointer that is the ZINCAPP_WINDOW_MANAGER-
::ExitFunction( ) static member function. The ZincApp window man-

Getting Started with Zinc Programming



ager class is constructed in the main section of our program, just the way
a normal window manager would be constructed. The code below shows
how:

II Initialize the ZincApp window manager and add the control
window.

ZINCAPP_WINDOW_MANAGER *windowManager =
new ZINCAPP_WINDOW_MANAGER(display, eventManager);

UI_WINDOW *window = new CONTROL_WINDOW;
*windowManager

+ new window;

. Event(), which processes the event information, contains two major
parts. The first calls UI_WINDOW_MANAGER::Event( ), so that it
can dispatch the message to the proper window.

EVENT_TYPE ZINCAPP_WINDOW_MANAGER::Event(const UI EVENT &event)
{

II Allow the base window manager to process the event.
EVENT_TYPE ccode = UI_WINDOW_MANAGER::Event(event);

The second parts sends the interpreted message to the event monitor win­
dow, if it exists. It determines if it should by looking at the object's
userFlags. If EVENT_MONITOR::Event( ) has set the flag to
MSG_EVENT_MONITOR, and if the event type is not S_RESET_DIS­

PLAY, it modifies the event. When modified, event. type contains the logi­
cal code, event.rawCode contains the value OxFFFF, and event.data
points to the raw event. Then the event function sends the message to the
device.

II Send the event to any event monitor windows.
for (UI_WINDOW_OBJECT *object = First(); object;

object = object->Next())
if (object->userFlags == MSG_EVENT_MONITOR && event. type 1=

S_RESET_DISPLAY)

DI_EVENT tEvent(event.type, OXFFFF);
tEvent.data = (void *)&event;
object->Event(tEvent);

}

II Return the control code.
return (ccode);

Getting Started with Zinc Programming 257



Program Design

ZINCAPP_WINDOW_MANAGER also provides a way to exit the pro­
gram through the static member function ExitFunction( ), which displays
the modal exit window we saw earlier in the chapter.

'='1

o
Zinc Application

This will close the ZincApp lUloriaL

;tiK.i Cancel

258

If the user selects QK, an L_EXIT message passes through the system, and
program stops. Otherwise, the window manager removes the window from
the screen, and program flow continues normally.

Help options

'='1 Zinc Application 1....1.·
~ontrol 'tlindow Event Help

Keyboard
Mouse
~ommands

£rocedures
Qbjects
!Ising help

About ...

This item contains ZincApp's help options, initialized by the
CONTROL_WINDOW constructor. Here's that part of the constructor.:

II Help menu items.
static UI_ITEM helpItems[]
{

MSG_HELP_KEYBOARD,ZIL_VOIDF(Message),"&Keyboard",
MNIF_NO_FLAGS },
MSG_HELP_MOUSE,ZIL_VOIDF(Message), "&Mouse",
MNIF_NO_FLAGS },
MSG_HELP_COMMANDS,ZIL_VOIDF(Message),"&Commands",
MNIF_NO_FLAGS },
MSG_HELP_PROCEDURES,ZI~VOIDF(Message),"&Procedures",

MNIF_NO_FLAGS },
MSG_HELP_OBJECTS,ZIL_VOIDF(Message),"&Objects",

Getting Started with Zinc Programming



help" ,

{

} i

MNIF_NO_FLAGS },
MSG_HELP_HELP,ZIL_VOIDF(Message), "&Using
MNIF_NO_FLAGS },
0, ZIL_VOIDF(O) ,"",MNIF_SEPARATOR },
MSG_HELP_ZINCAPP,ZIL_VOIDF(About) ,"&About
MNIF_NO_FLAGS },
0, 0, 0, ° }II End of array.

"••• 1

II Attach the menu and support objects to the control window.
*this

+ new UIW BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW MINIMIZE BUTTON- -
+ &(*new UIW_SYSTEM_BUTTON(SYF_GENERIC)

+ new UIW_POP_UP_ITEM( "About ZincApp... ", MNIF_NO_FLAGS,
BTF_NO_TOGGLE I BTF_NO_3D,
WOF_SUPPORT_OBJECT, About, MSG_HELP_ZINCAPP»)

+ new UIW_TITLE( "Zinc Application")
+ &(*new UIW_PULL_DOWN_MENU

+ new UIW_PULL_DOWN_ITEM("&Control", WNF_NO_FLAGS,
controlltems)

#if defined(ZIL_MSDOS)
+ new UIW_PULL_DOWN_ITEM( "&Display", WNF_NO_FLAGS,

displayItems)
#endif

+ &(*new UIW_PULL_DOWN_ITEM( "&Window", WNF_NO_FLAGS)
+ controlObjects
+ inputObjects
+ selectObjects)

+ new UIW_PULL_DOWN_ITEM( "&Event", WNF_NO_FLAGS,
eventltems)

+ new UIW_PULL_DOWN_ITEM( "&Help", WNF_NO_FLAGS,
helpItems) )

+ new UIW_ICON(O, 0, "minlcon", "Zincapp",
ICF_MINIMIZE_OBJECT)i

Getting Started with Zinc Programming 259



Program Design

Help program
flow

What happens when the user selects the Help option? First, the control win­
dow executes steps one through four of the general program flow. At the
fifth step, however, it calls the OptionHelp( ) member function.

(e Main event loop

ZINCAPP_WINDOW_MANAGER

CONTROL_WINDOW: :OptionHelp

~ return

• event flow

•

260

1. The UIW_POP_UP_ITEM::Event() function calls the
CONTROL_WINDOW: :Message( ) function.

2. The CONTROL_WINDOW: :Message( ) function sends a request to
remove the temporary display options menu py sending an
S_CLOSE_TEMPORARY message through the system.

3. Control returns to the main event loop.

Getting Started with Zinc Programming



4. eventManager->Get() gets two messages that the program generates.
The first message it gets is S_CLOSE_TEMPORARY.

5. The second message received is the help message determined by the
selected menu item. This message is passed by the main loop to the Win­
dow Manager, then is dispatched by the Window Manager to CON­
TROL_WINDOW: :Event( ) since the control window is the front win­
dow on the screen. The control window evaluates event. type-in this
case a MSG_HELP message-which results in the OptionHelp() mem­
ber function being called. The code responsible for this control is shown
below:

EVENT_TYPE CONTROL_WINDOW::Event(eonst UI EVENT &event)

EVENT_TYPE eeode = event. type;

II Process the event according to its type.
if (eeode >= MSG_HELP)

OptionHelp(event.type);11 Help option.
else if (eeode >= MSG_EVENT)

OptionEvent(event.type);11 Event option.
else if (eeode >= MSG_WINDOW)

OptionWindow(event.type);11 Window option.
else if (eeode >= MSG_DISPLAY)

OptionDisplay(event.type);11 Display option.
else

eeode = UIW_WINDOW::Event(event);11 Unknown event.
II Return the control code.
return (eeode);

Getting Started with Zinc Programming 261



Program Design

UI EVENT_MANAGER ~ return

.. event flow

Main event loop

~

ZINCAPP_WINDOW_MANAGER

CONTROL_WINDOW

262

I CONTROL_WINDOW::OptionHelp 10
6. The OptionHelp( ) member function evaluates the item's value (passed

down through the item argument) to determine which type of help con­
text has been requested. It then sends the help request to the help system
by calling DisplayHelp( ). The following code shows how this is done:

void CONTROL_WINDOW::OptionHelp(EVENT_TYPE item)
{

// Declare the help message/context pairs.
static struct HELP PAIR

int itemValue;
USHORT helpContext;

Getting Started with Zinc Programming



helpTable [] =

{ MSG_HELP_KEYBOARD,HELP_KEYBOARD },
{ MSG_HELP_MOUSE,HELP_MOUSE },
{ MSG_HELP_COMMANDS , HELP_COMMANDS },
{ MSG_HELP_PROCEDURES,HELP_PROCEDURES },
{ MSG_HELP_OBJECTS , HELP_OBJECTS },
{ MSG_HELP_HELP,HELP_HELP },
{ MSG_HELP_ ZI NCAPP , HELP_GENERAL },
{ 0, 0 }II End of array.

} ;

II Get the help context then call the help system.
USHORT helpContext = NO_HELP_CONTEXT;
for (int i = 0; helpTable[i].itemValue; i++)

if (item == helpTable[i].itemValue)
{

helpContext = helpTable[i].helpContext;
break;

}

helpSystem->DisplayHelp(windowManager, helpContext);
}

Once DisplayHelp( ) is called, it attaches the help window to the Win­
dow Manager. For example, the help request MSG_HELP_ZINCAPP
brings up a help window:

=>1 Zinc Application I~... .
Welcome 10 lhe Zinc Applicalion program. This sample program

~provides an introduclion 10 lhe various components lound in lhe
library. Use lhe mouse 10 selecl an ilem from lhe main menu or press ....
lhe <All> key in combinalion wilh lhe lirsl leller 01 lhe ilem.

.....,.,
+

Here the help window becomes the front window of the application, and
processes events until the user requests a new window.

The help window is a normal, not modal, window, and so the user can
select other windows while the help window is up. In addition, Zinc
defines only one help window for an application. If the help window is
already present, or if it has been moved and sized by a previous help
request, Zinc presents the window in its last position with the new help
information shown in its title and text fields.

Getting Started with Zinc Programming 263



Program Design

General library
help

264

In addition to the help information provided through the main control menu,
the user can access context sensitive help by pressing a help key during the
application. Each ZincApp window has a predefined help context, specified
when the window is constructed. For example, the help context of the main
control window is HELP_MAIN_CONTROL. The code below shows how:

CONTROL_WINDOW::CONTROL_WINDOW(void) :
UIW_WINDOW(O, 0, 52, 13, WOF_NO_FLAGS, WOAF_LOCKED,

HELP_MAIN_CONTROL)

Generally, UI_WINDOW_OBJECT::Event() also provides access to the
help system in the same way. After the user presses the <FI> key, the Win­
dow Manager sends the message to the front window. If the window has a
help context, the Window Manager calls the help system with that help con­
text. If the user presses the <FI> key when the control window is active, the
Window Manager would request the HELP_MAIN_CONTROL help context.
Otherwise, the Window Manager can request general help by sending NO_­
HELP_CONTEXT to the helpSystem->DisplayHelp() function. The help
system receives this message and replaces it with the general help specified
at the time when the help system was constructed. In ZincApp, general help
context is HELP_GENERAL.

II Initialize the help and error systems.
UI_WINDOW_OBJECT::errorSystem = new UI_ERROR_SYSTEM;
UI_WINIX)W_OBJECT: :helpSystem = new UI_HELP_WINOCM_SYSTEM( "support",

windowManager, HELP_GENERAL);

Structured programming-in a word, don't

Some Zinc programmers use structured programming techniques. If we
rewrote ZincApp using those techniques, we would assign each menu item a
function, which the program would execute when the user selected an item.
This is a cumbersome and inefficient technique for writing programs in a
event-driven framework, for reasons we willieam in a moment.

Getting Started with Zinc Programming



In order to demonstrate that structured programming in an event-driven
environment has serious drawbacks, let's hypothetically revise ZincApp. We
could rewrite the Help options in the CONTROL_WINDOW constructor
in a structured manner, so that each option would call specific help func­
tions, rather than pass an event to an object that contained a help member
function. Remember, ZincApp contains none of this code-this is merely a
conceptual alternative, designed to demonstrate a concept.

CONTROL_WINDOW::CONTROL_WINDOW(void) :
UIW_WINDOW(O, 0, 52, 13, WOF_NO_FLAGS, WOAF_LOCKED)

extern EVENI'_TYPE HelpKeyl::x:lard(UI_WINIXM1_0BJErT *itan, UI_EVENI' &event,
EVENT_TYPE ccode);

extern EVENT_TYPE Hel~use(UI_WINIXJiV_OBJECT *itern, DI_EVENT &event,
EVENT_TYPE ccode);

extern EVENI'_TYPE Help:bm'ands (UI_WINIXM1_OBJErT *itan, UI_EVENI' &event,
EVENT_TYPE ccode);

extern EVENT_TYPE HelpProcedures(UI_WINDOW_OBJECT *item,
DI_EVENT &event, EVENT_TYPE ccode);

extern EVENT_TYPE HelpHelp(UI_WINIXJiV_OBJECT *item, UI_EVENT &event,
EVENT_TYPE ccode);

extern E.VENI'_TYPE HelpZincApp(UI_WINIX»l_OBJEX::I' *itan, UI_E.VENI' &event,
EVENT_TYPE ccode);

static DI_ITEM helpItems[] =

{

MSG_HELP_KEYBOARD, VOIDF(CONTROL_WINDOW::Message),
"&Keyboard", MNIF_NO_FLAGS },
{ MSG_HELP_MOUSE, VOIDF(CONTROL_WINDOW::Message),

"&Mouse", MNIF_NO_FLAGS },
MSG_HELP_COMMANDS, VOIDF(CONTROL_WINDOW::Message),

"&Commands", MNIF_NO_FLAGS },
MSG_HELP_PROCEDURES, VOIDF(CONTROL_WINDOW::Message),
"&Procedures", MNIF_NO_FLAGS },
MSG_HELP_OBJECTS, VOIDF(CONTROL_WINDOW::Message),
"&Objects", MNIF_NO_FLAGS },
MSG_HELP_HELP, VOIDF(CONTROL_WINDOW::Message),
"&Using help", MNIF_NO_FLAGS },
0, VOIDF(O), "", MNIF_SEPARATOR },
MSG_HELP_ZINCAPP, VOIDF(About), "&About
MNIF_NO_FLAGS }, { 0, 0, 0, a }// End of array.

} ;

Getting Started with Zinc Programming 265



Program Design

266

In our hypothetical revision, each menu item would have a function that per­
formed a particular operation. To do this, we would define functions for each
of the menu items specified in the main control window. Here's an example
of how we could write the HelpKeyboard( ) function.

EVENT_TYPE HelpKeyboard(UI_WINDOW_OBJECT *item, UI_EVENT &event,
EVENT_TYPE eeode)

item->helpSystem->DisplayHelp(item->windowManager,
HELP_KEYBOARD);

While our hypothetical revision works, it has serious drawbacks.

1. Using structured programming techniques results in inefficiency. In the
help example, it took seven functions to do the work that the CON­
TROL_WINDOW: :OptionHelp( ) function does in one. This wastes
compiler time and executable space, making our applications perform
more slowly.

2. Using structured programming techniques in an event-driven architecture
results in confusing code. Since event-driven architecture works best
with object-oriented programming techniques, we should stick to writing
object-oriented programs.

3. Using structured programming techniques makes us duplicate much of
what Zinc has already accomplished. Since Zinc has an extensive library
of objects and event-handling routines, embedding functions like we've
done negates the advantages of object-oriented structure, among which
are elegant design and smaller code size. Using structured techniques
increases the amount of time and effort involved in creating and debug­
ging programs.

Because of these reasons, Zinc recommends that we eschew structured pro­
gramming techniques in writing our programs.

Getting Started with Zinc Programming



Conclusion

We've reached the end of Getting Started with Zinc Programming. We now
know enough about Zinc to begin writing complex applications that run on
nearly every operating environment in the world-all with one source code
file, using objects native to each of those operating environments. Zinc is
sure you'll enjoy using the Application Framework-after all, we have as
much flexibility as possible, full use of the advanced features of C++, and
can use in our interfaces any modem language used anywhere in the world
today.

Have fun!

Getting Started with Zinc Programming 267



Program Design

268 Getting Started with Zinc Programming



Appendix A Compiler
Considerations

This appendix describes how to compile your applications with Zinc Appli­
cation Framework.

When building your applications, we recommend using the same switch set­
tings that were used to compile the Zinc Application Framework libraries.
These settings are found in the appropriate library makefiles in the
ZINC\sOURCE directory.

Getting Started with Zinc Programming 269



Compiler Considerations

270

Here is a complete list of all libraries and what they contain. Libraries for a
particular compiler are located in the ZINC\LIB\ compiler directory (except
for Motif, Macintosh, and NEXTSTEP).

· DOS_ZIL.LIB. Real-mode DOS library.

· D16_ZIL.LIB. 16-bit DOS library.

· D32_ZIL.LIB. 32-bit DOS library.

· DOS_GFX.LIB. DOS real-mode VI_GRAPHICS_DISPLAY.

· D16_GFX.LIB. DOS VI_GRAPHICS_DISPLAY for 16-bit DOS
extender.

· D32_GFX.LIB. DOS VI_GRAPHICS_DISPLAY for 32-bit DOS
extender.

· WIN_ZIL.LIB. MS Windows library.

· WNT_ZIL.LIB. MS Windows NT library.

· OS2_ZIL.LIB. IBM OS/2 library.

· BC_LGFX.LIB. Borland-specific GFX graphics library.

· BC_16GFX.LIB. Borland-specific GFX graphics library for 16-bit DOS
extender.

· DOS_BGI.LIB. DOS VI_BGI_DISPLAY.

· DOS_ZILO.LIB. Borland DOS overlay library.

· MS_LGFX.LIB. Microsoft-specific GFX graphics library.

· MS_16GFX.LIB. Microsoft-specific GFX graphics library for 16-bit
DOS extender.

· MS_32GFX.LIB. Microsoft-specific GFX graphics library for 32-bit
DOS extender.

· DOS_MSC.LIB. DOS VI_MSC_DISPLAY.

· D16_MSC.LIB. DOS VI_MSC_DISPLAY for 16-bit DOS extender.

· D32_MSC.LIB. DOS VI_MSC_DISPLAY for 32-bit DOS extender.

· SC_LGFX.LIB. Symantec-specific GFX graphics library.

· SC_16GFX.LIB. Symantec-specific GFX graphics library for 16-bit
DOS extender.

· SC_32GFX.LIB. Symantec-specific GFX graphics library for 32-bit
DOS extender.

· SC_LGFXV.LIB. Syrnantec-specific DOS overlay GFX graphics

Getting Started with Zinc Programming



Makefiles­
DOS, Windows,
OS/2

library.

· DOS_ZIL~LIB. Symantec DOS overlay library.

· DOS_GFX~LIB. Symantec DOS overlay UI_GRAPHICS_DISPLAY.

· D32_WCC.LIB. DOS UI_WCC_DISPLAY for 32-bit DOS extender.

· WC_32GFX.LIB. Watcom-specific GFX graphics library for 32-bit
DOS extender.

· Iib_mtCzil.a. OSFlMotif library.

· Iib_crs_zil.a. Curses library.

· Iib_llxCzil.a. NEXTSTEP library.

Borland

This section describes how to use Borland compilers with Zinc. For more
complete details on the Borland compilers, see your Borland User's Guide.

When building applications using a makefile, your TURBOC.CFG and
TLINK.CFG files must be set to include paths to both the Borland and the
Zinc libraries and include files. A typical TURBOC.CFG file might look
like this:

-I.;C:\ZINC\INCLUDE;C:\BORLANDC\INCLUDE
-L.;C:\ZINC\LIB\BTCPP400;C:\BORLANDC\LIB

A typical TLINK.CFG might look like this:

-L.;C:\ZINC\LIB\BTCPP400;C:\BORLANDC\LIB

Any of the example or tutorial makefiles can be used as a skeleton for creat­
ing your own makefiles. It is important that the switches used to compile the
Zinc libraries be used when compiling your applications. Of particular
importance are the -x and -RT switches. These control the enabling of
exception handling and the enabling of run-time type checking, respectively.
The Zinc libraries are compiled with these options turned off. If any modules
in your application, including the Zinc libraries, don't match the other mod­
ules in your application with regard to these options, or your application will
likely crash.

Getting Started with Zinc Programming 271



Compiler Considerations

Borland 4.0
IDE-DOS,
Windows

Borland 1.5
IDE-OS/2

272

To compile DOS or Windows applications in the IDE, do the following:

1. Select ;eroject I~ew project.

2. Enter the project directory and name.

3. Choose the target platform.

4. Choose the large memory model.

5. Make sure the Runtime library is selected. If you're building a DOS
application using BGI, select the BGI library, as well. Zinc does not
require the other libraries.

6. If you're building a Windows application, select the Static option.

7. Select Qptions I;eroject.

8. Select the Directories topic. Enter the directories for the Borland and
Zinc include and library directories.

9. Select the C++ Options topic and open the Exception handlingfRTTI
sub-topic. Turn off the Enable exceptions option and the Enable run­
time type information option.

10. Place the necessary source and library files in the project.

11. Select ,eroject I!!uild all.

To compile an OS/2 application in the IDE, do the following:

1. Select ;eroject I~ew project.

2. Enter the project directory and name.

3. Select ;eroject Iyiew Settings.

4. Select the Directories page. Enter the directories for the Borland and
Zinc include and library directories.

5. Select ;eroject IAdd item.

6. Place the necessary source and library files in the project.

7. Select ~ompile IMake.

Getting Started with Zinc Programming



Makefiles­
DOS, Windows

Visual
Workbench­
DOS, Windows

Microsoft

This section describes how to use Microsoft compilers with Zinc. For more
complete details on the Microsoft compilers, see your Microsoft User's
Guides.

When building applications using a makefile, your LIB and INCLUDE envi­
ronment variables must be set to include paths to both the Microsoft and the
Zinc libraries and include files. A typical LIB environment variable might
look like this:

LIB=.;C:\ZINC\LIB\MVCPP150;C:\VISUALC\LIB

A typical INCLUDE environment variable might look like this:

INCLUDE=.iC:\ZINC\LIB\MVCPP150iC:\VISUALC\INCLUDE

The easiest way to set theses environment variables is in your
AUTOEXEC.BAT file.

Any of the example or tutorial makefiles can be used as a skeleton for creat­
ing your own makefiles. It is important that the switches used to compile the
Zinc libraries be used when compiling your applications.

To compile DOS or Windows applications in the Visual Workbench, do the
following:

1. Select ~roject I ~ew.

2. Enter the executable name.

3. Set the ~roject Type.

4. Add files to the project.

5. Select Qptions I~roject

6. Choose the 1;,ompiler button

7. Under Code Generation, set C~U to 8086/8088.

8. Under Memory Model, set Model to Large.

9. Choose the Linker button.

10. Under Input, tum on Prevent Use of Extended Dictionarx.

11. Under Memory Image, set Max. ~umberof Segments to 256.

12. If compiling a DOS application, under Input, add graphics to Libraries.

13. If compiling a Windows application and the .DEF file has a STACK
entry, then under Memory Image remove the entry in Slack Size.

Getting Started with Zinc Programming 273



Compiler Considerations

Makefiles­
DOS, Windows

274

Due to the way Microsoft handles dependencies in the Visual Workbench, it
may be necessary to comment out some #include directives in the Zinc
header files even though these lines should be pre-compiled out. If you get
errors that the compiler cannot open some NEXTSTEP or OSFlMotif header
files, then comment out the offending line(s).

Symantec

This section describes how to use Symantec compilers with Zinc. For more
complete details on the Symantec compilers, see your Symantec Compiler
and Tools Guide.

When building applications using a makefile, your LIB and INCLUDE envi­
ronment variables must be set to include paths to both the Symantec and the
Zinc libraries and include files. A typical LIB environment variable might
look like this:

LIB=.iC:\ZINC\LIB\SCCPP610iC:\SC\LIB

A typical INCLUDE environment variable might look like this:

INCLUDE=.iC:\ZINC\LIB\SCCPP610iC:\SC\INCLUDE

The easiest way to set theses environment variables is in your
AUTOEXEC.BAT file.

Any of the example or tutorial makefiles can be used as a skeleton for creat­
ing your own makefiles. It is important that the switches used to compile the
Zinc libraries be used when compiling your applications.

Getting Started with Zinc Programming



Symantec 6.1
lODE-DOS,
Windows

Makefiles­
DOS, Windows,
OS/2

To compile DOS or Windows applications in the IDDE, do the following:

1. Select ~roject I~ew

2. Place the necessary source and library files in the directory.

3. Select Qptions I ~roject

4. Select the target platform.

5. Select Qptions I !:ompiler I Memory Model

6. Select Large.

7. Select Qptions IDirectories.

8. Enter the directories for the Symantec and Zinc include and library direc­
tories.

Watcom

This section describes how to use Watcom compilers with Zinc. For more
complete details on the Watcom compilers, see your Watcom C/C+ + User s
Guide.

When building applications using a makefile, your LIB and INCLUDE envi­
ronment variables must be set to include paths to both the Watcom and the
Zinc libraries and include files. A typical LIB environment variable might
look like this:

LIB=.iC:\ZINC\LIB\WCCPPiC:\WATCOM\LIB386iC:\WATCOM\LIB386\WIN

A typical INCLUDE environment variable might look like this:

INCLUDE=.iC:\ZINC\LIB\WCCPPiC:\WATCOM\HiC:\WATCOM\H\WIN

The easiest way to set these environment variables is in your
AUTOEXEC.BAT file.

Any of the example or tutorial makefiles can be used as a skeleton for creat­
ing your own makefiles. It is important that you use the switches for compil­
ing the Zinc libraries when compiling your applications.

Getting Started with Zinc Programming 275



Compiler Considerations

Watcom 10.0
IDE-DOS,
Windows, OS/2

Makefiles-OS/2

276

To compile DOS, Windows, or OS/2 applications in the IDE, do the follow­
ing:

1. Select ~roject I~ew project.

2. Enter the project directory and name.

3. Select ,Upen.

4. Choose the target platform from the dialog.

5. Select S.ources I~ew source. Place the necessary source and library files
in the project.

6. Select ,Uptions I C++ compiler switches.

7. Select the File option switches. Enter the directories for the Watcom and
Zinc include and library directories.

8. Select Iargets I Make.

IBM

This section describes how to use IBM compilers with Zinc. For more com­
plete details on the IBM compilers, see your IBM manuals.

When building applications using a makefile, your LIB and INCLUDE envi­
ronment variables must be set to include paths to both the IBM and the Zinc
libraries and include files. A typical LIB environment variable might look
like this:

LIB=.;C:\ZINC\LIB\SCCPP610;C:\IBM\LIB;C:\TOOLKT21\OS2LIB

A typical INCLUDE environment variable might look like this:

INCLUDE=.;C:\ZINC\LIB\SCCPP610;C:\IBM\INCLUDE;C:\TOOLKT21\OS2H

The easiest way to set theses environment variables is in your
AUTOEXEC.BAT file.

Any of the example or tutorial makefiles can be used as a skeleton for creat­
ing your own makefiles. It is important that the switches used to compile the
Zinc libraries be used when compiling your applications.

Getting Started with Zinc Programming



WorkFrame/2

THINK Project
Manager (TPM)

For details on using IBM's WorkFramel2 development environment, see the
READ.ME file or your IBM manuals.

Macintosh

These Symantec projects are for compiling Zinc applications on Macintosh:

· Mac_ZILl

· Mac_ZIL2

· Mac_ZIL3

· Mac_ZIL4

· Mac_ZILS

· Mac_ZIL6

· Mac_ZIL7

· Mac_ZIL8

· Mac_ZIL9

· Mac_ZILIO

· UI_JumpTables

· VI_Application

· ZIL_Storage

· Mac_ZIL.rsrc

Apple's universal headers must be used with Zinc applications. These head­
ers are included in the Universal Headers folder in the THINK tree. Consult
your Symantec documentation for instructions.

Each tutorial program has a sample project file that may be used as a tem­
plate for other programs. Before using the project file, you must make
aliases of the SCCPP700 Include folder and the SCCPP700 Library folder.
These aliases must be placed in the Alias folder within the TPM tree. Con­
sult your Symantec User's Guide for help.

To compile applications for Macintosh with TPM, do the following:

1. Select Edit I Options I THINK Project Manager.

Getting Started with Zinc Programming 277



Compiler Considerations

278

2. Select Preferences.

3. Choose Optimize monomorphic methods.

4. Select Extensions.

5. Make the following entries in the table.

. cpp => Symantec c++

.rsrc => Resource Copier

6. Select Edit I Options I Symantec C++.

7. Select Language Settings.

8. Choose Relaxed ANSI conformance.

9. Choose Read each header file once.

10. Select Compiler Settings.

11. Choose Align to 2 byte boundary.

12. Select Debugging.

13. Choose Use function calls for inlines.

14. Select Prefix.

15. Type the following line.

#include <ui_win.hpp>

Each of the Mac_ZIL* projects must be added to its own segment within
your project, since the Macintosh limits code segments to 32K. You must
also include within your project the following Symantec projects:

· CPlusLib

· MacTraps

· ANSI++

· unix++.

Motif

After installing Zinc on your system, run the INSTALL utility. It will ask
you a number of questions concerning your system's configuration and will
then configure your Zinc installation for your environment. Once this is

Getting Started with Zinc Programming



complete all your Zinc makefiles will be ready for use in your environment.
See the MOTIF.TXT file if you need more details on compiling Zinc for
Motif.

Curses

After installing Zinc on your system, run the INSTALL utility. It will ask
you a number of questions concerning your system's configuration and will
then configure your Zinc installation for your environment. Once this is
complete all your Zinc makefiles will be ready for use in your environment.
See the CURSES.TXT file if you need more details on compiling Zinc for
Curses.

NEXTSTEP

Zinc provides Unix makefiles for all tutorial and example programs. These
can be run from a terminal window to build an application. Use one of these
makefiles as a template for your own makefiles. See the NEXTSTEP.TXT
file for information on using ProjectBuilder.app to build your applications.

Getting Started with Zinc Programming 279



Compiler Considerations

280 Getting Started with Zinc Programming



Appendix B

VAllOT

Example Programs

This appendix lists Zinc's example programs, and explains what each
program does as well as its design principles.

Callbacks

Creates two windows with number fields. If the user inputs a number outside
the range 0-999, the program alerts the user that the number is out of range.

Concepts.

· Using nonstatic methods.

· Using range-checking to validate with UIW_BIGNUM.

· Defining a user function to validate with UIW_BIGNUM.

· Deriving a window.

Getting Started with Zinc Programming 281



Example Programs

ANALOG

282

Design principles. The VALIDATE class uses the nonstatic
MemberValidate() method to validate its UIW_BIGNUM fields. To
accomplish this, VALIDATE defines the Validation( ) method, which is
static, to call the MemberValidate() method. When constructing a
UIW_BIGNUM object, VALIDATE passes the Validation( ) method to the
UIW_BIGNUM constructor, since it requires a static method.

The Input A field is a UIW_BIGNUM that uses range-checking for valida­
tion. When the VALIDATE constructor constructs this field, it passes the
range "0..999" to the constructor to allow normal UIW_BIGNUM range
validation. Notice that a user function is not passed to the constructor.

The Input B and Input C fields are UIW_BIGNUM objects that call a user
function to perform validation. When the VALIDATE constructor constructs
these fields, it passes the Validation() method to the constructor. These
UIW_BIGNUM objects will perform validation by calling the Validation
method. Notice that a range is not passed to the constructor. VALIDATE
derives from UIW_WINDOW.

The VALIDATE window does not define an Event() method, so the base
UIW_WINDOW class handles all events. This way, VALIDATE retains all
normal window functionality, while defining other private methods and
members to provide additional functionality.

Draw/tern

What it does. ANALOG creates an analog clock with the current date at the
bottom. The operating system notifies the clock when each second has
passed through a timer device.

Concepts.

· Using DID_TIMER with TMR_QUEUE_EVENTS.

· Using LINCREMENT_VALUE with a UIW_DATE field.

· Using DataSet() with a UIW_TIME field.

· Using the WOS_OWNERDRAW status flag.

· Drawing an "owner-draw" object. Using display primitives with XOR.

Getting Started with Zinc Programming



Design principles. The UID_TIMER device in ANALOG uses the
TMR_QUEUE_EVENTS flag, which causes UID_TIMER to post an
E_TIMER event on the event manager's queue every second. Since the
UID_TIMER posts the E_TIMER event on the event manager's queue, only
the current window on the window manager receives the E_TIMER event.
ANALOG only has one window, so this method is sufficient. UID_TIMER
may also notify an object directly with an E_TIMER event.

When the CLOCK window receives an E_TIMER event at midnight, it noti­
fies the UIW_DATE field at the bottom of the window by calling
UIW_DATE::Information() with I_INCREMENT_VALUE. The UIW­
_DATE field therefore increments itself by one day, changing its day, month,
or year as it needs to.

When ANALOG runs in text mode, the analog clock is replaced by a
UIW_TIME field that updates every second. To accomplish the update, the
CLOCK window calls the UIW_TIME field's DataSet() with the new sys­
tem time every time the CLOCK window receives an E_TIMER event. The
CLOCK window constructs a ZIL_TIME object and passes it to the
UIW_TIME field's DataSet() to achieve the update.

The CLOCK class derives from UIW_WINDOW, and its window passes
most of the events it receives down to the UIW_WINDOW class. The
CLOCK window's event method handles only the E_TIMER event. This
way, the CLOCK class retains all normal window functionality and
responds to the E_TIMER event by updating its children as appropriate.

The ANALOG_FACE class is derived from UI_WINDOW_OBJECT so
that the CLOCK may consider it an updateable child object. The
ANALOG_FACE passes most of the events it receives down to the
UI_WINDOW_OBJECT class. The ANALOG_FACE event method han­
dles only the S_CREATE, S_CHANGED, and S_MOVE events. This way, the
ANALOG_FACE class retains all normal window object functionality and
responds to the S_CREATE, S_CHANGED, and S_MOVE events by recalcu­
lating the center of the analog face.

The ANALOG_FACE class has private members to store the center of the
analog face and the positions of the clock hands for updating the display. The
ANALOG_FACE class also defines a Drawltem() to display the analog
face on the CLOCK window. The ANALOG_FACE sets its
WOS_OWNERDRAW status flag in the event method when it receives an

Getting Started with Zinc Programming 283



Example Programs

GRID

284

S_CREATE, S_CHANGED, or S_MOVE event so that the UI_WIN­
DOW_OBJECT base class will call ANALOG_FACE::Drawltem() to
update the analog face.

The "owner-draw" ANALOG_FACE Drawltem method draws the
ANALOG_FACE object by getting the system time from the parent
CLOCK object's time field, which is a ZIL_UTIME object. Then the
DrawItem method virtualizes the display by calling VirtualGet( ), followed
by calls to the Face(), UpdateMinutes(), and UpdateSeconds() methods.
The Face() method draws the background of the analog face. The
UpdateMinutes() method updates the hour and minute hands. The
UpdateSeconds() method updates the second hand.

ANALOG_FACE uses of the XOR mode of the display primitives in the
UpdateMinutes( ) and UpdateSeconds( ) methods when drawing the hands
on the analog face. The display's Polygon method draws the hour and
minute hands in XOR mode, and the display's Line method draws the second
hand in XOR mode. When the ANALOG_FACE updates the clock hands, it
draws the old hands in XOR mode to erase them, then redraws the new
hands in XOR mode.

Uses the Drawltem( ) function to display a tic-tac-toe grid. It shows how to
use palettes for drawing and how to reference graphical drawing so the
drawn object stays centered.

Concepts.

· DrawItem( ) function

· Registering an object with a native operating environment

· WOS_OWNERDRAWflag

· VirtuaIGet(), VirtualPut( )

• lastPalette

· Clipping region parameter of display functions

· Using palettes for drawing

Design principles. GRID contains a derived class, DRAW_OBJECT, that
derives from UI_WINDOW_OBJECT. DRAW_OBJECT's Drawltem()
function overrides the base class's Drawltem( ) function to draw a tic-tac­
toe grid. DRAW_OBJECT's Event() function handles resizing and regis­
ters itself with the native operating environment.

Getting Started with Zinc Programming



GRAPH

DSPLAY

Uses the DrawItem( ) function to display four windows, each with a differ­
ent type of chart. The first window draws a line chart. The second window
draws a sizeable pie chart. The third window draws a nonsizeable pie chart.
The fourth window draws a bar chart.

Concepts.

· DrawItem() function

· WOS_OWNERDRAW flag.

· VirtuaIGet(), VirtualPut( )

Design principles. GRAPH draws directly on the client area of the screen.
LINE_CHART, BAR_CHART, and PIE_CHART derive from
VIW_WINDOW. Each of their DrawItem( ) functions draw the graphs.

Uses the drawing primitives to draw a picture with several objects and bit­
maps.

Concepts.

· Creating palettes.

· Using the graphics primitives.

· The DrawItem() function.

Design principles. DISPLAY_WINDOW is a derived window that is added
as a child window. Its virtual DrawItem function calls the drawing functions
to create the image. These drawing functions make use of the drawing prim­
itives provided in Zinc's libraries to create the actual image.

A VI_PALETTE is defined for each of the drawing functions except
DrawBitmap(). The bitmap is defined in the code. The VI_PALETTE has
ten fields of information. The first three are used for text mode and the last
seven are for graphics mode and grey scale monitors.

DrawRectangle( ) draws five rectangles, one in each corner and one in the
middle of the window. DrawEllipse( ) draws four arcs that can be seen at
each corner of the window. DrawPolygon() draws the triangular pieces at
each corner. DrawBitmap( ) draws smiley faces, one at each corner and one
in the middle. DrawAlphabet() draws the letters of the alphabet in four
places in the window. DrawLines( ) draws the remaining lines that are seen
in the window.

Getting Started with Zinc Programming 285



Example Programs

LSTITM

286

Puts a list of derived objects on a windows. The programmer is responsible
for the drawing of the objects. The items in the list have multiple entries and
lines them up in columns.

Concepts demonstrated.

• Deriving an object from UIW_BUTTON

· WOS_OWNERDRAW

· Providing a Drawltem( ) function for a derived class

· Using drawing primitives from a derived UI_DISPLAY class

· Sorting by using a Comparee ) function

Design principles. To draw an object by hand we must derive a class. For
this example we will derive from UIW_BUTTON. We must give the class a
constructor. The constructor must call the base class's constructor. Inside of
the constructor we initialize any member data and since we want to do the
drawing we will also set the WOS_OWNERDRAW flag. We also declare a
destructor to handle clean-up of the initialized member data.

Since the object is WOS_OWNERDRAW we will also provide a
Drawltem() function. A Drawltem( ) function takes two parameters, a the
contents of the memory address of UI_EVENT, and a EVENT_TYPE, and
returns an EVENT_TYPE. In the Drawltem() function we use LogicalPal­
ette to determine what colors we should use for painting. Before we do any
painting we must call display->VirtualGet(). This sets up the regions and
notifies the environment we are going to begin painting. Next we can paint
by calling the basic display primitives-Bitmap(), ElIipse(), Line(),
Polygon(), Rectangle(), and Text(); as well as UI_WINDOW_OBJECT
drawing functions-DrawBorder(), DrawShadow(), DrawText(), and
DrawFocus( ).. We will paint the background first then paint several entries
at fixed distances so that the columns will line up. When painting is done we
must call display- >VirtualPut() to notify the environment we are done
painting. Last, we return TRUE to say we drew the object.

We write our compare function as a static member function, so that when we
pass the function to a constructor that takes a compare function, the compiler
doesn't return an error that the function is of the wrong type.

Compare functions take two void pointers which point to the two objects to
compare and return an into If the first object is greater than the second, the
compare function must return a positive value; if the first one is less than the
second, the compare function must return a negative value; and if they are

Getting Started with Zinc Programming



CALC

equal, the compare function must return a zero. Since Zinc only passes us a
void pointer, this is one of the few places we must use a typecast. Last, we
declare any member variables necessary to hold onto our data.

Inside of the program, we create a list, give it the compare function, and fill
it with our derived objects. Then, as with other programs, we put our field on
a window, add the window to the Window Manager, and go into our control
loop.

Event andpalette mapping

A simple calculator program that replaces the hotKeyMapTable defined in
the library to show how to change the mapping of events.

Concepts demonstrated:

. Event mapping.

. User function as a class member.

Design principles: The hotKeyMapTable has four fields per entry. The first
entry is the objectID. The second is the event that should be returned. The
third is the event type. The fourth is the raw code. The main function
replaces the hotKeyMapTable defined in the library. The main function
remaps the _hotKeyMapTable variable declared in G_WIN.CPP so that it
points to the new hotKeyMapTable.

Notice the hotKeyMapTable and the eventMapTable look the same, but the
hotKeyMapTable does not use the objectID or the event type. Both of these
fields could contain 0 without affecting the program, and so the example
program can use E_KEY as the event type for all environments. When
changing the eventMapTable, the objectID field should correspond to the
object that should receive the event, such as ID_BUTTON for a
UIW_BUTTON.

The event type must correspond to the operating system. For example, a key­
board event in DOS would have the E_KEY event type. However, in Win­
dows, the keyboard event type would be WM_CHAR or WM_SYSCHAR.

Getting Started with Zinc Programming 287



Example Programs

CALNDR

288

A user function must be a static function. The constructor of an object
requires the address of a user function as a parameter. Only a static function
has an address at all times. Static member function do not have access to
nonstatic members. Nonstatic members are accessed through the static user
function calling a nonstatic member function.

Implements a Drawltem() function to draw a calendar grid on a window. It
also uses its own event map table to map events.

Concepts demonstrated.

· DrawltemO function

· Event mapping

· Help system

· Derived window with an overloaded Event( ) function.

• Pop-up items with both a user function and value.

Design principles. The Drawltem() function is implemented in the derived
class DAYS_OF_MONTH. This function determines which of program's
palettes it should use when drawing the calendar. The WOS_OWNERDRA W
flag must be set the object that uses the Drawltem( ) function. In this pro­
gram the flag is set in the constructor of DAYS_OF_MONTH. This flag tells
Zinc to call the Drawltem( ) function, and does not let the operating system
or Zinc draw the object.

CALENDR creates an event map table. An event map table has four fields
per entry. The first is the objectID. The second is the event that is returned.
The third is the event type. The fourth is the raw code. The new event map
table has entries for a new object ID_CALENDAR. For these entries to be
used the windowID array must have a match for ID_CALENDAR. The
windowID array is changed in the constructor for the CALENDAR class.
The eventMapTable pointer, a public member of UI_WINDOW_OBJECT,
points to the default event map table. For the new event map table to be used,
this pointer must be changed to point to the new table or the Event( ) func­
tion of the object must call MapEvent( ) directly and pass in a pointer to the
new event map table.

Using a derived window allows us to overload the Event( ) function, which
can trap user-defined messages or other predefined messages. All messages
not handled by the Event( ) function should be passed down to the base class
for processing.

Getting Started with Zinc Programming



PHONBK

WINDOW

Assigning a value to the pop-up item allows us to assign the same user func­
tion to each pop up item. The user function tests the value of the selected
pop-up item to determine what it should do. We can use this same method on
any object that has a value field.

Get/set data

Uses persistence to load and store phone numbers from a data file. The user
has the options of loading, saving, or deleting phone numbers to their data
file.

Concepts demonstrated.

· User functions.

· Getting and setting text on a window.

· Loading and saving data through persistence

· UI_STORAGE_OBJECT_READ_ONLY

· UI_STORAGE_OBJECT

Design principles. In PHONEBK, each button on the window uses a user
function, each of which uses the Information( ) function to get and set text
from the fields on the window. The UI_STORAGE_OBJECT_READ­
_ONLY and UI_STORAGE_OBJECT member functions make the data
persistent.

Creates two windows, a UIW_WINDOW with name, address, telephone
number entry fields; and a modal dialog window with an OK button. Then
the user can see the data and press the OK button to dismiss the dialog win­
dow.

Getting Started with Zinc Programming 289



Example Programs

POSTWN

NOTEBK

STATUS

290

Concepts demonstrated.

· DataSet()

· DataGet()

· Message passing

· Modal dialog windows

· Persistence

Design principles. This program takes the data out of the fields in the first
window and uses DataGet( ) to retrieve the data from the entry window and
uses DataSet( ) to pass them to the dialog window.

At launch time, a window with some data entry fields appear on the screen.
The user types in some data, which the program saves in a .DAT file when
the user presses the save button. At the next launch, the program displays the
data the user saved during the last session.

Concepts demonstrated.

· Persistent object storage and retrieval

Design principles. The window is an instance of UIW_WINDOW, which
contains string fields and an instance of UIW_BUTTON. The button
instance has a user function that calls the UI_WINDOW persistence mem­
bers to save the data to the .DAT file.

Creates a UIW_NOTEBOOK object with four pages. Each page shows dif­
ferent information from an imaginary employee record.

Concepts demonstrated.

· Using the UIW_NOTEBOOK object.

Demonstrates how to check the status flags of a group of checkboxes. Shows
how to set the status of a group of checkboxes in one group based on the set­
tings in another group. Also shows how to create and add an object to a ver­
tical list. When run, the main window comes up as a minimized icon, which
the user can then maximize.

Getting Started with Zinc Programming



MENUS

Concepts demonstrated.

· Adding a window to the windowManager in minimized or maximized
state.

· FlagSet() macro

· Setting the woStatus flags of an object

· Using a fore ) loop to get a pointer to a window's subobjects

· Destroy() function

· Index() function

· Get() function

• S_REDISPLAY

· BTF_DOUBLE_CLICKflag

· Using bitmaps and icons from a .DAT file

· Sizing a button

Design principles. STATUS uses an Event() function to process user
requests. It uses a simple fore ) loop to go through group l's checkbox child
objects, and uses the FlagSet( ) macro to check if a checkbox is checked.

When the user clicks on the Set group2 button, a forO loop checks group l's
checkboxes, and sets group 2's checkboxes to match. When the user clicks
the Copy to vt list button, entries reflecting group l's settings are added to
the vertical list. The reset button has a user function that demonstrates the
BTF_DOUBLE_CLICK flag.

Changes the status of menu items when different buttons and menu items are
selected.

Concepts demonstrated.

• The WOF_NON_SELECTABLE flag.

· The WOS_SELECTED flag.

· The Information( ) function.

· The Get( ) function.

Design principles. MENUS uses the Get( ) function to get pointers to the
different menu items. It then modifies the flags associated with those menu
items and uses the Information( ) function to modify their appearance.

Getting Started with Zinc Programming 291



Example Programs

SPREAD

AGENCY

292

Demonstrates the usage of the UIW_TABLE, UIW_TABLE_RECORD,
and the UIW_TABLE_HEADER classes by creating a simple spreadsheet.

Concepts demonstrated.

· Deriving a class from the UIW_TABLE class.

· Deriving a class from the UIW_TABLE_RECORD class.

· Getting and setting table record data.

· Loading and storing table data with the UI_STORAGE class.

Design principles. Derives a class called SPREAD_SHEET from the
UIW_TABLE class. Creates a multiple-column table, and provides an
Event() function for processing special spreadsheet events. The TBLF­
_GRID flag causes the table to draw lines separating the rows and columns
of the table, giving it a spreadsheet appearance. The SPREAD_SHEET
class also performs the calculations required for maintaining the spreadsheet.

A class named SPREAD_SHEET_CELL is derived from the
UIW_TABLE_RECORD classes. This class processes the S_SET_DATA,
S_CURRENT, S_NON_CURRENT, and selection events. It communicates
with its parent spreadsheet class by sending events. The spreadsheet cell
contains one UIW_STRING child object used for displaying the cells con­
tents.

The spreadsheet data consists of an array of pointers initialized to NULL, and
memory is allocated only when data is entered into a cell. At this time, the
corresponding pointer gives the address of the new data.

SPREAD_SHEET uses the VI_STORAGE class to load and store its data
in an environment-independent manner.

Shows a list of entries like what you might see for a travel agency. You can
add new objects to the list and delete old ones. There is also a save menu
option which allows you to save the window and its contents. Entries in the
list are saved as persistent objects.

Getting Started with Zinc Programming



Concepts demonstrated.

· Providing an Event( ) function for a deri ved class

· Creating and using user-defined events

· Providing a Drawltem( ) function for a derived class

· Using drawing primitives from a derived UI_DISPLAY class

· Loading and saving data through persistence.

Design principles. We derive AGENCY_ENTRY from UIW_BUTTON
and give it two constructors, one for creating an instance without persistence
and one for creating one with persistence. In our case the first constructor
will call the standard UIW_BUTTON constructor and the second one the
persistent object constructor.

Persistent object constructors take three parameters, pointers to ZIL_ICHAR,
ZIL_STORAGE_READ_ONLY: and ZIL_STORAGE_OBJECT_READ_ONLY:
which we must pass to the base class constructor. Inside the constructor we
call the virtual Load( ) function to load the data for our derived class.

The virtual Load( ) function takes the same three parameters as the persis­
tent constructor, but we are only going to use the third parameter, a pointer to
ZIL_STORAGE_OBjECT_READ_ONLY, to load data from the persis­
tent object file. We can use any Load() function documented in the
ZIL_STORAGE_OBjECT_READ_ONLY chapter of the reference guide.

When using the Load() function across multiple operating environments,
we should be sure to take into account different byte-ordering schemes. On
some platforms the type int is of different sizes and different byte orders. We
should instead use specific types such as ZIL_INT16 or ZIL_INT32. Zinc
will take care of byte-ordering differences automatically if we use these
types.

Our class also has a virtual Store( ) function, which also takes the same three
parameters as the persistent constructor. We must ensure that our Store( )
function loads the same data, and in the same order. Since the constructor
must first call the base class, we must first call the base class's Store( ) func­
tion. Then we store the data by calling the Store() function from the
ZIL_STORAGE_OBJECT_READ_ONLY parameter.

We must also provide an object ID and a New( ) function for our class. The
unique object ID is a variable of type OBJECTID, which we will use in the
object table to look up objects for a New( ) function. The New() function
takes the same three parameters as the persistent constructor and returns a

Getting Started with Zinc Programming 293



Example Programs

118N

294

pointer to a UI_WINDOW_OBJECT. It merely creates a new instance of
our class, using those parameters and returns a pointer to the object. The
address of the New() function is placed in the objectTable. When a window
is loading it children it does a lookup in the objectTable for the appropriate
New( ) function. These are used because of the difficulties with trying to put
constructors directly into the table.

Now that we have persistence in our class we can save our window and the
contents of the window will be saved automatically. When the user requests
a save we construct a ZIL_STORAGE. This is the class that accesses the
persistent object file for us. We specify the file name and UIS_READWRITE
to allow us to write in the persistent object file.

Then we call the window's Store function to save it. We pass in the name of
the window and the ZIL_STORAGE we just created, but let the third
parameter default out. This stores all of the data to a temporary file. Then we
call ZIL_STORAGE's Save function to resolve our data out to the perma­
nent file. Finally, we delete ZIL_STORAGE to flush any buffers and close
the persistent object file. The next time we run our program, the window will
be loaded with the contents saved during the previous session.

/18N

Shows how to decouple strings used in a window from the creation and
manipulation of the window, allowing easy internationalization of the win­
dow. Also shows how to override the strings compiled into the library with­
out editing and recompiling the library source.

Concepts demonstrated.

. Using ZIL_LANGUAGE_MANAGER and ZIL_LANGUAGE to
manage two different languages.

Design principles. We declare a new class called I18N_WINDOW, which
consists of a window; title; system, minimize, and maximize buttons; and
three prompts. We want to change the language on the title and prompts so
that we can easily add other languages and so that we don't have to modify
I18N_WINDOW's source code. We do this using the ZIL_LANGUAGE_-

Getting Started with Zinc Programming



DELTA

MANAGER. First we set up the set of strings that we want to use and bind
them to the I18N_WINDOW::_className. Then I18N_WINDOW in the
constructor fetches the strings by using its class name and gets the strings it
needs to use. For completeness, we also replace the system button strings.
(Notice that some operating systems may not use the replaced system button
strings.)

Shows how to load an object that was stored by the Designer as a DELTA
object. It also shows how multiple different language/locale resources may
be stored in the same file with a minimal amount of overhead. Using this
method, an application built with Zinc Application Framework may support
multiple languages and locales from one executable and one POST file.
Only the changes (the delta) between different versions of each resource will
be stored, reducing the amount of disk space used.

Concepts demonstrated.

. Using ZIL_DELTA_STORAGE and ZIL_DELTA_STORAGE_OBJECT
to manage two different languages.

Design principles. A resource is loaded from the file P_DELTA.DAT. It
contains a date and a time. The first resource uses the simple numeric for­
mats to display all the objects. The second resource displays the date with
named months and days of the week, while the time uses twelve-hour for­
matting ("am"l"pm"). The field sizes have been adjusted for the larger field
sizes needed. Both windows are stored in the same POST file, but only the
changes made to the second are really stored. The size of the first window is
161 bytes, while the size of the second window is only 36 bytes, including
the overhead of the delta object information, which in this case is 12 bytes.

Getting Started with Zinc Programming 295



Example Programs

MESSGS

MATCH

296

Messages

Uses the event structure to create an event that can be placed on the queue
and trapped by a derived window's Event() function.

Concepts demonstrated.

· Creating events

· Derived window with an overloaded Event( ) function.

Design principles: An event is created in the LeaveMessage( ) user function
by setting event.type to the desired event. The event.data part of the structure
is a void pointer used to pass more information with the event.

The overloaded Event() function traps user-defined events or predefined
Zinc or operating system events. This can be used to override existing func­
tionality or when implementing new functionality. Any events not handled
by the overloaded Event( ) function should be passed on to the base class for
processing.

The user matches two buttons with the same bitmaps in a simple game of
"concentration." Through persistence, the program loads a bitmap from disk
and assigns the bitmap to a button.

Concepts demonstrated.

· Deriving a window.

· Deriving a button.

· Loading a bitmap image through persistence.

· Assigning a bitmap to a button.

· Message passing.

Design principles. MATCH_WINDOW is the control window for the pro­
gram. Event( ) handles the calls to switch bitmaps for selected buttons, to
create a new set of bitmapped buttons, and to take the matching buttons off
the display. Jumble() randomizes the bitmaps used for each button dis­
played. The buttonWindow member actually contains the bitmapped buttons.

MATCH_BUTTON is the bitmapped button being added to the
MATCH_WINDOW object's buttonWindow. Its SetBitmap( ) switches the
bitmap for the button by loading the desired bitmap from disk and setting it

Getting Started with Zinc Programming



WORLD

FRESTR

on the button. Each button sends a TOGGLE_BITMAP message to the
MATCH_WINDOW object via the event queue when the button is
selected.

One of the menu items used sends a NEW_GAME message to the
MATCH_WINDOW by placing it on the event queue when selected. This
message causes a new set of bitmapped buttons to be created.

Shows how to broadcast messages using a derived window manager as well
as updating a bitmap of a rotating world.

Concepts demonstrated.

· Deriving a window manager.

· Deriving a device.

· Broadcasting messages to all windows.

Design principles. WINDOW_MANAGER is the derived window man­
ager that broadcasts the messages to all the attached windows.

WORLD_WINDOW is a derived window that receives the message to
update its own rotating world bitmap. Each window updates it's own inde­
pendently rotating world.

WORLD_DEVICE is the derived device that places an update message on
the queue when an appropriate amount of time has passed.

Miscellaneous

Implements a free store exception handler by installing a new handler. When
the new( ) operator fails to allocate memory, the new handler will be called
allowing the application to recover gracefully.

Concepts.

· Implementing and installing a new handler.

· Performing a compiler independent task.

Getting Started with Zinc Programming 297



Example Programs

DRAG

298

Design principles. MEMORY_ALLOCATION_ERROR_SYSTEM is a
class that handles a free store exception. It will contain a constructor, a
destructor, and a routine to handle the exception.

The running example will add a window to the Window Manager with this
message:

This is a test of the Free Store Exception Handler.

When the new operator fails, a NULL is usually returned. For this example a
"new handler" is called instead. This handler takes control, notifies the user,
and cleans up and exits. It may take a few hundred windows to use up all of
memory. Be patient and watch.

The class will then go through a loop that continually creates windows and
adds them to the Window Manager. When memory is exhausted, and the
new handler invoked, a dialog window will appear explaining the system is
out of memory and allow a graceful exit back to DOS.

This program is a DOS-only example. Since there is no standard for this
exception, and each compiler implements doing a new handler differently,
there will be multiple #if defined(..) statements throughout the code. This
will be an example for programmers on how to go about other compiler­
independent tasks, such as Critical Error handlers and Interrupt Service Rou­
tines.

Simulates a file manipulation dialog window. The user can pretend to move
files from one location to another by dragging them from list to list.

Concepts demonstrated.

. Using the WOAF_ACCEPTS_DROP flag.

. Using the WOAF_DRAG_OBJECTflag.

Design principles. In order to drag an object it must have the
WOAF_DRAG_OBJECT flag set. We set this flag on the items in the lists so
they can be moved.

In order for an object to accept a dragged object it must have the
WOAF_ACCEPTS_DROP flag set. We set this flag on the list objects so they
can accept objects that are dragged to them.

The receiving object determines if an object can be copied or moved. Since
we are dragging from list to list, the objects can either be copied or moved.

Getting Started with Zinc Programming



Spy Reports the events that go through the system on a scrolling TTY window.

Concepts demonstrated:

· Deriving a device.

· Implementing a pone ) member function for a derived device.

· Deriving a prompt.

· Deriving a TTY window.

· Implementing a Printf( ) member function for a TTY window.

Design principles. The SPY class is derived from UI_DEVICE. The SPY
class passes most of the events it receives down to the UI_DEVICE class.
The Spy device's event method handles only the S_INITIALIZE, D_ON,
and D_OFF events. This way, SPY retains all normal device functionality
and responds to the S_INITIALIZE and D_ON events by adding its spy win­
dow to the Window Manager, and responds to the D_OFF event by subtract­
ing its spy window from the window manager. Spy includes the spy
window, which is a normal UIW_WINDOW that provides the messages to
be monitored in the TTY window. Spy also includes the TTY window
itself, so that the SPY device may call the TTY window's Printf() member
function to display the events monitored.

The SPY class defines a pone ) member function that is called instead of the
base UI_DEVICE pone ) member function. The SPY device's Poll( ) mem­
ber function uses a lookup table to map each event monitored to a message
displayed in the TTY window. Only messages that flood the system, such as
mouse-move messages, or those that do not provide interesting information,
are filtered out.

The TTY_ELEMENT class derives from UIW_PROMPT. The
TTY_ELEMENT class passes most of the events it receives down to the
UIW_PROMPT class. The TTY_ELEMENT event method handles only
the S_INITIALIZE event. In this way, TTY_ELEMENT retains all normal
prompt functionality and responds to the S_INITIALIZE event by adjusting
its relative region according to the height passed to the constructor by the
TTY window when the TTY window creates the TTY_ELEMENT object.
The TTY window calls the DataSet() member function of the
TTY_ELEMENT class, which the TTY_ELEMENT class does not define,
and so it inherits the DataSet() member function defined by the
UIW_PROMPf class.

Getting Started with Zinc Programming 299



Example Programs

COOROS

FONTS

300

The TTY class derives from UIW_WINDOW. The TTY window passes
most of the events it receives to the UIW_WINDOW class. The TTY win­
dow's event method handles only the S_CREATE and S_CHANGED events.
This way, TTY retains all normal window functionality and responds to the
S_CREATE and S_CHANGED events by updating its children and class
members.

The TTY class defines a Printf( ) member function that provides functional­
ity similar to the printf function in the standard C library. Printf( ) provides
formatting using the vsprintf function in the standard C library. The Printf
member function makes use of the TTY_ELEMENT class to display and
scroll as many lines of text as will fit in the TTY window. Printf( ) provides
scrolling by calling the DataSet( ) member function of each
TTY_ELEMENT object on the TTY window.

Demonstrates the differences between cell, mini-cell, and graphics coordi­
nates.

Concepts demonstrated.

· Use of the WOF_MINICELL flag.

· Use of the WOS_GRAPHICS flag.

Design principles. COORDS uses the WOF_MINICELL and WOS­
_GRAPHICS flags to change the way the size parameters of each window
are interpreted as they are being added to the window manager.

Shows how to add and use a new font for each Zinc-supported platform.

Concepts demonstrated.

· Creating a font in each supported platform.

· How to use the newly created font.

Design principles. FONT displays four UIW_STRING objects that use the
three default fonts an one newly created one for each supported platform.

LoadFont() is the function that creates and loads the new font into the
UI_XXX_DISPLAY::fontTable for use.

Getting Started with Zinc Programming



COLORS

GMGR

Creates a window containing 256 boxes, where each box is drawn in one of
256 colors. The program will run only in VGA or SuperVGA graphics
modes that support 256 or more colors.

Concepts demonstrated.

· Deriving a window.

· Using the WOS_OWNERDRA W flag.

· Using display primitives within a Drawltem( ) function.

· Using 256-color palettes.

Design principles. COLOR_WINDOW is a derived window with its own
Drawltem( ) function. This function draws 256 filled boxes within the win­
dow, each box displaying one of 256 colors. The Drawltem() function also
displays the corresponding palette number (0..256) above each colored box.
Also, the RGBConvert( ) function is used to convert the RGB values, stored
in the .HPP file, to the Windows RGB format.

The .HPP file contains the color value for each of the colors numbered 16
through 255. RGB color values are also used for those environments in
which they are supported.

New objects

Displays five Zinc windows, each of which shows some uses of Zinc's
geometry management.

Concepts demonstrated.

· Constructing instances of the UI_GEOMETRY_MANAGER class, and
adding these instances to windows

· Use of the following UI_CONSTRAINTS-UI_ATTACHMENT, UI­
_RELATIVE_CONSTRAINT, UI_DIMENSION_CONSTRAINT

· Use of the constraint flags

Getting Started with Zinc Programming 301



Example Programs

302

Design principles. Gmgr creates the following example windows:

• BasicGMWindow. Shows basic geometry management with buttons
being attached to the sides of the parent window. As the parent is resized,
the buttons all stay in the comers. This window also shows a text object
that resizes with the parent window, with maximum and minimum limits.

· TieGMWindow. Shows how to tie child buttons to other child buttons.
When a button moves because its parent is resized, those buttons that are
tied to it move also.

· OppositeGMWindow. Shows how to tie one edge of a child to the oppo­
site edge of its parent.

· RelativeGMWindow. Shows how to tie a child to a relative position on
its parent. For example, we attach the top left comer of a button to the
point on the parent window that is 10% from the left edge and 10% from
the top. We also attach the bottom right comer of the button to a point
40% from the left and 40% from the top of the parent. This causes the
button to retain its relative position and size on the parent regardless of
the parent's size.

· CenterGMWindow. Shows how to attach the center of a child to a rela­
tive point on the parent. This lets a child recalculate its position as its par­
ent is sized, while retaining its original size.

All of these example windows follow the same procedure for implementing
geometry management:

· Each window is created in a separate function.

• A pointer to each child object that will have its geometry managed is cre­
ated. We use the pointer twice: once to add the child to its parent, and
again to create a constraint for that child.

· A VI_GEOMETRY_MANAGER is created and added to the parent
window before any children that it will manage.

• VI_CONSTRAINTS, such as VI_ATTACHMENT,
VI_RELATIVE_CONSTRAINT, and VI_DIMENSION_CONSTRAINT,
are created and added to the geometryManager. Each constraint is associ­
ated with one or two child objects derived from
VI_WINDOW_OBJECT. These VI_CONSTRAINTS are created after
their associated objects are created.

Getting Started with Zinc Programming



PRINTR Demonstrates a VI_PRINTER object by printing text and graphics.

Concepts.

Printing from within an application.

Using an object's DrawItem( ) for both drawing and printing.

Sending a single-page print job to the printer.

Sending a multiple-page print job to the printer.

Sending a print job to a PostScript file.

Screen dumps

• Deriving a new VI_HELP_SYSTEM capable of printing.

Design principles. The main application window is a generic
VIW_WINDOW, with a menu of print options. A nonfield window for
drawing display primitives occupies the client area of the window.

We print from the application using the Print menu option that uses a call­
back routine. When the user selects this option, the program presents a dia­
log window that allows setting up the print job. The user has a choice of
printing graphics or dumping the contents of the screen to the printer or to a
PostScript file.

The DRAW_WINDOW class derives from VIW_WINDOW. It contains its
own DrawItem() routine for drawing display primitives such as Bitmap( ),
Line( ), Rectangle( ), Ellipse( ), and Polygon( ) for both the display and the
printer. This object is the nonfield window added to the main application
window.

Sending a single-page print job to the printer occurs when doing screen
dumps and printing the graphics from DRAW_WINDOW. Sending a multi­
ple page print job happens when printing a text document that spans multiple
pages. A class is derived from VI_HELP_SYSTEM to do this.

This program creates a PRINTABLE_HELP_SYSTEM class that derives
from VI_HELP_SYSTEM in order to add a Print option to the help win­
dow, and to start the print jobs that format and output the pages of help text
to the printer.

Getting Started with Zinc Programming 303



Example Programs

304

Some notes on using UI_PRINTER:

All print jobs must begin with a call to
UI_PRINTER::BeginPrintJob( ).

All print jobs must end with a call to UI_PRINTER::EndPrintJob().

All pages must begin with a call to UI_PRINTER::BeginPage().

All pages must end with a call to UI_PRINTER::EndPage().

All drawing to be done on a page must occur between a BeginPage( ) /
EndPage( ) pair.

All Pages to be printed must be done between the BeginPrintJob() /
EndPrintJob( ) pair.

UI_PRINTER::ScreenDump() makes the calls to BeginPrintJob(),
EndPrintJob(), BeginPage(), and EndPage(). The ScreenDump()
routine is the only exception to the above rules.

In DOS, we must have an environment variable ZINC_PRINTER and the lpt
identifier set to a string that identifies the type of default printing and the
printer port. If an environment variable doesn't exist, the class will write
printer output to a PostScript file.

Types of default printing:

· PS

· PCL

· DM9

· DM24

Types of lpt values:

· LPfI

· LPf2

· LPf3

Examples:

· SET ZINC_PRINTER=PS,LPTl

Sets defaults to PostScript output, port 1.

· SET ZINC_PRINTER=PCL,LPT2

Sets defaults to PCL output, port 2.

· SET ZINC_PRINTER=DM9,LPT3

Getting Started with Zinc Programming



SPIN

Sets defaults to nine-pin dot matrix, port 3.

· SET ZINC_PRINTER=DM24,LPTl

Sets defaults to 24-pin dot matrix, port 1.

When printing output to a PostScript file, the ZINC_PRINTER environment
variable is ignored.

Simulates a simple video editor interface using spin controls and sliders to
set various values.

Concepts demonstrated.

· Deriving your own object for use with a spin control.

· Setting ranges on a spin control.

· Setting ranges on a slider.

· Using user functions with a slider.

Design principles. A spin control by default only works with five Zinc
objects: UIW_BIGNUM, UIW_DATE, UIW_INTEGER, UIW_REAL,
and UIW_TIME. But it can be used with any window object that handles
the LDECREMENT_VALUE and LINCREMENT_VALUE information
requests.

The object that is to be spun is passed to the spin control in the spin control
constructor. You set a range of values for a spin control by passing an appro­
priate range in the controlled object's constructor.

To create a slider, set the SBP_SLIDER flag in the UIW_SCROLL_BAR
constructor. This flag causes the slider to draw differently than a scroll bar in
most environments. It also causes a vertical slider to move its thumb button
up as the value increases, as opposed to a scroll bar, which moves its thumb
button down when it is increasing.

To set the range on a slider, set up a UI_SCROLL_INFORMATION struc­
ture with the desired values. This structure is passed into the UIW­
_SCROLL_BAR constructor.

Other than its appearance and the reverse thumb button motion on vertical
sliders, sliders operate the same as scroll bars do. Typically, you use a slider
by itself by associating it with a user function in the constructor, as a user
function can be associated with a scroll bar. The user function is called when
the slider is manipulated.

Getting Started with Zinc Programming 305



Example Programs

MOl

306

Notice that we used positional parameters on the slider. This allows us to
position the slider where we want it. If the WOF_NON_FIELD_REGION
flag is set, these parameters are ignored. Scroll bars are usually nonfield
regions but sliders often are not.

Demonstrates creating a Multiple Document Interface (MDI) application.
One MDI frame window is created that contains multiple MDI child win­
dows. Scrolling window capabilities are added to the MDI frame window
and to all the MDI child windows.

Concepts.

· Creating an MDI frame UIW_WINDOW.

· Creating MDI child UIW_WINDOWs.

• Deriving a persistent UIW_WINDOW.

· Scrolling an MDI frame window.

· Scrolling the MDI child windows.

· Adding MDI children at run-time.

· Removing MDI children at run-time.

· Activating MDI children through the MDI frame menu.

· Using UIW_ICONs as selectable objects.

Design principles. The MDI application window is created with Zinc
Designer, which contains a pull-down menu and three MDI child windows.

An MDI_FRAME_WINDOW class is derived from UIW_WINDOW. It
contains a persistent constructor to load the window.
MDI_FRAME_WINDOW also has its own Event() routine to handle
events generated by the menu and selectable MDI children icons.

The menu will contain options so the user can add, remove, and activate the
child windows. The File pull down item option contains a New submenu
item to add a new MDI child window, and Delete to delete the active MDI
child. The window also contains a Window pull-down item that identifies
the MDI children. When the user selects a certain window in the menu, that
window will become current.

MDIWIN adds scroll bars to the MDI frame window as well as the MDI
children. The MDI child windows contain selectable UIW_ICON objects.

Getting Started with Zinc Programming



PERIOD

TABLE

Shows many of the basic Zinc objects on a single window to show the
objects available in Zinc.

Design. Periodic loads a window from a data file and adds it to the window
manager. Its purpose is to display the Zinc objects, rather than to teach Zinc
programming principles.

Demonstrates the UIW_TABLE, UIW_TABLE_RECORD, and the
UIW_TABLE_HEADER classes. Shows a table of sales figures and a
UIW_STATUS_BAR to show totals. Also includes menu options for adding
and deleting records.

Concepts demonstrated.

Creating a table, table headers, and table records.

Controlling data and status presentation.

Adding and deleting records.

Accessing record data.

Using a status bar to show table information.

Processing menu events in a derived class's Event( ) function.

Design Principles. This example derives a class named TABLE_WINDOW
from the UIW_WINDOW base class. The TABLE_WINDOW class pro­
vides a constructor which creates the child UIW_TABLE object, as well as
a pull-down menu and other support objects. The derived class also provides
an Event( ) function which processes menu-generated events.

This example leaves out the left, top, width, and height parameters required
by the UIW_TABLE class constructor, because the table object uses the
WOF_NON_FIELD_REGION flag, which causes the table to occupy the
entire client area of the window. This example sets the columns parameter to
one because the table contains only one column of records. Each record,
however, contains multiple fields, which gives the table an appearance of
multiple columns, but with each row grouped into one record.

The table displays the data contained in up to 100 structures of type
DATA_RECORD. Initially, however, it contains only 10 records. To accom­
plish this, recordSize is set to sizeof(DATA_RECORD), maxRecords to 100,
records to 10, and the data for the initial 10 records is passed in the data
parameter as an array of DATA_RECORD structures.

Getting Started with Zinc Programming 307



Example Programs

MSGWIN

308

If the table will display large amounts of data, we can set recordSize and
maxRecords to 0 or the size of a database key, and access the data during the
processing of the S_SET_DATA event. Using these techniques, the table can
display an unlimited number of records.

At any time, we only add one UIW_TABLE_RECORD object to a table or
table header. Several fields are added to the table record, however, in order to
display the data contained one DATA_RECORD structure.

One table record displays all records in the table. A user function assigned to
the table record object associates the data with the fields in the table record.
Whenever the user function is called with a control code of S_SET_DATA
the function sets the data from the appropriate record into the fields on the
table record. It also sets the selected status of the table record according to
the status in the DATA_RECORD structure. By sending the S_SET_DATA
event multiple times, the table can use one table record to display all of the
data in the table.

The menu items in this example are all flagged with the
MNIF_SEND_MESSAGE flag. This causes the menu options to generate an
event each time they are selected. Two special events have been defined in
this example: S_ADD_RECORD, and S_DELETE_RECORD. These events
are processed in the table window's event function, and use the table's
InsertRecord() and DeleteRecord() functions to perform the required
actions.

Whenever a table record is selected or loses focus, the user function gener­
ates a special event of type S_CALCULATE_TOTALS. The table window
processes this event by using the table's GetRecord( ) event to get data from
the table, calculating totals, and setting the results into the table's status bar.

Displays a window with two data entry fields, one for dates and the other for
strings. Giving a date to the date field and then hitting <Enter> displays a
message window telling what day the date typed in fell on. If the user types a
string into the string field that does not begin with 'A,' and then tries to leave
the field, a notification window comes up. If you choose the Ignore option
on this window then the invalid string is left. If you choose the Cancel
option then the text is blanked out. When the user tries to close the window,
the program verifies the user intends to exit by displaying a modal message
window.

Getting Started with Zinc Programming



Concepts demonstrated.

· Exit functions.

· Using ZAF_MESSAGE_WINDOW.

· Validation using user functions.

Design principles. The Window Manager calls the exit function any time a
user attempts to exit the application. Exit functions take three parameters,
pointers to UI_DISPLAY, UI_EVENT_MANAGER, and UI_WIN­
DOW_MANAGER; and return an EVENT_TYPE.

For this application we a supply an exit function to verify the user intends to
exit. by creating a function called ExitFunction( ) with the parameters and
return type described above.

Inside of ExitFunction() we display a message window my creating a
ZAF_MESSAGE_WINDOW and giving it the messages we want dis­
played and that we want the YES and NO buttons. Then we call the mes­
sages window's Control( ) function.

If the return value from the Control( ) function indicates that the NO button
was pressed then the user doesn't want to exit and we return S_CONTINUE
to say we wish to continue with the program. Otherwise the YES button was
pressed and we return L_EXIT saying we wish to exit.

In UI_APPLICATION::Main() we say windowManager->exitFunction =
ExitFunction and we are all hooked up.

Also in UI_APPLICATION::Main() we create a window with a date field,
a string field and corresponding prompts.

One of the parameters for the UIW_DATE field is a user function. User
functions take three parameters, a pointer to a UI_WINDOW_OBJECT,
the contents of UI_EVENT, and an EVENT_TYPE; and return an
EVENT_TYPE. The user function ValidateDate() of the UIW_DATE field
checks to see why we call the user function. If the function was called
because the field was selected, meaning the user hit <Enter>, it gets the data
from the date field that was passed in as the first parameter to
ValidateDate( ); it finds out what day of the week it falls on, and then cre­
ates a ZAF_MESSAGE_WINDOW. In order for ZAF_MESSAGE­
_WINDOW to find the icon assigned to it, we must set up
UI_WINDOW_OBJECT::defaultStorage in UCAPPLICATION::Main().
The message window has an OK button so the user can dismiss it. Then the
program calls the its Control( ) function and then exits when it returns.

Getting Started with Zinc Programming 309



Example Programs

310

We also create a user function for the string field called ValidateString( ),
which checks to see if the field is noncurrent. If the field is noncurrent, the
function checks to see if the user changed the text, and if the user did, so it
performs the validation. If the text is invalid, it will create a
ZAF_MESSAGE_WINDOW with a message, call its Control( ) function,
and get the response. If the user chooses CANCEL, the function blanks out
the field. Otherwise it leaves the bad text.

After the window is created and added to the Window Manager, the program
sets windowManager->screenID to the window's screenID. This tells the
Window Manager that the window is the control window. Any time the user
tries to close that window, the Window Manager will assume the user is try­
ing to exit, so it will call the exit function.

Once this is finished, we merely go into our control loop by calling
UI_APPLICATION::Main(), and let our program run.

Getting Started with Zinc Programming



Appendix C Zinc Coding
Standards

Zinc Software has an internal document that specifies standards for all code
written for internal, as well as external, distribution. The purpose of these
standards is to improve the readability, organization and maintenance of
source code and header files. This document is printed in this appendix so
that you can understand the coding standards we use when writing the exam­
ple programs, tutorial programs and source code modules you receive when
you purchase this product.

Getting Started with Zinc Programming 311



Zinc Coding Standards

Classes and
structures

Functions

Variables

312

Naming

Class names should be self-explanatory and should be in upper-case letter­
ing, with underscores used to separate words. Some example class and struc­
ture names are shown below.

struct UI EVENT
struct UI_PALETTE_MAP
class UI ELEMENT
class UI_EVENT_MANAGER : public UI_LIST
class UIW BUTTON : UI WINDOW OBJECT- --

In addition, Zinc class names use the following prefixes

· UI_ denotes a general user-interface class or structure.

· UID denotes a device class or structure.

· UIW denotes a window interface class or structure.

Functions should be self explanatory and should be in name-case format,
such as first letter, uppercase lettering, all remaining character in lowercase
lettering, with no underscores used to separate words. In addition, the func­
tion name should describe what the function does.

Some example class and regular function names are shown below:

UI_ELEMENT *Previous(void);
EVENT_TYPE Event(const UI_EVENT &event);
static UI_WINDOW_OBJECT *New(const char *name ,

UI_STORAGE *directory,
UI_STORAGE_OBJECT *object);

Variable names should be self-explanatory and use lowercase lettering for
the first word, then name case for each word thereafter. Underscores should
precede global variables. Some example variable names are shown below.

extern UI_STORAGE *_storage;
int UIW_BORDER::width = 4;
static UI_EVENT_MAP *eventMapTable;
UI_PALETTE_MAP *paletteMapTable;

Each variable should be declared on a separate line when it is needed by the
function. When declaring a list of variables, the following order should be
followed:

1. External variables

2. Static variables

Getting Started with Zinc Programming



Constants

Class scopes

3. Variables with complex structures

4. All other variables according to need within the application

In addition, only one space, and not tabs, should exist between the type and
the variable. Comments should be aligned evenly after the variable list.

Constant variables should be self-explanatory and should be in uppercase
lettering, with an underscore separating the words.

Some example constant names are shown below:

canst int TRUE = 1;
canst int FALSE = 0;
canst WOF_NO_FLAGS WOF_NO_FLAGS = OxOOOO;
canst WOF_NO_FLAGS WOF_JUSTIFY_CENTER = OxOOOl;

In addition to the information described above:

· Constants should be placed before the definition of the class for which
they apply, or at the beginning of the module.

· If several related constants are defined, the definitions should be grouped
together with a preceding comment.

· Constant values should be tab-aligned to the right.

· Comments for each line should be aligned to the right of the value.

Organization

The class declaration in an include file should list public members first, pro­
tected members next, and private members last. Each major section should
list static member variables first, member variables next, and member func­
tions last, listed in alphabetical order. (Be sure to list the constructor and
destructor first.) In addition, each scope section should contain a short com­
ment telling where its members are documented. The following example
shows a class containing the three scope sections:

class EXPORT UI_TIME : public UI INTERNATIONAL
{

public:
static char *amPtr;

Getting Started with Zinc Programming 313



Zinc Coding Standards

Files

314

static char *pmPtr;
UI_TIME(void) ;
virtual -UI_TIME(void);

void Export(char *string, TMF FLAGS tmFlags);

long operator=(long hundredths);
private:

long value;
} ;

Source code modules that contain class member functions should contain the
copyright notice, then any include files, static member variables, and mem­
ber functions, described in alphabetical order. An example of BOR­
DER.CPP's file layout is shown below:

//zinc Application Framework - BORDER.CPP
//COPYRIGHT (C) 1990-1993. All Rights Reserved.
//Zinc Software Incorporated. Pleasant Grove, utah USA
#include "ui_win.hpp"
#include <string.h>
int UIW BORDER::width = 4;

UIW_BORDER::UIW_BORDER(void)
UI_WINDOW_OBJECT(O, 0, 0, 0, WOF_NON_FIELD_REGION,

WOAF_NON_CURRENT)
{

UIW_BORDER::-UIW_BORDER(void)
{

EVENT TYPE UIW_BORDER::Event(const UI_EVENT &event)

Getting Started with Zinc Programming



Files

Functions

Variables

Blocks

Comments

Each source file (.CPP or .HPP) should contain a three-line comment that
contains the library or program name, the name of the file and copyright
information. A sample header is shown below:

IIZinc Application Framework - BUTTON.CPP
/ICOPYRIGHT (C) 1990-1993. All Rights Reserved.
IIZinc Software Incorporated. Pleasant Grove, Utah USA

The copyright information should be copied as shown above. The copyright
year should include the original year when the product was created and all
subsequent years when major revisions were made.

Each routine may be preceded by a short description giving the routine's pur­
pose and any related algorithms. If the routine name intuitively describes the
routine, no comment is needed. The example below shows the use of a func­
tion comment:

II This member function displays the biorhythm information in
II the window. As the size of the window object changes (by
II changing the parent window)
II the size of the biorhythm chart also changes. A horizontal
II change results in a change in the number of days displayed. A
II vertical change results in a dynamic change in the height of
II the biorhythm curve.
void BIORHYTHM::UpdateBiorhythm()

{

Function arguments and local variables should only have descriptive com­
ments if their names are not descriptive. These comments should be lined up
on a right tab region. In addition, all comments should start with a capital let­
ter and be followed by a period. An example of two variable declarations is
shown below.

EVENT_TYPE ccode;11 The control code for an event.
int cardFile;11 File handle for the disk file.

Block comments are used to describe a group of related code. Most block
comments should be one line, if possible, and reside immediately above the
block being commented. If more than a one line comment is needed, the
extra lines should each begin with the double slash.

Getting Started with Zinc Programming 315



Zinc Coding Standards

Classes and
structures

316

Block comments should be indented to match the indentation of the line of
code following it. A single blank line should precede the comment and the
block of code should follow immediately after. Small blocks of code that do
a specific job should be commented but not individual lines, unless the line
is complex or not intuitive). Some example block comments are shown
below.

II Destroy all of the items within the list.
Destroy ( );

II When the user selects a button from the current window, ccode

II is checked to see what type of event was received.
switch (ccode)

Indentation

Structures and classes should have all members listed on individual lines and
should be indented with one tab from the left margin. Several sample inden­
tations are shown below:

class EXPORT UI DEVICE : public UI_ELEMENT

friend class EXPORT UI_EVENT_MANAGER;
public:

static ALT_STATE altState;
static UI_DISPLAY *display;
static UI_EVENT_MANAGER *eventManager;

int installed;
DEVICE_TYPE type;
DEVICE_STATE state;

virtual -UI_DEVICE(void);
virtual EVENT_TYPE Event(const UI_EVENT &event) 0;

II List members.
UI_DEVICE *Next(void);
UI_DEVICE *Previous(void);

Getting Started with Zinc Programming



Functions

Function calls

protected:
UI_DEVICE(DEVICE_TYPE _type, DEVICE_STATE _state);
static int CompareDevices(void *devicel, void *device2);
virtual void Poll(void) = 0;

} ;

The main body of routines should have braces below the function declara­
tion. All function code should be indented one tab. An example of this
indentation is shown below:

void UIW_BUTTON::DataSet(const char *string)
{

II Reset the button's string information.

Parameters in a function call should be listed with each argument, followed
by a comma and one space. If a routine call cannot fit on one line on the
screen, it should be broken with the next half of the call indented one tab far­
ther over. It should be split after a comma or logic symbol if possible. Sev­
eral examples of this calling convention are shown below:

UIW_WINDOW *UIW_WINDOW::Generic(int left, int top, int width,
int height,

char *title, UI_WINDOW_OBJECT *minObject, WOF_FLAGS woFlags,
WOAF_FLAGS woAdvancedFlags, UI_HELP_CONTEXT helpContext)

II Create the window and add default window objects.
UIW_WINDOW *window = new UIW_WINDOW(left, top, width, height,

woFlags, woAdvancedFlags, helpContext, rninObject);

UIW_WINDOW *window = UIW_WINDOW::Generic(2, 2, 40, 6,
"Hello World Window", NULL, WOF_NO_FLAGS, WOAF_NO_FLAGS,
HELP_HELLO_WORLD);

II Add the window objects to the window.
*window

+ new UIW_TEXT(O, 0, 0, 0, "Hello, World!", 256,
WNF_NO_FLAGS, WOF_NON_FIELD_REGION);

Getting Started with Zinc Programming 317



Zinc Coding Standards

Case statements

If and for
statements

318

The reserved word case should be aligned with the switch statement, but all
code information should be indented an additional tab. Each additional level
of logic should be indented one tab. The colon should immediately follow
each case and the statement(s) should start on a new line. The break should
also be on a separate line. An example of this organization is shown below:

EVENT_TYPE UIW_PROMPT::Event(const UI_EVENT &event)
{

II Switch on the event type.
EVENT_TYPE ccode = event. type;
switch (ccode)

case S CREATE:
case S SIZE:

break;

case S CURRENT:
case S NON CURRENT:
case S_DISPLAY_ACTIVE:
case S_DISPLAY_INACTIVE:

if (UI_WINDOW_OBJECT::NeedsUpdate(event, ccode))
UI_WINDOW_OBJECT::Text(prompt, 0, ccode, lastPalette);

break;
default:
ccode = UI_WINDOW_OBJECT::Event(event);
break;

II Return the control code.
return (ccode);

Statements following an if or for should be indented one tab, and simple con­
ditionals should use the inline ? operator. An example of these statements is
shown below:

left = (left < 1) ? 1 : right;

if (event->type == E_KEY &&
(event->rawCode == ESCAPE I I event->rawCode ==
BACKSPACE II event->rawCode == ENTER))

offset = length;
length = 0;

}

for (number = 0; number < noOfCalls; number++)
II Do nothing.

Getting Started with Zinc Programming



Appendix D Keyboard and
Mouse Mappings

This appendix lists all the default keyboard mappings Zinc supports, organized by
operating environment.

Getting Started with Zinc Programming 319



Keyboard and Mouse Mappings

DOS and Windows

TABLE 1. DOS and Windows keyboard mappings

Action

Begin field

Close temporary
window

Close window

Copy

Cut

Delete

Delete next char­
acter

Delete previous
character

Delete word

Down

Down page

End field

Key

<Ctrl+Home>

<Ctrl+Gray Home>

<Esc>

<Shift+F4>

<CtrI+Ins>

<Shift+Del>

<Del>

<Del>

<Gray+Delete>

<Backspace>

<Ctrl+Del>

<Ctrl+Gray Delete>

<1->
<Gray J,>

<PgDn>

<Gray+PgDn>

<Ctrl+End>

<Ctrl+Gray End>

Description

Moves to the beginning of field or the beginning of a list.

If the current window is identified as a temporary window (WOAF_­

TEMPORARy), pressing <Esc> removes the current window from the
screen display. For example, when an end user selects the system button, a
pop-up menu appears. If the user presses <Esc> at this time, the pop-up
menu is erased from the screen display.

Closes a window that is not temporary. NOTE: All temporary windows
will be closed first.

Copies the marked portion of the current window field and stores it in a
global paste buffer. This key only affects fields that can be edited.

Cuts the marked portion of the current window field. The cut section is
removed and stored in a global paste buffer. This key only affects fields
that can be edited.

Deletes the marked text from the current window field. The cut section is
no(stored in the global paste buffer. This key only affects fields that can be
edited.

Deletes the character beneath the cursor, leaving the position of the cursor
unchanged. This key only affects fields that can be edited and only where
the cursor is not in the field's last position.

Moves the cursor left one position, deleting the character to the character
immediately to the left of the cursor. This key only affects fields that can be
edited and only where the cursor is not in the field's first character position.

Positions the cursor at the beginning of the word to be deleted, then deletes
the word and any trailing spaces. The cursor remains in its original position
after the deletion.

If the field is a multi-line field and the cursor is not positioned on the bot­
tom line, pressing <Down-arrow> moves the cursor down one line on the
display.

If the field is a multi-line field and the cursor is not positioned on the bot­
tom line, pressing <PgDn> moves the cursor down one page in the current
field.

Moves to the end of the field.

320 Getting Started with Zinc Programming



TABLE 1. DOS and Windows keyboard mappings

Action

End hne

Exit

(DOS only)

Help---context

sensitive

Help­

general

Home

Left

Left word

Mark

(DOS only)

Menu control

Minimize

(DOS only)

Move window

(DOS only)

Key

<End>

<Gray End>

<Alt+F4>

<Shift+F3>

<Ctrl+Break>

<Ctrl+C>

<PI>

<Alt+FI>

<Home>

<Gray Home>

<f->

<Grayf->

<Ctrl f->

<Ctrl+Gray f->

<Alt+Gray f->

<Shift+f->

<Shift+~>

<Alt>

<FI0> (DOS only)

<Alt ->

<Alt+F9>

<Alt+F7>

Description

Moves the cursor to the end of the current hne.

Exits the application program. (The <Ctrl+Break> and <Ctrl+C> key­
strokes can be modified by changing UID_KEYBOARD::breakHandlerSet)

Displays context-sensitive help information for the current window

object.

Displays general help information for the application.

Moves the cursor to the beginning of the current line.

If the cursor is not positioned in the first character position of a field, press­

ing <Left-Arrow> moves the cursor one character to the left.

Moves the cursor to the beginning of the previous word or to the beginning

of the same word if the cursor was originally positioned in the middle of

that word.

Begins a marked region on the position of the cursor.

Toggles between selecting the pull-down menu and the current window
field. This changes the highhght field, or cursor position, from the current

field to the pull-down menu. This key only affects the window when the

current window has a pull-down menu.

Minimizes the size of the current window (i.e., reduces the size of the win­

dow to the minimum allowed by the object type). This key only affects the
window when the current window can be sized and if it is not already in a
minimized state. If the window is in a minimized state, selecting this key

causes the window to be restored to its original size.

Moves the current window when followed by any movement key and then
<Enter>. When followed by any movement key and then <Esc>, the
selected window is returned to its original position.

Getting Started with Zinc Programming 321



Keyboard and Mouse Mappings

TABLE 1. DOS and Windows keyboard mappings

Action

Next field

Next window

Next MDl win­
dow

Paste (DOS only)

Previous field

Refresh

Restore

(DOS only)

Right

Right word

Size window

(DOS only)

System

System

(MDl)

Toggle

Up

Up page

Key

<Tab>

<F6> (DOS only)

<Alt+F6>

<Ctrl+F6>

<Shift+Ins>

<Shift+F6>

<Shift+Tab>

<F5>

<Alt+F5>

<-7>

<Gray-7>

<Ctrl+-7>

<Ctrl+Gray -7>

<Alt+F8>

<Alt+Spacebar>

<Alt+.> (DOS only)

<Ctrl+Spacebar>

<Ins>

<Gray Insert>

<i>
<Gray i>

<PgUp>

<Gray+PageUp>

Description

Moves from the current (or selected) window field to the next selectable
window field. If the last window field is currently selected, pressing <Tab>
cycles to the first selectable window field.

Moves from the current (or selected) window to the next selectable win­
dow in the Window Manager's list of windows.

Moves from the current (or selected) MDl child window to the next select­
able MDl child window within the parent window's list of windows.

Retrieves the cut section from the global paste buffer and pastes it in the
current field. This key only affects fields that can be edited.

Moves from the current (or selected) window field to the previous select­
able window field. If the first window field is currently selected, pressing
<BackTab> cycles to the last selectable window field.

Refreshes the screen.

Restores the original size of the window. Used with <Alt +> and <Alt ->.

If the cursor is not positioned in the last character position of a left-hand
field, pressing <Right-Arrow> moves the cursor one character to the right.

Moves the cursor to the beginning of the next word.

Sizes, relative to the top left comer, the current window when followed by
any movement key. Pressing <Enter> accepts the alteration in size, while
pressing <Esc> returns the window to its original size.

Selects the system button (if any) associated with the current window. This
causes the pop-up menu associated with the current window's system but­
ton to be displayed on the screen.

Selects the system button (if any) associated with the current MDl child
window. This causes the pop-up menu associated with the current MDl
child window's system button to be displayed on the screen.

Toggles the edit mode from insert to overstrike mode or vice-versa. This
key only affects fields that can be edited.

If the field is a multi-line field and the cursor is not positioned on the top
line, pressing <Up-arrow> moves the cursor up one line on the display.

If the field is a multi-line field and the cursor is not positioned on the top
line, pressing <PgUp> moves the cursor up one page in the current field.

322 Getting Started with Zinc Programming



TABLE 2. DOS and Windows mouse mappings

Action

Choose

Mark

Select

Mouse

<Left-dawn-click>

<Left-drag>

<Left-release>

Description

If the end user is on the window's title bar, pressing this button moves
the window. If the end user is on the window's border, pressing this
button sizes the window. Otherwise, pressing the left mouse button
selects the field positioned under the mouse cursor (if the field is
selectable).

If the current field is a field that can be edited, holding the left button
down and dragging the mouse specifies the mark location.

If the current field is a field that can be edited, releasing this button com­
pletes the mark specification. Otherwise, releasing this button completes
the select operation.

OSFlMotijand Curses

OSF/Motif uses user-definable "soft" mappings to map actions to the keyboard and mouse.

Curses keyboard mappings differ significantly from other Zinc-supported operating environment. For example,
many terminals supported by Curses define few or no regular function keys. Curses does not support an <AIt> or
<meta> key, and you may not be able to use <Ctr!> and <Shift> keys with any function keys or keys like <pgup>,
<end>, or <tab>.

On the other hand, some terminals used supported by Curses have specialized keys for actions such as cut, paste,
restore, or cancel. If a terminal does not have these, modify the terminfo database entry to create mappings from
existing keys to the required functions. By default, Zinc maps special Curses function keys to Zinc events. These
special Curses function keys include KEY_ENTER, KEY_NPAGE, KEY_BTAB, KEY_CANCEL, KEY_MARK.
Additionally, <Alt>, <Ctr!>, and <Shift> keys are not used, and hot key sequences are preceded by <Esc> rather
than <AIt>. Zinc's default keyboard mapping allows <Orl> key combinations for many events, shown in the fol­
lowing table.

Getting Started with Zinc Programming 323



Keyboard and Mouse Mappings

If desired, Zinc provides a mode somewhat compatible with the PC keyboard that uses surrogate <Alt> and <Ctr!>
keys with <Fl> through <FlO>. In this mode, the '" key is the alt key, and '-' is used as the <Or1> key. Pressing a

surrogate key followed by another key causes Zinc to recognize an <Alt> or <Or!> sequence. Pressing a surrogate
key twice causes the key to be recognized as normal. So instead of pressing Curses's KEY_SCANCEL to close a
window, a user could press ",' followed by <F4>. Select this mode at compile time by using the ZlL_PC_KEYBRD

preprocessor flag.

TABLE 3. Curses's <Ctrl> key combinations

Action Mouse

Backspace <CTRL-H>

Close window <CTRL-D>

Cut <CTRL-T>

Help, context- <CTRL-E>
specific

Help, general <CTRL-P>

Make next win- <CTRL-N>
dow current

Mark <CTRL-K>

Move window <CTRL-V>

Paste <CTRL-P>

Refresh display <CTRL-L>

Restore window <CTRL-O>

Size window <CTRL-B>

324

Description

Move the cursor one character to the left.

Closes the top or current window.

Cuts the marked portion of the current window field. The cut section is removed
and stored on the paste buffer. This key only affects fields that can be edited.

Displays context-sensitive help information for the current window object.

Displays general help information for the application.

Makes the next window current.

If the current field is a field that can be edited, holding the left button
down and dragging the mouse specifies the mark location.

Moves the current window when followed by any movement key and then
<Enter>. When followed by any movement key and then <Esc>, the selected

window is returned to its original position.

Retrieves the cut section from the paste buffer and pastes it in the CUlTent field.
This key only affects fields that can be edited.

Redraws all windows and window objects.

Restores the original size of the window.

Sizes, relative to the top left corner, the current window when followed by any
movement key.

Getting Started with Zinc Programming



Macintosh

TABLE 4. Macintosh keyboard mappings

Action

Copy

Cut

Key

<Cmd-c>

<Cmd-x>

Description

Copies the marked portion of the current window field and stores it on the
Clipboard. This key only affects fields that can be edited.

Cuts the marked portion of the current window field. The cut section is
removed and stored on the Clipboard. This key only affects fields that can
be edited.

Delete previous <Backspace>
character

Close window <Cmd-w>

Down <-1..>
<Gray+,b

Quit <Cmd-q>

Left <f->

<Gray+f->

Next field <Tab>

Moves the cursor left one position, deleting the character immediately to
the left of the cursor. This key only affects fields that can be edited and only
where the cursor is not in the field's first character position.

Closes the top or current window.

If the field is a multi-line field and the cursor is not positioned on the bot­
tom line, pressing <.1.> moves the cursor down one line on the display.

Exits the application, closing all open windows.

If the cursor is not positioned in thefirst character position of a field, press­
ing <f-> moves the cursor one character to the left.

Moves from the current field to the next selectable field. If the last window
field is currently selected, pressing <Tab> cycles to the first selectable win­
dow field.

Paste

Previous field

<Cmd-v>

<Shift+Tab>

Retrieves the cut or copied section from the Clipboard and pastes it in the
current field. This key only affects fields that can be edited.

Moves from the current (or selected) window field to the previous select­
able window field. If the first window field is currently selected, pressing
<BackTab> cycles to the last selectable window field.

Right <---7>

Up <I>
<Gray I>

Help <Cmd ?>

Mark <Shift+I>

<Shift+.1.>

<Shift+f->

<Shift+---7>

If the cursor is not positioned in the last character of a field, pressing <---7>
moves the cursor one character to the right.

If the field is a multi-line field and the cursor is not positioned on the top
line, pressing <I> moves the cursor up one line on the display.

Brings up the help context assigned to the current field.

Marks text in an editable field or selection of child items in lists.

Getting Started with Zinc Programming 325



Keyboard and Mouse Mappings

TABLE 5. Macintosh mouse mappings

Action

Choose

Choose mark

Select

NEXTSTEP

Mouse

<Click>

<Drag>

<Release>

Description

If the mouse cursor is on the window's title bar, pressing the button
moves the window. If the mouse cursor is on the window's size box,
pressing this button sizes the window. Otherwise, pressing the left
mouse button selects the field positioned under the mouse cursor, if
the field is selectable.

If the current field is a field that can be edited, holding the left button
down and dragging the mouse specifies the mark location.

If the current field is a field that can be edited, releasing the button com­
pletes the mark specification. Otherwise, releasing the button completes
the select operation.

TABLE 6. NEXTSTEP keyboard mappings

Action

Copy

Cut

Key

<Crnd-c>

<Cmd-x>

Description

Copies the marked portion of the current window field and stores it in a
global paste buffer. This key only affects fields that can be edited.

Cuts the marked portion of the current window field. The cut section is
removed and stored on the Pasteboard. This key only affects fields that can
be edited.

Delete previous <Backspace>
character

Close window <Cmd-w>

Down d->

Quit <Crnd-q>

Left <f->

Minimize <Cmd-m>

326

Moves the cursor left one position, deleting the character to the character
immediately to the left of the cursor. This key only affects fields that can be
edited and only where the cursor is not in the field's first character position.

Closes a window.

If the text field is a text object, and the cursor is not positioned on the bot­
tom line, pressing d,,> moves the cursor down one line on the display.

Exits the application.

If the cursor is not positioned in the first character position of a field, press­
ing <Left-Arrow> moves the cursor one character to the left.

Minimizes the current window. This key only affects the window when the
current window can be sized and if it is not already in a minimized state.

Getting Started with Zinc Programming



TABLE 6. NEXTSTEP keyboard mappings

Action

Next field

Paste

Previous field

Right

Up

Key

<Tab>

<Cmd-v>

<ShifHTab>

<t>
<Grayt>

Description

Moves from the current field to the next selectable field. If the last window
field is currently selected, pressing <Tab> cycles to the first selectable win­
dow field.

Retrieves the cut section from the Pasteboard and pastes it in the current
field. This key only affects fields that can be edited.

Moves from the current window field to the previous window field. If the
first window field is currently selected, pressing <Shift+Tab> cycles to the
last selectable window field.

If the cursor is not positioned in the last character position of a left-hand
field, pressing <Right-Arrow> moves the cursor one character to the right.

If the text field is a text object, and the cursor is not positioned on the
top line, pressing <Up-arrow> moves the cursor up one line on the
display.

NOTE: In order to use Cut, Copy, and Paste, your Edit menu must include Cut, Copy, and Paste. Further, to
use <Tab> and <Shift-Tab>, your Zinc application must use select:previousText and select:nextText.

TABLE 7. NEXTSTEP mouse mappings

Action Mouse

Choose <Left-click>

Choose mark <Left-drag>

Select <Left-release>

Display menu bar <Right-click>

Description

If the mouse cursor is on the window's title bar, pressing this button
moves the window. If the mouse cursor is on the window's border,
pressing this button sizes the window. Otherwise, pressing the left
mouse button selects the field positioned under the mouse cursor (if
the field is selectable).

If the current field is an editable field, holding the left button down
and dragging the mouse specifies the mark location.

If a choose mark operation is in progress, releasing this button completes
the mark specification. Otherwise, releasing this button completes the
select operation.

If the right mouse button is enabled in the Preferences.app application,
pressing and holding this button will display the current application's menu
bar at the position of the mouse cursor.

Getting Started with Zinc Programming 327



Keyboard and Mouse Mappings

328 Getting Started with Zinc Programming



A
abstract classes 88

UCDEVICE 89
abstraction

benefits of 89
middle ground 89

accelerator key
logical value of 226

accelerator keys
implementation of 225

acceleratorTable 226
Add() 73
AGENCY_ENTRY 293
amountField 206
ANALOG 283
antonymField 153, 166
antonymList 154
application

DOS xxvii
enabling globalization 105
localizing 108
Motif xxvii
OS/2 xxvii
shipping 49,54
Windows xxvii

applications
compiling 269

architecture 12
arguments

default 94
array

destruction of 96
array constructors 92

8
backgroundPalette 196
base class

calling them explicitly 91
construction 91
destruction 96
initialization 188

base classes 70
begin field 320, 325, 326
benefits of Zinc 14
BGI20BJ.EXE 197
bignum 93
bitmapped button 31
bitwise flags 97
black box 196
border 30
Borland

BGI graphics routines 78
compilers 271
DOS overlay 270

IDE
DOS, Windows 272
OS/2 272

makefiles
DOS, Windows, and OS/2 271

bottom-up environments
event flow in 60

BTF_DOUBLE_CLlCK 291
BTF_SEND_MESSAGE 209
button 31,43

bitmapped 31
check box 31, 32
maximize 30
minimize 30
radio 31
system 31

button objects
UIW_ICON 35

ButtonFunction() 167
buttons 31

bitmapped button 31
check box 32
radio 32

c
C++

constructors 91
copy constructor 93
deletion 95
deri ving classes 86
destructor 96
event handling 62
friend classes 85, 89
how to design classes 84
how to organize members 85
inheritance, benefit of 86
main() 220
member functions and access 84
multiple inheritance 88
overloaded constructors 92
transition to 13
WinMain() 220

callback function 160
eeode 181
eellHeight 195, 199,202
eellWidth 195, 199,202
CGA.BGI 194
character

16-bit 107,110
8-bit 107, 110

check box 32
choose 323,326,327
class

constant variable names 313

Getting Started with Zinc Programming 329



declaration 313
definition

order 313
deletion of 90
indenting in source code 316
names 312
reserved word 84
scope 313
source code modules containing 314
variable names 312

class definitions 84
class names

UC 312
UID_ 312
UIW_ 312

classes
base 91
creation of 90
scope of 90

clipping 80
clipRegion 200
closegraph() 199
coding standards

naming 312
color mapping 17
COLOR_WINDOW 301
column 174
columns

in display class 195
combo box 32
comments

using in code 315
compiler options

for DOS applications 49
for Windows applications 50
for Windows NT applications 50

compilers 269
Borland 271
Macintosh 277
Microsoft 273
Symantec 274
Watcom 275

constructor 91, 222
CONTROL WINDOW 239
UIW_TABLE 180

constructors
copy 93
default arguments 94
overloaded 92

Control() 165,171,209,310
CONTROL_WINDOW 222, 246, 265
conventions xxxi
ConvertAmount() 206, 209
copy 44
copy constructors 93

country identifiers 205
CreateWindow() 214,216
creating classes 90
creating windows 155
CUA

Zinc compatibility with 49,55
currency symbol 203
currentLocaleName 206
Curses 6,79

o
D_ENTRY 167
D_OFF 299
D ON 299
D=WORD 154
data entry 151
DATA RECORD 307,308
DataSet() 158, 282, 283
date

styles 33
dates 33
DAYS OF MONTH 288
dejault5tor;;ge 110
definitionField 153, 166
DELETE_OBJECT 217
deleting classes 94
den ved classes 86
design

ZincApp 222
DESQview 79
Destroy() 291
destructors

virtual 95
detectgraph{) 198
detecting

locale at run time 105
detection

language 109, 212
deutschemarks 204
device

abstract class 88
macro 186, 190
Poll() 74,186
user-defined 185

device types (values) 188
DICTIONARY 152,171
dictionary 153, 166
DICTIONARY_WINDOW 152, 164, 166
dictionaryOpened 153
display 23

changing modes 224, 236
clipping 80
construction of 196
derived 196

330 Getting Started with Zinc Programming



drawing routines 199
Microsoft Windows 79
object-oriented 23
programmer defined 79
supported 17
UCDISPLAY 23

display primitives 282
using within a Drawltem() function 301

display types
pictures of 29

DisplayHelp() 77,262
helpContext 77

documentation
an overview of xxviii

DOS
extender, 16-bit 270
extender, 32-bit 270
GFX graphics libraries 78
multiplatform programming 49
overlay 270
real-mode 270

down 320,325,326
page 320

DRAG 298
drag and drop 298
DRAW_OBJECT 284
DRAW_WINDOW 303
DrawBorder() 286
DrawFocus() 286
drawing 194
drawing routines

implementation of 199
Drawltem() 66,283,284,286,288,293,301
DrawShadow() 286
DrawText() 286

E
E_KEY 287
E_MACRO 185
EGAVGA.BGI 194
electronic support xxx
Eltipse() 201,303
enabling objects 106
end

field 320
line 321

environments
bottom up

event flow in 60
supported xxvii
top down

event flow in 58
error system 17,24, 78, 133

control flow 133

modal window 134
reporting errors 78

errorPaletteMapTable 67
event

event. type 224
trapping 208

event flow
DOS 159
Windows 160

event function 257
event handling

bottom-up 151
top down and bottom up 21
top-down 151

Event Manager 17, 18, 71, 73, 92, 186, 187, 190, 222,
226

event queue 18
handling input devices 18
mapping events 18

event map table
entry 64

event map tables 64
event mapping 17

algorithm for 65
event monitor 224, 250
event passing 158
eventqueue 18,74,187,190,191

checking events 186
Event() 57,74,161,191,205,206,213,214,215,

216,217,224,226,241,242,247,254,255,
257,260,261,284,288,291,293,296

event types 76
sample messages 74, 76
using to change behavior of object 74
virtual functions 100

event. data 237
event. rawCode 252
event. type 224,252,261
event/string pair 255
EVENT_MONITOR 250,253,257

Event() 253
EVENT_TYPE 309
event-driven

programming techniques 265
eventMapTable 287
events

monitoring programmatically 250
trapping 216

example programs
AGENCY 292
ANALOG 282
CALC 287
CALNDR 288
COLORS 301
COORDS 300

Getting Started with Zinc Programming 331



DELTA 295
DISPLAY 285
FONTS 300
FRESTR 297
GMGR 301
GRAPH 285
GRID 284
USN 294
LSTITM 286
MATCH 296
MDI 306
MENUS 291
MESSGS 296
NOTEBK 290
PERIOD 307
PHONBK 289
POSTWN 290
PRINTR 303
SPIN 305
SPREAD 292
Spy 299
STATUS 290
TABLE 307
VALIDT 281
WINDOW 289

executable naming conventions 48
exit 321
exit function 134

cleanup function 134
L_EXIT message 134
L_EXIT_FUNCTION message 134

exit functions 309
ExitFunction() 258,309

ZINCAPP_WINDOW_MANAGER 256
explicit deletion

delete operator 94
new 94

explicit instantiation
delete operator 90
new operator 90

F
Face() 284
file 175
First() 73
font 201
friend classes 89

access rights 89
function definitions 98

G
G_DSP.CPP 196
Generic() 135

UIW_SYSTEM_BUTTON implementation of 135

UIW_WINDOW implementation of 135
geometry management 35

definition 35
using in a program 301

Get() 158,159,186,188,226,248,291
GFX 78
globalization 26, 105

applications
shipping non-Unicode 1J 1
shipping Unicode J1]

changing languages at run time 216
date 204
interface translation 26
ISO 8859-1 26
language and locale 26
shipping applications 110
Unicode 26
ZIL_LANGUAGE_MANAGER 215

globalize 203
graphics

BGI display values 80
Borland 78
CGA 78
Hercules 78
Macintosh 78
Metagraphics 79
Microsoft MSC 79
NEXTSTEP 79
OS/2 79
OSFlMotif 78
Windows 79

graphics library
BGI 200
GFX 270

Unicode with 111
GRAPHICS.LIB 194

H
hardware

Japanese 106
HELLO.DAT 142
HELLO.TXT 131
HELLOl.CPP 117

Control() 116
Event flow 123
include files 117
main event loop 122
Main() 116
source code 116
UIW_WINDOW 120

HELL02.CPP
help context 130
including the help system J29

HELL03.CPP 139

332 Getting Started with Zinc Programming



help context 130,264
assigning to objects 264
information 132
name 132
title 132

help contexts
general 321,324

help information text 131
help system 17,24,77, 128

assigning to objects 264
calling 262
initializing 264
linking into executables 128
PRINTABLE_HELP_SYSTEM 303

HELP_ GENERAL 264
HELP_ MAIN_CONTROL 264
helpPaletteMapTable 67
helpSystem 130
HERC.BGI 194
home 321
HOT_KEY_SUB_WINDOW 190
HotKey() 190
hotKeyMapTable 190,287
hotkeys

including in strings 223

I
I_DECREMENT_VALUE 305
I_GET_STRINGID_OBJECT 169
I_INCREMENT_VALUE 282,305
118N_WINDOW 294,295
IBM

TopView 79
icon 35
ID_CALENDAR 288
IMG_DEF.CPP 109
implicit deletion 95
implicit instantiation 90

scope 90
Index() 291
Information() 169,291
inheritance 87
input devices 16

definition 73
inputField 153, 166
installation disks 3
installed 199
installing Zinc

Macintosh 5
OSF/Motif 6
NEXTSTEP 8
Unix Curses 6
Windows 4

instantiation

definition of 90
explicit 90

interchangeable parts 11, 12
INTRPOLI 206
INTRPOLl.CPP 204
INTRPOL2.CPP 213
IPOLWIN2.CPP 213
IPOLWIN2.EN 213
isMono 195
ISO 8859-1 107

K
Key concepts

adding and deleting objects to and from the data
file 163

base classes 69
creating a virtual list 173
creating user interfaces programmatically 127
creating user interfaces with Zinc Designer 139
design of a large application 219
detecting the system language 211
detecting the system locale 203
different types of window objects, the 29
display classes 69
enabling a Zinc program 105
event map tables 57
giving a display class custom behavior 193
how to initialize the macro device class and its base

class 183
how to use ISO 8859-1 and Unicode characters 105
how to work with input devices 183
how to write a simple keyboard macro 183
how window objects work 29
how Zinc benefits us II
initializing the display class and its base class 193
instantiating and destroying objects 83
learning to write a simple Zinc application 115
member functions, overloaded functions and

operators 83
member variables and scope 83
multiplatform application design 45
palette mapping 57
region lists 69
setting an object's locale 203
setting the application language 211
shipping a globalized application 105
shutting down an application 115
special considerations of each environment 45
the basics of designi ng of a display class 193
the data file 163
top-down and bottom-up event handling 57
using accelerator keys 219
using event map tables 219
using the UIW_TABLE class 173

Getting Started with Zinc Programming 333



using UCAPPLICATION 115
using Zinc's help and error systems 127
what Zinc is II
what Zinc's components are 11
working with persistent objects 139
working with top-down and bottom-up event

flow 151
writing a user function to validate input 151
writing an exit function 127

key mapping
Curses 324

keyboard macro 184
keyboard mapping

DOS and Windows 320
Macintosh 325
NEXTSTEP 326
OSFlMotif and Curses 323

keystrokes 174

L
L_EXIT 258
L_PASTE 191
LANG_DEF.CPP 108
language

changing at run time 215
detection 212
ISO 109
separating from locale 27
using system default 212

LANGUAGE_FIRST 213
languageAtanager 109

LoadDefaultLanguage() 109
languages

switching at run time 211
Last() 73
layer of abstraction

"less thin" 88
"thick" 89

Leave~essage() 296
left 321,325,326

word 321
libraries

complete list of 270
library classes

description 70
real-world metaphor 69

library files
lib_crs_zil.a (for Unix Curses) 54
lib_mtCzil.a (for OSFlMotif) 53
lib_nxCziI.a (for NEXTSTEP) 55
Macintosh 52
OS2_ZIL.LIB (for OS/2) 52, 55
WIN_ZIL.LIB (for Windows) 50
WNT_ZIL.LIB (for Windows NT) 50

license agreement iii
Line() 303
lines 194

in display class 195
lists 35

relationships between UCDEVICE and
UCEVENT_MANAGER 71

relationships between UIW_WINDOW,
UCWINDOW_OBJECT, and
UCWINDOW_MANAGER 71

Load() 293
LoadDefaultLanguage() 216
LoadRecord() 181
LOC_DEF.CPP 108
locale 208

separating from language 27
LOCALE_FIRST 205
localeAtanager

defaultName 110
logical events 76, 250

benefits of 20
mapping of 64

logical mapping 20
benefits of 20

LogicalEvent() 66, 160
logicalFont 201
look and feel

DOS 49,55
Macintosh 51
NEXTSTEP 52
OSFlMotif 53, 54
Windows 50

LookUpWord() 157

M
Macintosh

library files 52
main() 53
QuickDraw 78

macro
keyboard 184

~ACRO.EXE 184
~ACRO_HANDLER 185,188
~ACRO_PAIR 185
MACRO_PAIR.macro 191
macroTable 189
main event loop 215,237,238

returning control to 247,260
maine )

in multiplatform programming 47
~apColor() 66
mark 321,326,327
~ATCH_WINDOW 296, 297
maximize button 30

334 Getting Started with Zinc Programming



maxRecords 175,308
MDI 322
member function

static
ExitFunction() 258

member functions 98
default arguments 98
how to organize 85
information 201
overloaded 100
overloading 100
static 102
virtual 99

member variables 97
bitwise flags 97
static 97

memory
model 49,50

MEMORY_ALLOCATION_ERROR_SYSTEM 2
98

menu control 321
menus 36
message

broadcasting 297
evaluating in an object 261

message passing
using in a complex application 227, 231, 234, 241,

247
Message() 223,241,247,260
messages

passing a help request 262
using in a complex application 224

mEvent 253
Microsoft

compilers 273
makefiles 273
MSC graphics routines 79
Visual VVorkbench

DOS, VVindows 273
NEXTSTEP and OSFlMotif header files 274

Microsoft VVindows
graphics display 79
graphics routines 79

minimize button 30
minimizing a window 321,326
MNIF_CHECK_MARK 224
MNIF_SEND_MESSAGE 216,308
modal windows 134
monitoring events 250
mouse 253

mapping 320,325,326
move

window 321
movement

choose 323,326,327

down 320,325,326
down page 320
end field 320
end line 321
home 321
left 321,325,326
left word 321
next field 322, 325, 327
next MDI window 322
previous field 322, 325, 327
right 322, 325, 327
right word 322
up 322,325,327
up page 322

MSG_DISPLAY 238
MSG_EVENT 248
MSG_EVENT_MONITOR 257
MSG_HELP 261
MSG_HELP_ZINCAPP 263
MSG_WINDOW 242
multiplatform programming

bottom-up event handling 48
compiler options 47
engines and keys 46
event handling 47
libraries 46
look and feel of Zinc programs under native

environments 46
main() 47
NEXTSTEP 55
OS/2 52
OSFlMotif 53
shipping a Zinc application 49
top-down event handling 47
VVindows 50
WinMain() 51

multiple inheritance 88
example of in Zinc 88

multiple operating environments
one set of source 46

multitasking 190

N
new operator 136
New() 170, 293
next

field 322,325, 327
MDI window 322

Next() 72
NEXTSTEP

Display PostScript 79
library 271
makefiles for 279
ProjectBuilder.app 279

Getting Started with Zinc Programming 335



NO_ HELP_CONTEXT 264
nonfield region 174
normalPaletteMapTable 67
notebook 37
numbers 37

o
object

ID 293
table 177

object deletion 94
objectID 287
Objective-C 88
object-oriented programming 12
objects 22

enabling for globalization 106
event processing 63
example of how to access functions 85
interpreting events 64
localizing 108
native 22

oMsg 254
OOP solutions 12
opened 154
operating environments

supported 17
operator

inline 318
operator overloading 101

adding an element to a list 101
comparing chronological values 101
major benefit of C++ 101

OptionDisplay() 220,224,238
OptionEvent() 224
OptionHelp() 261
OptionsEvent() 247,260
OptionsWindow() 241
OS/2

library 270
OSFlMotif

library 271
overloaded operator

adding MDI children to parent 36
overloading

constructors 92
operators 101

p

palette mapping 65
determining from object's state 66
how objects map colors 66

paste 322, 325, 327
pasteBuffer 191
periodic 307

persistence 25, 290, 296
Zinc Designer 25

persistent objects
user-defined 170

platforms
supported xxvii

Poll() 74, 186, 187, 190
in MACRO_HANDLER 190

Polygon() 201, 303
polygons 194
PostScript

using in a Zinc application 303
postSpace 195
preSpace 195
Previous() 72

field 322, 325, 327
printing

in Zinc programs 303
private

C++ declaration 84
private members

not documented 85
program

complex design 219
Programmer sReference xxviii
programming techniques

object-oriented 266
structured programming 264

protected
C++ declaration 84

public
C++ declaration 84

Q
q&a

Creating an icon in the Designer. . .. 146
How can I intercept an event that is filtered? 159
How do I install hotkeys? 190

Q_BEGIN 186
Q_NO_ DESTROY 186
Q_NO_BLOCK 186
Q_NO_POLL 186

R
radio buttons 32
rawCode/macro pairs 186
RECORD_LENGTH 175
RecordFunction() 175, 181
Rectangle() 199,201,303
rectangles 194
refresh 322
region 80
region lists

DOS and Curses 79

336 Getting Started with Zinc Programming



ReportError() 78
restore 322
retrieve data 163
right 322, 325, 327

word 322
routine

naming of 315
RowHeaderFunction() 176
run-time files iii, 49, 54, 110-11

S
S_ADD_RECORD 308
S_CALCULATE_TOTALS 308
S_CHANGED 283
S_CLOSE 217
S_CLOSE_TEMPORARY 241,242,247,248,260,

261
S_CREATE 283
S_CURRENT 292
S_DELETE_RECORD 308
S_INITIALIZE 299
S_MOVE 283
S_NON_CURRENT 292
S_REDISPLAY 223,291
S_RESET_DISPLAY 257
S_SET_DATA 181,292,308
S_SUBTRACT_OBJECT 217
S_UNKNOWN 160,161
SAA

eUA compatibility 49
Save() 170, 171
scope 90
scope class construction 90
scope deletion 95
screen displays 78

supported 17
screenlD 80,200, 310
select 323, 326, 327
selectable objects

icon 35
system button 31
title bar 31

SetDecorations() 109
SetLanguage() 109
SetLocale() 109
shipping applications 49,54

restrictions 49
size

window 322
slider 305
Smalltalk-80 88
snow checking 79
source code

case, usage of 318

comments in 315
spin control 39,305
SPREAD_SHEET_CELL 292
static member functions 102

using pointers to 103
static member variables 97

declaring space for 98
STATUS 291
status bar 39
storage 17
storage and retrieval 25
store data 163
Store() 171, 293
string fields 40
string ID 169
string-field display styles (partia1list) 40
strings

decoupling from language and locale 294
literal 107
Unicode 207
wide for use with Unicode 107

structured programming 264
avoiding 264

Subtract() 73
support

electronic xxx
telephone xxx

Symantec
compilers 274
lODE

DOS, Windows 275
Makefi1es

DOS, Windows 274
projects for Macintosh 277
THINK Project Manager (TPM) 277
using GFX graphics library with 270

synonymField 153, 166
synonymList 154
system 322
system button 31
system requirements xxvii

T
table 174

DeleteRecord() 308
fields

putting data into 180, 181
GetRecord() 308
InsertRecord() 308
list

adding records to 179
records

adding fields to 179
representation of 178

Getting Started with Zinc Programming 337



structure of 177
TABLE_HEADER 177
TABLE_WINDOW 307
technical support xxix
techniques

structured programming 264
text 41
TextHeight() 201
textheight() 201
TextWidth() 201
the procedural dilemma 12
time 42
time styles 42
title 31
TLINK.CFG 271
TMR_QUEUE_EVENTS 282
toggle 322
tool bar 43
top-down environments

event flow in 58
transition to C++ 13
translation

hardcoding locale data 106
TTY_ELEMENT 299

u
UC QUEUE_ELEMENT 74
UC WINDOW_OBJECT 43
UCAPPLICATION 165

abstracting and generalizing code for multiple
environments 123

automatic portability between environments 122
Control() 209,216
Main() 47,207,215,309

using instead of WinMain() 51
setting up Event Manager without 124
shutting down HELLOl.CPP without 125

UCBGCDISPLAY 78,193,197,202,270
UCDEVICE 188,191

abstract classes 19
UI_DISPLAY 193,197,202,293,309

abstract class 88
class hierarchy 24
deriving from 196

UCELEMENT 70
definition 72
member functions 72

UCENV.HPP
Unicode in 107

UCERROR_SYSTEM 78
UCEVENT 74, 159, 167
UCEVENT_MANAGER 309
UCGRAPHICS_DISPLAY 270
UCHELP_SYSTEM 303

including it in programs 24
UCITEM 223
UCLIST 70, 97

Definition 72
member functions 73

UCLIST_BLOCK 75
UCMSC_DISPLAY 79,270
UCMSWINDOWS DISPLAY 79
UCNEXTSTEP_DISPLAY 79
UCOS2_DISPLAY 79
UCPALETTE 65, 196
UCPALETTE_MAP

MapColor() 66
MapPalette() 66

ULPATH 198
UCPRINTER 303

BeginPage() 304
BeginPrintJob() 304
EndPrintJob() 304
ScreenDump() 304

UCQUEUE_BLOCK 74,92
array destructor 96
queueBlock 74

UCQUEUE_ELEMENT 75
UCREGION (struct) 80
UCREGION_ELEMENT 80
UCREGION_LIST 79,80,91
UCSCROLL_INFORMATION 305
UCSTORAGE 292
UCSTORAGE_OBJECT 289
UCSTORAGE_OBJECT_READ_ONLY 289
UCTEXT_DISPLAY 79
UCWCC_DISPLAY 79
UCWIN.HPP 117
UCWINDOW_MANAGER 71, 75, 256, 309
UCWINDOW_OBJECT 71,98,130

errorSystem 133
HotKey() 190

UCXT_DISPLAY 78
UID_KEYBOARD 73,75
UID_MOUSE 73
UID_TIMER 282, 283
UIS_READWRITE 294
UIW_BIGNUM 37,38,206,245,281,305

styles 38
UIW_BORDER 30, 245
UIW_BUTTON 286, 293

member organization 85
UIW_DATE 33, 305, 309
UIW_FORMATTED_STRING 40,245
UIW_GROUP 32
UIW_ICON 306
UIW_INTEGER 37,38, 133,305
UIW_MAXIMIZE_BUTTON 30, 245
UIW_MINIMIZE_BUTTON 30, 245

338 Getting Started with Zinc Programming



UIW_NOTEBOOK 37
UIW_POP_UP_ ITEM 93,247,260
UIW_POP_UP_MENU 37
UIW_PROMPT 179,180,299
UIW_REAL 37, 38, 305
UIW_SCROLL_BAR 305
UIW_SPIN_CONTROL 39
UIW_STATUS_BAR 39, 307
UIW_STRING 40, 153, 160, 166,245

pasteBuffer 191
UIW_SYSTEM_BUTTON 31,135,245
UIW_TABLE 173,177,180,292,307
UIW_TABLE_HEADER 292,307
UIW_TABLE_RECORD 175,177,178,292,307,

308
UIW_TEXT 41, 153, 180,245
UIW_TIME 42,282,305
UIW_TITLE 31, 245
UIW_TOOL_BAR 43
UIW_WINDOW 178,224,245,299,303,306

behaves as both list and element 72
Unicode 26, 105,207

fonts with 111
UNICODE.FNT 111
Universe Information window 136
up 322,325,327

page 322
UpdateMinutes() 284
UpdateSeconds() 284
USE_RAW_KEYS 186
user function 151,157,169

associating with a button 169
calling 247,260
static 169
used in message passing 243

user interface objects 12

V
ValidateString() 310
variables

defining 97
member 97
naming of 315

virtual destructors 95
virtual display functions 81

Rectangle() 81
virtual member functions 99
VirtualGet() 201, 284, 286
VirtualPut() 201, 284, 286
VLIST.CPP 174

W
wasLoaded 167
Watcom

compilers 275
IDE

DOS, Windows, OS/2 276
Makefiles

DOS, Windows, and OS/2 275, 277
wchar_t 107
window

processing events 245
window creation

new operator 136
window identification 145
Window Manager 17,21,71,75,80,159,258

attaching a help window 131
derived example 256
top down and bottom up event handling 21
window position and routing 22

window objects 29
as elements 75
basic 29,30
bitmapped buttons 31
border 30
buttons 31
check boxes 32
combo box 32
date 33
features of editable 44
icons 35
list 35
maximize button 30
MDI windows 36
menus 36
minimize button 30
notebook 37
numbers 37
programmer defined 43
radio buttons 32
spin control 39
status bar 39
string fields 40
text 41
tool bar 43
UIW_BIGNUM 37
UIW_COMBO_BOX 32
UIW_DATE 33
UIW_HZ_LIST 35
UIW_INTEGER 37
UIW_REAL 37
using static member functions 103

windowitis
definition of 221

windowManager 310
Windows

library 270
WinMain() 51

windows

Getting Started with Zinc Programming 339



MDI 306
modal 263, 290
using multiple 135

windowsMessage 254
WM_SYSCHAR 287
wMsg 254
WOAF_ACCEPTS_DROP 298
WOAF_DRAG_OBJECT 298
WOF_ BORDER 138
WOF_NO_ALLOCATE_DATA 180,181
WOF_NON_FIELD_REGION 42,307
WOF_NON_SELECTABLE 291
WOF_SLIDER 305
WORD2.cPP 152
WORD2.EXE 151
WORD3.CPP 164
WOS_OWNERDRAW 66, 282, 284, 286
WOS_SELECTED 291
woStatus 291
Writing Zinc programs

Curses xxviii
DOS xxvii
Macintosh xxviii
NEXTSTEP xxviii
OS/2 xxviii
OSFlMotif xxviii
Windows xxviii

X
xEvt 254
XOR 190, 196,282,284

Z
ZAF_MESSAGE_WINDOW 309
ZIL_ TIME 246
ZIL_BIGNUM 93, 209
ZIL_DATE 92, 100
ZIL_EXPORT_CLASS 84
ZIL_ICHAR 107, 108,213,214,293

Unicode and 107
ZIL_INT16 293
ZIL_INT32 293
ZIL_INTERNATIONAL 108
ZIL_LANGUAGE_MANAGER 109,215,294
ZIL_LOCALE_MANAGER 208
ZIL_STORAGE 167,294
ZIL_STORAGE_OBJECT_READ_ONLY 293
ZIL_STORAGE_READ_ONLY 293
ZIL_UNICODE 107, 110
ZIL_USER_EVENT 205,213
ZIL_UTIME 93,284
Zinc

already globalized 105
namespace 84

Zinc Designer 13, 139, 140, 168
Advanced option 144
creating a window object 144
creating the HELLO.CPP file with 147
creating the HELLO.HPP file with 147
creating windows using 142
Edit option 143
File option 141
Newoption 141
Object suboption 143, 144
updating the HELLO.DAT file with 147
Window option 142

ZincApp 219
ZINCAPP.CPP 220
ZINCAPP_WINDOW_MANAGER 250, 256

340 Getting Started with Zinc Programming



               GNU Free Documentation License
                 Version 1.3, 3 November 2008

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
     <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense.  It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does.  But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book.  We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License.  Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein.  The "Document", below,
refers to any such manual or work.  Any member of the public is a
licensee, and is addressed as "you".  You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject.  (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.)  The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.  If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant.  The Document may contain zero
Invariant Sections.  If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.  A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input



to text formatters.  A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text.  A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification.  Examples of
transparent image formats include PNG, XCF and JPG.  Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page.  For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language.  (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".)  To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document.  These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License.  You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute.  However, you may accept
compensation in exchange for copies.  If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover.  Both covers must also clearly and legibly identify
you as the publisher of these copies.  The front cover must present
the full title with all words of the title equally prominent and
visible.  You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy



a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it.  In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
   from that of the Document, and from those of previous versions
   (which should, if there were any, be listed in the History section
   of the Document).  You may use the same title as a previous version
   if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
   responsible for authorship of the modifications in the Modified
   Version, together with at least five of the principal authors of the
   Document (all of its principal authors, if it has fewer than five),
   unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
   Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
   adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
   giving the public permission to use the Modified Version under the
   terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
   and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add
   to it an item stating at least the title, year, new authors, and
   publisher of the Modified Version as given on the Title Page.  If
   there is no section Entitled "History" in the Document, create one
   stating the title, year, authors, and publisher of the Document as
   given on its Title Page, then add an item describing the Modified
   Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
   public access to a Transparent copy of the Document, and likewise
   the network locations given in the Document for previous versions
   it was based on.  These may be placed in the "History" section.
   You may omit a network location for a work that was published at
   least four years before the Document itself, or if the original
   publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
   Preserve the Title of the section, and preserve in the section all
   the substance and tone of each of the contributor acknowledgements
   and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
   unaltered in their text and in their titles.  Section numbers
   or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements".  Such a section
   may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements"
   or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant.  To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains



nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version.  Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity.  If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy.  If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications".  You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.



8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections.  You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers.  In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License.  Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License.  If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time.  Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.  See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation.  If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.  If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works.  A
public wiki that anybody can edit is an example of such a server.  A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 
license published by Creative Commons Corporation, a not-for-profit 



corporation with a principal place of business in San Francisco, 
California, as well as future copyleft versions of that license 
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in 
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this 
License, and if all works that were first published under this License 
somewhere other than this MMC, and subsequently incorporated in whole or 
in part into the MMC, (1) had no cover texts or invariant sections, and 
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

    Copyright (c)  YEAR  YOUR NAME.
    Permission is granted to copy, distribute and/or modify this document
    under the terms of the GNU Free Documentation License, Version 1.3
    or any later version published by the Free Software Foundation;
    with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
    A copy of the license is included in the section entitled "GNU
    Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

    with the Invariant Sections being LIST THEIR TITLES, with the
    Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.




