
VOLUME

SUPPORT

..._---

4.0VERSION

A P P L

Programmer's
Reference
Volume One
Support Objects

Zinc® Application Framework™
Version 4.0
Zinc Software Incorporated
Pleasant Grove, Utah

Copyright © 1990-1994 Zinc Software Incorporated
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

TABLE OF CONTENTS

INTRODUCTION .
UCSAMPLE_CLASS: :SampleFunction
CLASSES AND STRUCTURES
INCLUDE FILE HIERARCHY
CLASS HIERARCHY

CHAPTER 1- VI_APPLICATION 15
General Members
UCAPPLICATION::UCAPPLICATION
UCAPPLICATION: :-UCAPPLICATION
UCAPPLICATION::Control
UCAPPLICATION: :LinkMain
UCAPPLICATION: :Main

CHAPTER 2 - VI_ATTACHMENT 25
General Members
UCATTACHMENT::UCATTACHMENT
UI_ATTACHMENT::-UI_ATTACHMENT
UCATTACHMENT: :Information
UCATTACHMENT::Modify
Storage Members
UCATTACHMENT::UCATTACHMENT
UCATTACHMENT::Load
UCATTACHMENT::New
UCATTACHMENT: :NewFunction
UCATTACHMENT: :Store

CHAPTER 3 - VI_BGI_DISPLAY 37
General Members
UCBGCDISPLAY::UI_BGI_DISPLAY
UCBGCDISPLAY::-UCBGCDISPLAY
UCBGCDISPLAY: :SetFont
UCBGCDISPLAY: :SetPattern

CHAPTER 4 - VI_CONSTRAINT 45
General Members
UCCONSTRAINT::UCCONSTRAINT
UCCONSTRAINT::-UCCONSTRAINT

iii

UI_CONSTRAINT: :Information
UI_CONSTRAINT: :Manager
UI_CONSTRAINT::Modify
UCCONSTRAINT::Next
UCCONSTRAINT: :Previous
UI_CONSTRAINT: :SearchID
Storage Members
UI_CONSTRAINT::UCCONSTRAINT
UI_CONSTRAINT::Load
UCCONSTRAINT::New
UCCONSTRAINT::NewFunction
UI_CONSTRAINT: :Store

CHAPTER 5 - VI_DEVICE .. 59
General Members
UCDEVICE::UCDEVICE
UCDEVICE::LJI_DEVICE
UI_DEVICE: :CompareDevices
UI_DEVICE: :Event
UI_DEVICE: :Next
UI_DEVICE: :Poll
UCDEVICE: :Previous

CHAPTER 6 - VI_DIMENSION_CONSTRAINT 71
General Members
UI_DIMENSION_CONSTRAINT::UCDIMENSION_CONSTRAINT
UI_DIMENSION_CONSTRAINT::LJI_DIMENSION_CONSTRAINT
UCDIMENSION_CONSTRAINT: :Information
UCDIMENSION_CONSTRAINT::Modify
Storage Members
UI_DIMENSION_CONSTRAINT::UCDIMENSION_CONSTRAINT
UI_DIMENSION_CONSTRAINT::Load
UCDIMENSION_CONSTRAINT::New
UCDIMENSION_CONSTRAINT::NewFunction
UCDIMENSION_CONSTRAINT::Store

CHAPTER 7 - VI_DISPLAY 83
General Members
UI_DISPLAY::UI_DISPLAY
UCDISPLAY::LJCDISPLAY
UI_DISPLAY: :Bitmap
UI_DISPLAY: :BitmapArrayToHandle
UI_DISPLAY: :BitmapHandleToArray

iv

UCDISPLAY: :Ellipse
UCDISPLAY: :IconArrayToHandle
UCDISPLAY::IconHandleToArray
UCDISPLAY::Line
UCDISPLAY: :MapColor
UCDISPLAY: :Polygon
UCDISPLAY: :Rectangle
UCDISPLAY::RectangleXORDiff
UCDISPLAY: :RegionDefine
UI_DISPLAY::RegionInitialize
UCDISPLAY: :RegionMove
UCDISPLAY::Text
UCDISPLAY: :TextHeight
UCDISPLAY: :TextWidth
UCDISPLAY::VirtualGet
UCDISPLAY::VirtualPut

CHAPTER 8 - UI_ELEMENT .. 125
General Members
UI_ELEMENT::UCELEMENT
UCELEMENT: :-UCELEMENT
UI_ELEMENT: :ClassName
UI_ELEMENT: :Information
UI_ELEMENT: :ListIndex
UCELEMENT::Next
UCELEMENT: :Previous

CHAPTER 9 - UI_ERROR_STUB 133
General Members
UCERROR_STUB::-UI_ERROR_STUB
UCERROR_STUB::Beep
UCERROR_STUB: :ErrorMessage
UCERROR_STUB: :ReportError

CHAPTER 10 - UI_ERROR_SYSTEM .. 139
General Members
UCERROR_SYSTEM::UCERROR_SYSTEM
UCERROR_SYSTEM::-UCERROR_SYSTEM
UCERROR_SYSTEM::ErrorMessage
UI_ERROR_SYSTEM::SetLanguage

CHAPTER 11 - UI_EVENT .. 145
General Members

v

UCEVENT::UCEVENT
UCEVENT: :InputType

CHAPTER 12 - UI_EVENT_MANAGER 155
General Members
UCEVENT_MANAGER::UCEVENT_MANAGER
UCEVENT_MANAGER: :-UCEVENT_MANAGER
UCEVENT_MANAGER::Add
UCEVENT_MANAGER: :Current
UCEVENT_MANAGER: :DeviceImage
UCEVENT_MANAGER: :DevicePosition
UCEVENT_MANAGER::DeviceState
UCEVENT_MANAGER::Event
UCEVENT_MANAGER::First
UCEVENT_MANAGER: :Get
UCEVENT_MANAGER: :Last
UCEVENT_MANAGER::Put
UCEVENT_MANAGER::QF1ags
UCEVENT_MANAGER::Subtract
UCEVENT_MANAGER::operator +
UCEVENT_MANAGER: :operator -

CHAPTER 13 - UI_EVENT_MAP
General Members
UI_EVENT_MAP: :MapEvent

175

CHAPTER 14 - UI_GEOMETRY_MANAGER 179
General Members
UCGEOMETRY_MANAGER::UCGEOMETRY_MANAGER
UCGEOMETRY_MANAGER::-UCGEOMETRY_MANAGER
UCGEOMETRY_MANAGER::Add
UCGEOMETRY_MANAGER: :operator +
UCGEOMETRY_MANAGER: :C1assName
UCGEOMETRY_MANAGER: :Current
UCGEOMETRY_MANAGER: :Event
UCGEOMETRY_MANAGER: :First
UCGEOMETRY_MANAGER: :Information
UCGEOMETRY_MANAGER: :Last
UCGEOMETRY_MANAGER::Subtract
Storage Members
UCGEOMETRY_MANAGER::UCGEOMETRY_MANAGER
UCGEOMETRY_MANAGER: :Load
UCGEOMETRY_MANAGER::New

vi

UCGEOMETRY_MANAGER::NewFunction
UCGEOMETRY_MANAGER:: Store

CHAPTER 15 - VI_GRAPHICS_DISPLAY 195
General Members
UCGRAPHICS_DISPLAY::UCGRAPHICS_DISPLAY
UCGRAPHICS_DISPLAY::-UCGRAPHICS_DISPLAY
UCGRAPHICS_DISPLAY::SetFont
UCGRAPHICS_DISPLAY: :SetPattem

CHAPTER 16 - VI_HELP_STVB .. 203
General Members
UCHELP_STUB::-UCHELP_STUB
UCHELP_STUB::DisplayHelp

CHAPTER 17 - VI_HELP_SYSTEM 205
General Members
UCHELP_SYSTEM::UCHELP_SYSTEM
UCHELP_SYSTEM::-UCHELP_SYSTEM
UCHELP_SYSTEM: :DisplayHelp
UIW_HELP_SYSTEM::SetLanguage

CHAPTER 18 - VI_ITEM
General Members

213

CHAPTER 19 - VI_KEY .. 217
General Members

CHAPTER 20 - VI_LIST .. 219
General Members
UCLIST::UCLIST
UCLIST: :-UCLIST
UCLIST: :Add
UCLIST::operator +
UCLIST: :Count
UCLIST: :Current
UCLIST: :Destroy
UCLIST: :First
UCLIST::Get
UCLIST::Index
UCLIST: :Last
UCLIST: :SetCurrent
UCLIST: :Sort

vii

UCLIST::Subtract
UCLIST: :operator -

CHAPTER 21- VI_LIST_BLOCK 237
General Members
UCLIST_BLOCK::UCLIST_BLOCK
UCLIST_BLOCK: :-UCLIST_BLOCK
UCLIST_BLOCK: :Add
UI_LIST_BLOCK: :Full
UI_LIST_BLOCK: :Subtract

CHAPTER 22 - VI_MACINTOSH_DISPLAY 245
General Members
UCMACINTOSH_DISPLAY::UI_MACINTOSH_DISPLAY
UCMACINTOSH_DISPLAY::-UCMACINTOSH_DISPLAY
UCMACINTOSH_DISPLAY: :MapRGBColor

CHAPTER 23 - VI_MSC_DISPLAY 251
General Members
UCMSC_DISPLAY::UI_MSC_DISPLAY
UCMSC_DISPLAY::-UCMSC_DISPLAY
UCMSC_DISPLAY::SetFont
UCMSC_DISPLAY: :SetPattem

CHAPTER 24 - VI_MSWINDOWS_DISPLAY 259
General Members
UCMSWINDOWS_DISPLAY::UCMSWINDOWS_DISPLAY
UCMSWINDOWS_DISPLAY::-UCMSWINDOWS_DISPLAY

CHAPTER 2S - VI_NEXTSTEP_DISPLAY 265
General Members
UCNEXTSTEP_DISPLAY::UCNEXTSTEP_DISPLAY
UCNEXTSTEP_DISPLAY::-UCNEXTSTEP_DISPLAY
UCNEXTSTEP_DISPLAY: :MapNSColor

CHAPTER 26 - VI_OS2_DISPLAY 271
General Members
UCOS2_DISPLAY::UI_OS2_DISPLAY
UI_OS2_DISPLAY::-UCOS2_DISPLAY
UI_OS2_DISPLAY::SetFont

CHAPTER 27 - VI_PALETTE .. 277
General Members

viii

CHAPTER 28 - VI_PALETTE_MAP .. 279
General Members
UCPALETTE_MAP: :MapPalette

CHAPTER 29 - VI_PATH 283
General Members
UCPATH::UI_PATH
UCPATH::-UCPATH
UCPATH::Current
UCPATH: :First
UI_PATH: :FirstPathName
UCPATH::Last
UCPATH::NextPathName

CHAPTER 30 - VI_PATH_ELEMENT ".. 291
General Members
UCPATH_ELEMENT::UI_PATH_ELEMENT
UCPATH_ELEMENT: :-UCPATH_ELEMENT
UCPATH_ELEMENT: :Next
UCPATH_ELEMENT::Previous

CHAPTER 31- VI_POSITION
General Members
UCPOSITION: :Assign
UCPOSITION: :operator ==
UCPOSITION: :operator !=
UCPOSITION::operator <
UCPOSITION::operator>
UCPOSITION::operator >=
UCPOSITION::operator <=
UCPOSITION::operator ++
UCPOSITION::operator -­
UCPOSITION::operator +=
UCPOSITION::operator -=

295

CHAPTER 32 - VI_PRINTER .. 307
General Members
UCPRINTER::UCPRINTER
UCPRINTER: :-UCPRINTER
UI_PRINTER: :BeginPage
UI_PRINTER: :BeginPrintJob
UCPRINTER: :EndPage
UCPRINTER: :EndPrintJob

ix

UCPRINTER: :ScreenDump

CHAPTER 33 - UI_QUEUE_BLOCK 317
General Members
UCQUEUE_BLOCK::UCQUEUE_BLOCK
UCQUEUE_BLOCK::-UCQUEUE_BLOCK
UCQUEUE_BLOCK: :Current
UCQUEUE_BLOCK: :First
UCQUEUE_BLOCK: :Last

CHAPTER 34 - UI_QUEUE_ELEMENT 323
General Members
UCQUEUE_ELEMENT::UCQUEUE_ELEMENT
UCQUEUE_ELEMENT: :-UCQUEUE_ELEMENT
UCQUEUE_ELEMENT::Next
UCQUEUE_ELEMENT: :Previous

CHAPTER 35 - UI_REGION .. 327
General Members
UCREGION::Assign
UCREGION: :Encompassed
UCREGION::Height
UCREGION::Overlap
UCREGION: :Touching
UCREGION::Width
UCREGION::operator ==
UCREGION::operator !=
UCREGION::operator ++
UCREGION::operator --
UCREGION::operator +=
UCREGION::operator -=

CHAPTER 36 - UI_REGION_ELEMENT 341
General Members
UCREGION_ELEMENT::UCREGION_ELEMENT
UCREGION_ELEMENT: :-UCREGION_ELEMENT
UI_REGION_ELEMENT: :Next
UCREGION_ELEMENT: :Previous

CHAPTER 37 - UI_REGION_LIST
General Members
UCREGION_LIST: :Current
UCREGION_LIST: :First

x

347

UCREGION_LIST: :Last
UCREGION_LIST::Split

CHAPTER 38 - UI_RELATIVE_CONSTRAINT .. 353
General Members
UCRELATIVE_CONSTRAINT::UCRELATIVE_CONSTRAINT
UCRELATIVE_CONSTRAINT: :-UCRELATIVE_CONSTRAINT
UI_RELATIVE_CONSTRAINT: :Information
UI_RELATIVE_CONSTRAINT: :Modify
Storage Members
UCRELATIVE_CONSTRAINT::UCRELATIVE_CONSTRAINT
UCRELATIVE_CONSTRAINT: :Load
UCRELATIVE_CONSTRAINT::New
UCRELATIVE_CONSTRAINT::NewFunction
UCRELATIVE_CONSTRAINT::Store

CHAPTER 39 - UI_SCROLL_INFORMATION 365
General Members

CHAPTER 40 - UI_TEXT_DISPLAY 369
General Members
UCTEXT_DISPLAY::UCTEXT_DISPLAY
UCTEXT_DISPLAY::-UCTEXT_DISPLAY
Internationalization Members

CHAPTER 41 - UI_WCC_DISPLAY 375
General Members
UCWCC_DISPLAY::UCWCC_DISPLAY
UCWCC_DISPLAY::-UCWCC_DISPLAY
UI_WCC_DISPLAY::SetFont
UCWCC_DISPLAY::SetPattern

CHAPTER 42 - UI_WINDOW_MANAGER .. 383
General Members
UCWINDOW_MANAGER::UCWINDOW_MANAGER
UCWINDOW_MANAGER::-UCWINDOW_MANAGER
UCWINDOW_MANAGER::Add
UCWINDOW_MANAGER::operator +
UCWINDOW_MANAGER: :Center
UCWINDOW_MANAGER::Event
UCWINDOW_MANAGER::lnformation
UCWINDOW_MANAGER::Subtract
UCWINDOW_MANAGER::operator -

xi

CHAPTER 43 - UI_WINDOW_OBJECT 399
General Members
DCWINDOW_OBJECT::DCWINDOW_OBJECT
DCWINDOW_OBJECT::LJCWINDOW_OBJECT
DCWINDOW_OBJECT::ClassName
DCWINDOW_OBJECT: :CreateMotifString
DI_WINDOW_OBJECT::DrawBorder
DI_WINDOW_OBJECT::DrawItem
DI_WINDOW_OBJECT::DrawShadow
DI_WINDOW_OBJECT::DrawText
DI_WINDOW_OBJECT::Event
DI_WINDOW_OBJECT::Font
DCWINDOW_OBJECT::Get
DCWINDOW_OBJECT::HotKey
DCWINDOW_OBJECT::Information
DCWINDOW_OBJECT::Inherited
DCWINDOW_OBJECT::LogicalEvent
DCWINDOW_OBJECT::LogicalPalette
DCWINDOW_OBJECT::Modify
DCWINDOW_OBJECT::NeedsDpdate
DCWINDOW_OBJECT::Next
DCWINDOW_OBJECT: :NumberID
DCWINDOW_OBJECT: :Previous
DCWINDOW_OBJECT: :RedisplayType
DCWINDOW_OBJECT: :RegionConvert
DCWINDOW_OBJECT: :RegionMax
DCWINDOW_OBJECT: :RegisterObject
DCWINDOW_OBJECT::Root
DI_WINDOW_OBJECT::SearchID
DCWINDOW_OBJECT::StringID
DCWINDOW_OBJECT::TopWidget
DCWINDOW_OBJECT: :DserFunction
DCWINDOW_OBJECT::Validate
Storage Members
DCWINDOW_OBJECT::DCWINDOW_OBJECT
DCWINDOW_OBJECT::Load
DCWINDOW_OBJECT::New
DI_WINDOW_OBJECT::NewFunction
DI_WINDOW_OBJECT: :Store

CHAPTER 44 - UI_XT_DISPLAY 459
General Members
DI_XT_DISPLAY::DI_XT_DISPLAY

xii

CHAPTER 45 - UID_CURSOR 465
General Members
UID_CURSOR::UID_CURSOR
UID_CURSOR: :-UID_CURSOR
UID_CURSOR: :Event
UID_CURSOR::Poll

CHAPTER 46 - UID_KEYBOARD 473
General Members
UID_KEYBOARD::UID_KEYBOARD
UID_KEYBOARD: :'"UID_KEYBOARD
UID_KEYBOARD::Event
UID_KEYBOARD: :Poll

CHAPTER 47 - UID_MOUSE 481
General Members
UID_MOUSE::UID_MOUSE
UID_MOUSE: :-UID_MOUSE
UID_MOUSE::Event
UID_MOUSE::MouseMove
UID_MOUSE::Poll
Internationalization Members

CHAPTER 48 - UID_TIMER .. 493
General Members
UID_TIMER::UID_TIMER
UID_TIMER::-UID_TIMER
UID_TIMER: :Event
UID_TIMER: :Poll

CHAPTER 49 - ZIL_BIGNUM .. 499
General Members
ZIL_BIGNUM::ZIL_BIGNUM
ZIL_BIGNUM: :-ZIL_BIGNUM
ZIL_BIGNUM: :abs
ZIL_BIGNUM: :ceil
ZIL_BIGNUM: :Export
ZIL_BIGNUM: :floor
ZIL_BIGNUM::GetLocale
ZIL_BIGNUM::Import
ZIL_BIGNUM::round

xiii

ZIL_BIGNUM: :SetLocale
ZIL_BIGNUM: :truncate
ZIL_BIGNUM: :operator =
ZIL_BIGNUM: :operator +
ZIL_BIGNUM: :operator ­
ZIL_BIGNUM::operator *
ZIL_BIGNUM::operator ++
ZIL_BIGNUM: :operator -­
ZIL_BIGNUM: :operator +=
ZIL_BIGNUM::operator -=
ZIL_BIGNUM::operator ==
ZIL_BIGNUM: :operator !=
ZIL_BIGNUM: :operator >
ZIL_BIGNUM: :operator >=
ZIL_BIGNUM: :operator <
ZIL_BIGNUM::operator <=

CHAPTER 50 - ZIL_BITMAP_ELEMENT 527
General Members

CHAPTER 51 - ZIL_DATE , 529
General Members
ZIL_DATE::ZIL_DATE
ZIL_DATE: :DayOtWeek
ZIL_DATE: :DaysInMonth
ZIL_DATE: :DaysInYear
ZIL_DATE::Export
ZIL_DATE: :GetBasis
ZIL_DATE::Import
ZIL_DATE: :SetBasis
ZIL_DATE::operator =
ZIL_DATE::operator +
ZIL_DATE: :operator -
ZIL_DATE: :operator >
ZIL_DATE::operator >=
ZIL_DATE::operator <
ZIL_DATE::operator <=
ZIL_DATE::operator ++
ZIL_DATE::operator --
ZIL_DATE::operator +=
ZIL_DATE::operator -=
ZIL_DATE::operator ==
ZIL_DATE: :operator !=

xiv

CHAPTER 52 - ZIL_DECORATION .. 557
General Members
ZIL_DECORATION: :ZIL_DECORATION
ZIL_DECORATION::AssignData
ZIL_DECORATION::DeleteData
ZIL_DECORATION: :GetBitmap
ZIL_DECORATION: :GetText
Storage Members
ZIL_DECORATION: :ClassLoadData
ZIL_DECORATION: :ClassStoreData

CHAPTER 53 - ZIL_DECORATION_MANAGER 563
General Members
ZIL_DECORATION_MANAGER::ZIL_DECORATION_MANAGER
ZIL_DECORATION_MANAGER: :CreateData
ZIL_DECORATION_MANAGER: :FreeDecorations
ZIL_DECORATION_MANAGER: :LoadDefaultDecorations
ZIL_DECORATION_MANAGER: :SetDecorations
ZIL_DECORATION_MANAGER::UseDecorations

CHAPTER 54 - ZIL_DELTA_STORAGE_OBJECT 569
General Members
ZIL_DELTA_STORAGE_OBJECT::ZIL_DELTA_STORAGE_OBJECT
ZIL_DELTA_STORAGE_OBJECT: :-ZIL_DELTA_STORAGE_OBJECT
ZIL_DELTA_STORAGE_OBJECT: :Store

CHAPTER 55-
ZIL_DELTA_STORAGE_OBJECT_READ_ONLY 575

General Members
ZIL_DELTA_STORAGE_OBJECT_READ_ONLY::ZIL_DELTA_­

STORAGE_OBJECT_READ_ONLY
ZIL_DELTA_STORAGE_OBJECT_READ_ONLY::-ZIL_DELTA_­

STORAGE_OBJECT_READ_ONLY
ZIL_DELTA_STORAGE_OBJECT_READ_ONLY: :Load

CHAPTER 56 - ZIL_I18N 581
General Members
ZIL_I 18N: :ZIL_I18N
ZIL_I 18N: :-ZIL_I18N
ZIL_I18N::AssignData
ZIL_I 18N::DeleteData
Storage Members
ZIL_I 18N: :ClassLoadData

xv

ZIL_I18N::ClassStoreData
ZIL_I18N: :Load
ZIL_I18N: :Store
ZIL_I18N: :Traverse

CHAPTER 57 - ZIL_I18N_MANAGER 589
General Members
ZIL_I18N_MANAGER: :CreateData
ZIL_I18N_MANAGER: :FreeI18N
ZIL_I18N_MANAGER: :LoadDefaultI18N
ZIL_I18N_MANAGER::UseI18N

CHAPTER 58 - ZIL_INTERNATIONAL 593
General Members
ZIL_INTERNATIONAL::CharMapInitialize
ZIL_INTERNATIONAL::chartod
ZIL_INTERNATIONAL: :ConvertFromFilename
ZIL_INTERNATIONAL: :ConvertToFilename
ZIL_INTERNATIONAL: :DecomposeCharacter
ZIL_INTERNATIONAL::DecomposeString
ZIL_INTERNATIONAL::DefaultI18nInitialize
ZIL_INTERNATIONAL::I18nInitialize
ZIL_INTERNATIONAL: :IsNonSpacing
ZIL_INTERNATIONAL::ISOtoICHAR
ZIL_INTERNATIONAL::ISOtoUNICODE
ZIL_INTERNATIONAL::LoadICHARtoHardware
ZIL_INTERNATIONAL::MapChar
ZIL_INTERNATIONAL::MapText
ZIL_INTERNATIONAL: :mblen
ZIL_INTERNATIONAL: :mbstowcs
ZIL_INTERNATIONAL: :OSI18nInitialize
ZIL_INTERNATIONAL: :StripHotMark
ZIL_INTERNATIONAL: :strstrip
ZIL_INTERNATIONAL: :TimeStamp
ZIL_INTERNATIONAL::UnMapChar
ZIL_INTERNATIONAL::UnMapText
ZIL_INTERNATIONAL: :wcstombs
ZIL_INTERNATIONAL::WildStrcmp
Internationalization Members
ZIL_INTERNATIONAL::MachineName
ZIL_INTERNATIONAL::ParseLangEnv

xvi

CHAPTER 59 - ZIL_LANGUAGE 617
General Members
ZIL_LANGUAGE::ZIL_LANGUAGE
ZIL_LANGUAGE: :AssignData
ZIL_LANGUAGE: :DeleteData
ZIL_LANGUAGE::GetMessage
Storage Members
ZIL_LANGUAGE::ZIL_LANGUAGE
ZIL_LANGUAGE: :ClassLoadData
ZIL_LANGUAGE: :ClassStoreData
ZIL_LANGUAGE::Load
ZIL_LANGUAGE::Store

CHAPTER 60 - ZIL_LANGUAGE_ELEMENT 625
General Members
ZIL_LANGUAGE_ELEMENT::SwapData

CHAPTER 61 - ZIL_LANGUAGE_MANAGER .. 627
General Members
ZIL_LANGUAGE_MANAGER::ZIL_LANGUAGE_MANAGER
ZIL_LANGUAGE_MANAGER::CreateData
ZIL_LANGUAGE_MANAGER::FreeLanguage
ZIL_LANGUAGE_MANAGER::LoadDefaultLanguage
ZIL_LANGUAGE_MANAGER::SetLanguage
ZIL_LANGUAGE_MANAGER::UseLanguage

CHAPTER 62 - ZIL_LOCALE 633
General Members
ZIL_LOCALE: :ZIL_LOCALE
ZIL_LOCALE: :AssignData
ZIL_LOCALE: :DeleteData
Storage Members
ZIL_LOCALE: :ClassLoadData
ZIL_LOCALE: :ClassStoreData

CHAPTER 63 - ZIL_LOCALE_ELEMENT .. 639
General Members

CHAPTER 64 - ZIL_LOCALE_MANAGER 643
General Members
ZIL_LOCALE_MANAGER::ZIL_LOCALE_MANAGER
ZIL_LOCALE_MANAGER::CreateData
ZIL_LOCALE_MANAGER::FreeLocale

xvii

ZIL_LOCALE_MANAGER: :LoadDefaultLocale
ZIL_LOCALE_MANAGER: :SetLocale
ZIL_LOCALE_MANAGER::UseLocale

CHAPTER 65 - ZIL_MAP_CHARS .. 649
General Members
ZIL_MAP_CHARS::ZIL_MAP_CHARS
ZIL_MAP_CHARS::-ZIL_MAP_CHARS
ZIL_MAP_CHARS::MapChar
ZIL_MAP_CHARS::MapText
ZIL_MAP_CHARS::mblen
ZIL_MAP_CHARS: :mbstowcs
ZIL_MAP_CHARS::UnMapChar
ZIL_MAP_CHARS::UnMapText
ZIL_MAP_CHARS::wcstombs

CHAPTER 66 - ZIL_STORAGE 659
General Members
ZIL_STORAGE: :ZIL_STORAGE
ZIL_STORAGE: :-ZIL_STORAGE
ZIL_STORAGE: :DestroyObject
ZIL_STORAGE: :Flush
ZIL_STORAGE: :Link
ZIL_STORAGE: :MkDir
ZIL_STORAGE: :RenameObject
ZIL_STORAGE: :RmDir
ZIL_STORAGE::Save
ZIL_STORAGE: :SaveAs

CHAPTER 67 - ZIL_STORAGE_DlRECTORY 671
General Members
ZIL_STORAGE_DIRECTORY::-ZIL_STORAGE_DIRECTORY
ZIL_STORAGE_DIRECTORY::ReadDir
ZIL_STORAGE_DIRECTORY::RewindDir
ZIL_STORAGE_DIRECTORY::SeekDir
ZIL_STORAGE_DIRECTORY: :TellDir

CHAPTER 68 - ZIL_STORAGE_OBJECT .. 675
General Members
ZIL_STORAGE_OBJECT: :ZIL_STORAGE_OBJECT
ZIL_STORAGE_OBJECT: :-ZIL_STORAGE_OBJECT
ZIL_STORAGE_OBJECT::SetCTime
ZIL_STORAGE_OBJECT: :SetMTime

xviii

ZIL_STORAGE_OBJECT: :Store
ZIL_STORAGE_OBJECT: :Touch

CHAPTER 69-
ZIL_STORAGE_OBJECT_READ_ONLY .. 683

General Members
ZIL_STORAGE_OBJECT_READ_ONLY::ZIL_STORAGE_OBJECT_READ_ONLY
ZIL_STORAGE_OBJECT_READ_ONLY::-ZIL_STORAGE_-

OBJECT_READ_ONLY
ZIL_STORAGE_OBJECT_READ_ONLY::Load
ZIL_STORAGE_OBJECT_READ_ONLY::Seek
ZIL_STORAGE_OBJECT_READ_ONLY::Stats
ZIL_STORAGE_OBJECT_READ_ONLY::Storage
ZIL_STORAGE_OBJECT_READ_ONLY::Store
ZIL_STORAGE_OBJECT_READ_ONLY: :Tell

CHAPTER 70 - ZIL_STORAGE_READ_ONLY .. 693
General Members
ZIL_STORAGE_READ_ONLY::ZIL_STORAGE_READ_ONLY
ZIL_STORAGE_READ_ONLY::-ZIL_STORAGE_READ_ONLY
ZIL_STORAGE_READ_ONLY::AppendFullPath
ZIL_STORAGE_READ_ONLY: :ChangeExtension
ZIL_STORAGE_READ_ONLY::ChDir
ZIL_STORAGE_READ_ONLY: :FindFirstID
ZIL_STORAGE_READ_ONLY: :FindFirstObject
ZIL_STORAGE_READ_ONLY::FindNextID
ZIL_STORAGE_READ_ONLY: :FindNextObject
ZIL_STORAGE_READ_ONLY: :GetCWD
ZIL_STORAGE_READ_ONLY: :MakeFullPath
ZIL_STORAGE_READ_ONLY::OpenDir
ZIL_STORAGE_READ_ONLY: :Stats
ZIL_STORAGE_READ_ONLY: :StorageName
ZIL_STORAGE_READ_ONLY: :StripFullPath
ZIL_STORAGE_READ_ONLY::TempName
ZIL_STORAGE_READ_ONLY::ValidName
ZIL_STORAGE_READ_ONLY: :Version

CHAPTER 71- ZIL_TEXT_ELEMENT
General Members

713

CHAPTER 72 - ZIL_TIME .. 715
General Members
ZIL_TIME: :ZIL_TIME

xix

ZIL_TIME::Export
ZIL_TIME::Import
ZIL_TIME: :operator =
ZIL_TIME::operator +
ZIL_TIME::operator ­
ZIL_TIME::operator>
ZIL_TIME::operator >=
ZIL_TIME::operator <
ZIL_TIME::operator <=
ZIL_TIME: :operator ++
ZIL_TIME::operator -­
ZIL_TIME::operator +=
ZIL_TIME::operator -=
ZIL_TIME::operator ==
ZIL_TIME::operator !=

CHAPTER 73 - ZIL_UTIME 739
General Members
ZIL_UTIME: :ZIL_UTIME
ZIL_UTIME: :-ZIL_UTIME
ZIL_UTIME::ConvertJday
ZIL_UTIME: :ConvertUsec
ZIL_UTIME: :DayOfWeek
ZIL_UTIME: :DaysInMonth
ZIL_UTIME::DaysInYear
ZIL_UTIME: :Export
ZIL_UTIME::Import
ZIL_UTIME: :LeapYear
ZIL_UTIME: :MakeCanonical
ZIL_UTIME::SetLanguage
ZIL_UTIME: :SetLocale
ZIL_UTIME::operator =
ZIL_UTIME: :operator +
ZIL_UTIME::operator -
ZIL_UTIME: :operator >
ZIL_UTIME::operator >=
ZIL_UTIME::operator <
ZIL_UTIME: :operator <=
ZIL_UTIME::operator ==
ZIL_UTIME::operator !=

INDEX 763

xx

INTRODUCTION

The Programmer s Reference Volume 1 contains descriptions of Zinc Application
Framework support classes, the calling conventions used to invoke the class member
functions, short code samples using the class member functions, and information about
other related classes or example programs. Support objects are those objects that are not
window objects.

Introduction

uI_SAMPLE_CLASS::SampleFunction

Syntax

returnValue SampleFunction(typel parameter1, type2 *parameter2);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses ~

• OS/2
• NEXTSTEP

NOTE: A blackened box indicates a supported environment.

Remarks

A brief description of what SampleFunction() does.

• returnValueout gives a complete description of the return value. The subscript "out"
indicates that the variable (the return value in this case) does not require an initial
value and that it receives a value from the function.

• parameter1in gives a complete description of function parameter 1. The subscript
"in" indicates that the variable requires an initial value and that it is not changed by
the function.

parameter2inlout gives a complete description of function parameter 2. The subscript
"in/out" indicates that the variable requires an initial value, but that it may also
receive a different value from the function.

Example

This section provides a coding example of how SampleFunction() was used in the
development of other library functions or development utilities. The function itself often
appears in bold type within the example code.

2 Zinc Application Framework-Programmer's Reference Volume 1

CLASSES AND STRUCTURES

General purpose

attrib
FlagSet
FlagsSet
MaxValue
MinValue
ZIL_NULLF
ZIL_NULLH
ZIL_NULLP
TRUE
FALSE
ZIL_INT8
ZIL_UINT8
ZIL_INT16
ZIL_UINT16
ZIL_INT32
ZIL_UINT32
ZIL_VOIDF
ZIL_VOIDP

struct UI ITEM

class UI_APPLICATION
class UI_ELEMENT
class UI_LIST
class UI_LIST_BLOCK
class UI_PATH
class UI_PATH_ELEMENT
class ZIL_BIGNUM
class ZIL_DATE
class ZIL_TIME
class ZIL_UTIME

Error system

class UI_ERROR_STUB
class UI ERROR_SYSTEM

Event management

struct UI_EVENT
struct UI_EVENT_MAP
struct UI_KEY
struct UI_POSITION
struct UI_REGION
struct UI_SCROLL_INFORMATION

class UI_DEVICE
class UI_EVENT_MANAGER
class UI_QUEUE_BLOCK
class UI_QUEUE_ELEMENT
class UID_CURSOR
class UID_KEYBOARD
class UID_MOUSE
class UID_TIMER

Introduction 3

Help system
class UI HELP_STUB
class UI_HELP_SYSTEM

Internationalization
struct ZIL_BITMAP_ELEMENT
struct ZIL_LOCALE_ELEMENT
struct ZIL_LANGUAGE_ELEMENT
struct ZIL_TEXT_ELEMENT

class ZIL_DECORATION
class ZIL_DECORATION_MANAGER
class ZIL_Il8N
class ZIL_I18N_MANAGER
class ZIL_INTERNATIONAL
class ZIL_LANGUAGE
class ZIL_LANGUAGE_MANAGER
class ZIL_LOCALE
class ZIL_LOCALE_MANAGER
class ZIL_MAP_CHARS

Printer

Screen display
struct UI_PALETTE
struct UI_PALETTE_MAP
struct UI_POSITION
struct UI_REGION

class UI_BGI_DISPLAY
class UI_DISPLAY
class UI_GRAPHICS_DISPLAY
class UI_MACINTOSH_DISPLAY
class UI_MSC_DISPLAY
class UI_MSWINDOWS_DISPLAY
class UI_NEXTSTEP_DISPLAY
class UI_OS2_DISPLAY
class UI_REGION_ELEMENT
class UI_REGION_LIST
class UI_TEXT_DISPLAY
class UI_WCC_DISPLAY
class UI_XT_DISPLAY

Storage
class ZIL_DELTA_STORAGE_OBJECT
class ZIL_DELTA_STORAGE_OBJECT_READ_ONLY
class ZIL_STORAGE
class ZIL_STORAGE_DIRECTORY
class ZIL_STORAGE_OBJECT

4 Zinc Application Framework-Programmer's Reference Volume 1

class ZIL_STORAGE_OBJECT_READ_ONLY
class ZIL_STORAGE_READ_ONLY

Window management

class UI_ATTACHMENT
class UI_CONSTRAINT
class UI_DIMENSION_CONSTRAINT
class UI_GEOMETRY_MANAGER
class UI_RELATIVE_CONSTRAINT
class UI_WINDOW_MANAGER
class UI_WINDOW_OBJECT
class UIW_BIGNUM
class UIW_BORDER
class UIW_BUTTON
class UIW_COMBO_BOX
class UIW_DATE
class UIW_FORMATTED_STRING
class UIW_GROUP
class UIW_HZ_LIST
class UIW_ICON
class UIW_INTEGER
class UIW_MAXIMIZE_BUTTON
class UIW_MINIMIZE_BUTTON
class UIW_NOTEBOOK
class UIW_POP_UP_ITEM
class UIW_POP_UP_MENU
class UIW_PROMPT
class UIW_PULL_DOWN_ITEM
class UIW_PULL_DOWN_MENU
class UIW_REAL
class UIW_SCROLL_BAR
class UIW_SPIN_CONTROL
class UIW_STATUS_BAR
class UIW_STRING
class UIW_SYSTEM_BUTTON
class UIW_TABLE
class UIW_TABLE_HEADER
class UIW_TABLE_RECORD
class UIW_TEXT
class UIW_TIME
class UIW_TITLE
class UIW_TOOL_BAR
class UIW_VT_LIST
class UIW_WINDOW
class ZAF_DIALOG_WINDOW
class ZAF_MESSAGE_WINDOW

Introduction 5

INCLUDE FILE HIERARCHY

II version information
II General Zinc Switches
II Optimization switches for various compiler problems.
II Presentation switches for the library.
II Switches for the international language versions.
II Compiler/Environment Default Dependencies
II ZIL_NULLP, ZIL_NULLF, ZIL_NULLH, ZIL_VOIDF, ZIL_VOIDP
II BORLAND
II MICROSOFT
II IBM
II SYMANTEC & ZORTECH
II WATCOM
II DJGPP, GNU C++ port DOS (1.08)
II HP-UX, CC (cfront from HP) and Motif
II MS-DOS, Quarterdeck DESQview/X with Motif, DJGPP G++
II SCO UNIX 3.2 with Motif or Curses
II Solaris 2.1, CC (cfront from SunPro) and Motif
II Siemens/Nixdorf SINIX and Motif
II DEC 4000 OSF/l 1.3
II Compiler/Hardware Typedef Sizes
II TRUE/FALSE
II UIF_FLAGS
II UIS_STATUS
II Macros
II Version 3.6, 3.5, 3.0 compatibility

#if !defined (UI_GEN_HPP)
define UI GEN HPP
if !defin~d(UI_ENV_HPP)
include <ui_env.hpp>
endif

II ZIL_OBJECTID
II EVENT_TYPE
II ZIL_INFO_REQUEST
II UI_ELEMENT
I I UCLIST
II UI_LIST_BLOCK
II ZIL_BIT_VECTOR
II ZIL_MESSAGE
II ZIL_I18N, ZIL_LOCALE, ZIL_LANGUAGE, & ZIL_DECORATION
II ZIL_MAP_CHARS
II ZIL_INTERNATIONAL
II ZIL_BIGNUM
II NMF_FLAGS
II NMI_RESULT
II ZIL_UTIME
II ZIL_DATE
II DTF_FLAGS
I I DTI_RESULT
II ZIL_TIME
II TMF_FLAGS
II TMI_RESULT
II UI_PATH_ELEMENT & UI_PATH
II ZIL_STORAGE_OBJECT & ZIL_STORAGE
II UIS_FLAGS
II ZIL_DELTA_STORAGE_OBJECT

6 Zinc Application Framework-Programmer's Reference Volume 1

// VErsion 3.6, 3.5, 3.0 compatibility

#if ! defined (UI_DSP_HPP)
define UI DSP HPP
if ! defined (UI_GEN_HPP)
include <ui_gen.hpp>
endif

// ZIL_SCREENID, ZIL_BITMAP_HANDLE, ZIL_ICON_HANDLE, ZIL_SCREEN_CELL
// UI_POSITION
// UI_REGION, UI_REGION_ELEMENT, UI_REGION_LIST
// Color information
// Font information
// Image information
// Pattern information
// UI_PALETTE
/ / UI._DISPLAY
/ / UCBGI_DISPLAY
/ / UI._GRAPHICS_DISPLAY
/ / UI__XT_DISPLAY
/ / UI__MSC_DISPLAY
/ / UI__MSWINDOWS_DISPLAY
// UI_OS2_DISPLAY
/ / UI__TEXT_DISPLAY
/ / TmCMODE
/ / UI__WCC_DISPLAY
/ / UI__MACINTOSH_DISPLAY
/ / UI__NEXTSTEP_DISPLAY
/ / UI__PRINTER
/ / Ve:~sion 3.6 compatibility

UI MAP.HPP

#if !defined(UI_MAP_HPP)
define UI MAP HPP
if tdefined(UI DSP HPP)
include <~i_dsp.hpp>
endif

// Compiler/Environment Dependencies
// Special hotkey values
// ZIL_MSDOS
// ZIL_MSWINDOWS
// ZIL_OS2
// ZIL_Xl1
// ZIL_CURSES
/ / ZII,_MACINTOSH
/ / ZII,_NEXTSTEP
// Version 3.6 compatibility

#if ! defined (UI_EVT_HPP)
define UI EVT HPP
if l defined (UI_DSP_HPP)
include <ui_dsp.hpp>
endif

Introduction 7

II EVENT_TYPE
II UI_KEY
II shiftState
II Mouse Information
II UI_SCROLL_INFORMATION
I I UI EVENT
II System wide messages
II ZIL_SYSTEM_EVENT
II ZIL_LOGICAL_EVENT
I lUI_DEVICE
II Device type messages
II Device state messages
II Device image messages
I I UID_CURSOR
II Cursor image messages
I I UID_KEYBOARD
I I UID_MOUSE
II Mouse image messages
II UID_TIMER
II TMR_FLAGS
II UI_QUEUE_ELEMENT & UI_QUEUE_BLOCK
II UI_EVENT_MANAGER
II Q_FLAGS
II version 3.6 compatibility

#if !defined(UI_WIN_HPP)
define UI_WIN_HPP
if !defined(UI_EVT_HPP)
include <ui_evt.hpp>
endif

I I NUMBERID
II UI ITEM
II Wi~dow object identifications
II ZIL_SIMPLE_OBJECTID
II ZIL_COMPLEX_OBJECTID
II ZIL_COMPOSITE_OBJECTID
II Window object system messages
II ZIL_SYSTEM_EVENT
II ZIL_LOGICAL_EVENT
II ZIL_DESIGNER_EVENT
II UI_PALETTE_MAP
II ZIL_LOGICAL_PALETTE
II UI_EVENT_MAP
II UI_WINDOW_OBJECT
II WOF_FLAGS
II WOAF_FLAGS
II WOS_STATUS
II UI_WINDOW_OBJECT::ZIL_INFO_REQUEST
II UI_HELP_CONTEXT
II Underline character information
II Border widths for WOF_BORDER flag option
II UIW_WINDOW
II WNF_FLAGS
II UIW_WINDOW::ZIL_INFO_REQUEST
II UI_WINDOW_MANAGER
II UIW_BORDER
II BDF_FLAGS
II UIW_PROMPT
II UIW_BUTTON
II BTF_FLAGS
II BTS_STATUS
II UIW_BUTTON::ZIL_INFO_REQUEST
II UIW_TITLE

8 Zinc Application Framework-Programmer's Reference Volume 1

II UIW_MAXIMIZE_BUTTON
II UIW_MINIMIZE_BUTTON
II UIW_ICON
II ICF_FLAGS
II UIW_ICON::ZIL_INFO_REQUEST
II UIW_POP_UP_MENU
II UIW_POP_UP_ITEM
II MNIF_FLAGS
II UIW_PULL_DOWN_MENU
II UIW_PULL_DOWN_ITEM
II UIW_SYSTEM_BUTTON
II SYF_FLAGS
II UIW_STRING
II STF_FLAGS
II UIW_DATE
II UIw_FORMATTED_STRING
II FMI_RESULT
II Ur,CBIGNUM
II Ulw_INTEGER
II Ulw_REAL
II UDCTIME
II UI'w_TEXT
II UI'fCGROUP
II unCVT_LIST
II UIVV_HZ_LIST
II UIW_COMBO_BOX
II UI1tCCOMBO_BOX:: ZIL_INFO_REQUEST
II UIIICSPIN_CONTROL
II UI\'CSCROLL_BAR
II sbFlags
/ I UIl'i'_TOOL_BAR
II UII'i'_STATUS_BAR
I I UII'CNOTEBOOK
II UII'i'_NOTEBOOK:: ZIL_INFO_REQUEST
II UIW_TABLE
II UHJ_TABLE:: ZIL_INFO_REQUEST
/1 tblFlags
II thFlags
I / UI__ERROR_SYSTEM
II UI__HELP_SYSTEM
/1 UI_APPLICATION
II ZAF_DIALOG_WINDOW
II ZIL_DIALOG_EVENT
II ZAF_MESSAGE_WINDOW
II UI__CONSTRAINT
1/ UI __CONSTRAINT:: ZIL_INFO_REQUEST
I I UI__ATTACHMENT
II ATCF_FLAGS
II UI __ATTACHMENT:: ZIL_INFO_REQUEST
II UI__DIMENSION_CONSTRAINT
II DNCF_FLAG
II UI__DIMENSION_CONSTRAINT:: ZIL_INFO_REQUEST
II UI __RELATIVE_CONSTRAINT
II RLCF_FLAG
II UI__RELATIVE_CONSTRAINT:: ZIL_INFO_REQUEST
II UI__GEOMETRY_MANAGER
II Message indexes for the help and error system windows.
II version 3.6 compatibility

Introduction 9

CLASS HIERARCHY

10

class

UI CONSTRAINT

~ class UI_ATTACHMENT

~ class UI_DIMBNSION_CONSTRAINT

class UI_RELATIVE_CONSTRAINT

UIW STRINGt

~~ class UIW_BIGNUM

~ class UIW_DATE

~ class UIW FORMATTED_STRING

r class UIW_INTEGER

class UIW_REAL

~ class UIW_TIME

Zinc Application Framework-Programmer's Reference Volume 1

L- class UIW_WINDOWt

~ class UI_WINDOW_MANAGER

~
class UIW_COMBO_BOX

class UIW_GROUP

~
class UIW_HZ_LIST

class UIW_NOTEBOOK

~
class UIW_POP_UP_MENU

class UIW_PULL_DOWN_MENU

~
class UIW_SCROLL_BAR

class UIW_SPIN_CONTROL

f-=
class UIW_STATUS_BAR

class UIW_TABLE
I

f- L---. class UIW_TABLE_HEADER

class UIW_TABLE_RECORD

r-=
class UIW_TEXT

class UIW_TOOL_BAR

~
class UIW_VT_LIST

class ZAF_DIALOG_WINDOW

L- class ZAF_MESSAGE_WINDOW

class ZIL_I18N
I

r= class ZIL_DECORATION

class ZIL_LANGUAGE

L- class ZIL_LOCALE

class

Introduction

rI_LIS:,ass UI_GEOMETRY_MANAGERt

r

-- class UI_EVENT_MANAGER

class UI LIST BLOCK
I -

I L- class UI_QUEUE_BLOCK

I~~ class ur PATHt1-- class

I

11

class UIW_WINDOWtbclass

r---- class UI_TEXT_DISPLAYt

~ class UI_WCC_DISPLAYt

~':::::-::::DECORATION~AG'R
~ class ZIL_LANGUAGE_MANAGER

~ class ZIL_LOCALE_MANAGER

class UI_POSITION

class UI_REGION

class ZIL_INTERNATIONAL

class UI_APPLICATION

class UI DISPLAY

12

class UI ERROR STUB

~ Cl:SS UI_ERROR_SYSTEM

class UI_HELP_STUB

~ class UI_HELP_SYSTEM

class UID_CURSORt

class UID_KEYBOARDt

class ZIL_BIGNUM

Zinc Application Framework-Programmer's Reference Volume 1

class ZIL STORAGE READ ONLY

~ claSS-ZIL_STORAGE

class

class ZIL_MESSAGE

class ZIL_STORAGE_DIRECTORY

struct directoryEntry

struct UI ITEM

struct UI_POSITION

struct UI_REGION

struct ZIL_LANGUAGE_ELEMENT

t - indicates multiple inheritance

Introduction 13

14 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 1 - UI_APPLICATION

The UCAPPLICATION class is used to initialize the standard control objects for an
application built with Zinc Application Framework. The class sets up the display, the
Event Manager and the Window Manager, and also provides a main() function (or
WinMain() for Windows and Windows NT), removing these responsibilities from the
programmer. This provides for a clean initialization module that is completely portable
across platforms. Use of this class is optional (except for NEXTSTEP
applications-discussed below), but if it is used, the programmer merely has to provide
application-specific initialization and the main control loop to retrieve and dispatch events.

Application-specific initialization is performed in the UI_APPLICATION::Main()
function. The definition of UI_APPLICATION::Main() must be provided Qy the
programmer if the UCAPPLICATION class is to be used. The reference to the UI_­
APPLICATION class when defining this function causes a main() (or WinMain(»)
function to be linked in with the program. This main() function creates an instance of
UCAPPLICATION and calls the programmer-defined UI_APPLICATION::Main().

NOTE: It is important that one, and only one, definition ofUI_APPLICATION::Main()
is provided and that a definition is provided only if using the UCAPPLICATION class.

If this class is not used, the main() (or WinMain(») function must still be provided by
the programmer, as in any C++ program. The display, Event Manager and Window
Manager must then also be created manually.

NOTE: If the UCAPPLICATION class is not used, no reference should be made to the
class, since the linker will then attempt to link in another main(), resulting in a linker
error.

Use of the UCAPPLICATION class is not required except for NEXTSTEP applications.
Due to the event handling requirements of both Zinc Application Framework and
NEXTSTEP, their interaction is not straightforward. The UCAPPLICATION class
handles this interaction properly.

The UCAPPLICATION class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS VI_APPLICATION public ZIL_INTERNATIONAL
{
public:

VI_DISPLAY *display;
VI_EVENT_MANAGER *eventManager;
VI_WINDOW_MANAGER *windowManager;
VI_PATH *searchPath;

Chapter 1 - ULAPPLICA nON 15

#if defined (ZIL_NEXTSTEP)
DPSTirnedEntry rnyTirnedEvent;

#endif
#if defined (ZIL_MSWINDOWS)

HANDLE hlnstance;
HANDLE hPrevlnstance;
LPSTR lpszCrndLine;
int nCrndShow;
UI_APPLICATION(HANDLE hlnstance, HANDLE hPrevlnstance,

LPSTR lpszCrndLine, int nCrndShow);
#else

UI_APPLICATION(int argc, char **argv);
#endif

int argc;
ZIL_ICHAR **argv;

-UI_APPLICATION(void) ;
int Main (void) ;
EVENT_TYPE Control (void) ;
void LinkMain(void);

public:
static ZIL_LANGUAGE_ELEMENT *_textSwitches;
static ZIL_LANGUAGE_ELEMENT *_graphicSwitches;

};

General Members

This section describes those members that are used for general purposes.

• display is a pointer to the UCDISPLAY that is created in the UCAPPLICATION
constructor. The type of display created depends on which environment is being
used. For DOS, the type of display created also depends on which graphics library
is being used for the application. For example, if the DOS GFX library is used,
display will be of type UCGRAPHICS_DISPLAY. See "Appendix A-Compiler
Considerations" in the Getting Started manual for more information on using
graphics libraries in Zinc programs. display will be of type UCMACINTOSH_­
DISPLAY if the application is a Macintosh application, UCMSWINDOWS_­
DISPLAY if the application is a Windows application, UCOS2_DISPLAY for an
OS/2 application, UCXT_DISPLAY for a Motif application and UCNEXTSTEP_­
DISPLAY for a NEXTSTEP application.

eventManager is a pointer to the Event Manager created in the UCAPPLICATION
constructor.

• windowManager is a pointer to the Window Manager created in the UC­
APPLICATION constructor.

• searchPath is a pointer to a UI_PATH object containing the program startup directory
as supplied by argv[O], if the application is for DOS, OS/2 or Motif. searchPath will

16 Zinc Application Framework-Programmer's Reference Volume 1

also ensure that the current working directory is searched if access to files is required
from within the program. If the application is a Windows application, searchPath
does not maintain a pointer to the program startup directory but ensures that the
current working directory is searched.

myTimedEvent is the tag for the timed entry created in the Control() function in a
NEXTSTEP application. In NEXTSTEP applications, a timer is set up that calls a
function at frequent intervals. This provides the main event loop for the Zinc
program that allows the application to process events. myTimedEvent is the tag that
identifies the timer created.

• hlnstance is the instance handle of the application. This member is available only
in Windows applications.

• hPrevlnstance is the handle of another instance of the application, if one is running.
This member is available only in Windows applications.

• IpszCmdLine is a pointer to the string entered at the command line. This member is
available only in Windows applications.

• nCmdShow indicates how the application is to be displayed upon execution. This
member is available only in Windows applications.

argc is a count of the number of command-line arguments that were entered when
running the application. This member is available only in non-Windows applications.

argv is a pointer to an array of the command-line arguments that were entered when
running the application. This member is available only in non-Windows applications.

• _JextSwitches is a collection of strings that can be used as command-line arguments
to cause the application to come up in text mode. The VI_APPLICATION class uses
the strings maintained by _textSwitches to compare against any command-line
arguments in order to determine if the user wanted to run the application in text
mode. By default, the only text switch is "/text." This variable is used in DOS
mode only.

-$raphicSwitches is a collection of strings that can be used as command-line
arguments to cause the application to come up in a particular graphics mode. The
VCAPPLICATION class uses the strings maintained by -$raphicSwitches to compare
against any command-line arguments in order to determine if the user wanted to run
the application in a certain graphics mode. By default, the only graphics switch is

Chapter 1 - ULAPPLICA TION 17

"/svga." This variable is used in DOS mode with the UCGRAPHICS_DISPLAY
only.

UI_APPLICATION::UI_APPLICATION

Syntax

#include <ui_win.hpp>

UCAPPLICATION(HANDLE hlnstance, HANDLE hPrevlnstance, LPSTR lpszCmdLine,
int nCmdShow);
or

UCAPPLICATION(int argc, char **argv);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded advanced constructors create a new UCAPPLICATION class object.
The constructor initializes the display, eventManager, windowManager and searchPath
member variables. By default, eventManager will have a UID_KEYBOARD, a UID_­
MOUSE and a UID_CURSOR device attached to it.

These constructors should not be called by the programmer but are called from within the
UCAPPLICATION class' main() (or WinMain()) function, which is linked in
automatically when a reference to the UCAPPLICATION class is made.

The first constructor is specific to a Windows or Windows NT application. It takes the
following arguments:

• hlnstancein is the instance handle of the application. This parameter is automatically
passed in to the application as a WinMain() parameter.

18 Zinc Application Framework-Programmer's Reference Volume 1

• hPrev!nstancein is the handle of another instance of the application, if one is running.
This parameter is automatically passed in to the application as a WinMain()
parameter.

lpszCmdLinein is a pointer to the string entered at the command line. This parameter
is automatically passed in to the application as a WinMain() parameter.

• nCmdShowin indicates if the application's initial window should display in a
maximized state, a normal state or a minimized state upon execution of the
application. This parameter is automatically passed in to the application as a
WinMain() parameter.

The second constructor is specific to non-Windows applications. It takes the following
arguments:

• argcin is a count of the number of command-line arguments that were entered when
running the application. This parameter is passed in to the application as a main()
parameter.

argvin is a pointer to an array of the command-line arguments that were entered when
running the application. This parameter is passed in to the application as a main()
parameter.

Example

#include <ui_win.hpp>

II Referencing DI_APPLICATION causes a main() or
I I WinMain () to be linked in automatically. This main () creates an
II instance of DI_APPLICATION and calls DI_APPLICATION: :Main(),
II defined by the programmer.

II This main() is part of the DI_APPLICATION class.
int main(int argc, char **argv)
{

UI_APPLICATION *application = new UI_APPLICATION(argc, argv);

II Call the application program.
int ccode = application->Main();

II Restore the system.
delete application;

::eturn (ccode) ;

Chapter 1 - ULAPPLICATION 19

Syntax

#include <uLwin.hpp>

-UCAPPLICATION(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This destructor destroys the display, eventManager, windowManager and searchPath
members, if they exist. It is not recommended that the programmer modify these
members; if they are changed, however, it is important to set these members to NULL if
they are deleted prior to the destructor being called.

UI_APPLICATION::Control

Syntax

#include <ui_win.hpp>

EVENT_TYPE Control(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

20 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function acts as the main control loop used to get events from the Event Manager
and to dispatch them to the Window Manager. Use of this function is optional. If this
function is not used, the programmer must implement a loop that collects events from the
Event Manager and passes them to the Window Manager.

• returnValueou1 is the event type that caused the event loop to exit (i.e., L_EXIT or
S_NO_OBJECT).

Example

#include <ui_win.hpp>

II Referencing UI_APPLICATION causes a main() or
II WinMain() to be linked in automatically. This main() creates an
II instance of UI_APPLICATION and calls UI_APPLICATION::Main(),
II defined by the prograrruner.

int UI_APPLICATION::Main(void)
{

,II The UI_APPLICATION constructor automatically initializes the
,II display, eventManager, and windowManager variables.

,II Create a window with basic window objects.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ &(*new UIW_SYSTEM_BUTTON

+ new UIW_POP_UP_ITEM("-Restore", MNIF_RESTORE)
+ new UIW_POP_UP_ITEM ("-Move", MNIF_MOVE)
+ new UIW_POP_UP_ITEM("-Size", MNIF_SIZE))

+ new UIW_TITLE ("Window 1");
··windowManager + window;

,II Use Control() to get and dispatch events.
EVENT_TYPE ccode = Control();

,II DO NOT delete the display, eventManager, or windowManager.
,II They are deleted in the UI_APPLICATION destructor.

,II Return the exit code.
return (0);

UI_APPLICATION::LinkMain

Syntax

#include <ui_win.hpp>

void LinkMain(void);

Chapter 1 - ULAPPLICA nON 21

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function is a stub. Some linkers will not link in a module unless a function in that
module is called. Calling the LinkMain() function ensures that the module is linked in.

Example

#include <ui_win.hpp>

II Referencing UI_APPLICATION causes a main() or
II WinMain() to be linked in automatically. This main() creates an
II instance of UI_APPLICATION and calls UI_APPLICATION::Main(),
II defined by the programmer.

int UI_APPLICATION: :Main(void)
{

II The UI_APPLICATION constructor automatically initializes the
II display, eventManager, and windowManager variables.

LinkMain () ;

II Create a window with basic window objects.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ &(*new UIW_SYSTEM_BUTTON

+ new UIW_POP_UP_ITEM ("-Restore", MNIF_RESTORE)
+ new UIW_POP_UP_ITEM (" -Move", MNIF_MOVE)
+ new UIW_POP_UP_ITEM("-Size", MNIF_SIZE))

+ new UIW_TITLE ("Window 1");
*windowManager + window;

EVENT_TYPE ccode = Control();

II DO NOT delete the display, eventManager, or windowManager.
II They are deleted in the UI_APPLICATION destructor.

II Return the exit code.
return (0);

22 Zinc Application Framework-Programmer's Reference Volume 1

UI_APPLICATION::Main

Syntax

#include <ui_win.hpp>

int Main(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function is used to set up application-specific initialization and the main control loop.
It is defined by the programmer. The maine) (or WinMain()) function provided with
the UCAPPLICATION class calls this function after first creating an instance of UCAP­
PLICATION. It is possible to modify the display, eventManager, windowManager and
searchPath member variables from within the Main() function, but it is not
recommended. If these members are modified, it is important to consider the order in
which the members are modified, as some of these members maintain pointers to the other
members.

NOTE: The programmer must provide one, and only one, definition for this function if
maine) or WinMain() is not used. If no definition is provided, or if more than one
definition is provided, a linker error will occur.

• returnValueout is the program exit code.

Example

II Referencing VI_APPLICATION causes a main() or
II Wi~Main() to be linked in automatically. This main() creates an
II instance of VI_APPLICATION and calls VI_APPLICATION: :Main(),
II de5ned by the programmer.

int UI_APPLICATION::Main(void)
{

II The VI_APPLICATION constructor automatically initializes the
II display, eventManager, and windowManager variables.

Chapter 1 - UCAPPLICA TION 23

24

II Create a window with basic window objects.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ &(*new UIW_SYSTEM_BUTTON

+ new UIW_POP_UP_ITEM("-Restore", MNIF_RESTORE)
+ new UIW_POP_UP_ITEM("-Move", MNIF_MOVE)
+ new UIW_POP_UP_ITEM("-Size", MNIF_SIZE))

+ new UIW_TITLE ("Window 1");
*windowManager + window;

EVENT_TYPE ccode = Control();

II DO NOT delete the display, eventManager, or windowManager.
II They are deleted in the UI_APPLICATION destructor.

II Return the exit code.
return (0);

Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 2 - UI_ATTACHMENT

The UCATTACHMENT class object is used for geometry management. Specifically, this
class allows a managed object to be tied to an edge of its parent or to an edge of a sibling
object. The UI_ATTACHMENT is added to the parent object's geometry manager. See
"Chapter l4-UCGEOMETRY_MANAGER" for more details on using the geometry
manager.

The UI_ATTACHMENT class is declared in UI_WIN.HPP. Its public and protected
members are:

class UI_ATTACHMENT : public UI_CONSTRAINT
1
public:

UI_ATTACHMENT(UI_WINDOW_OBJECT *_object,
ATCF_FLAGS _atcFlags = ATCF_NO_FLAGS, int _offset = 0);

UI_ATTACHMENT(UI_WINDOW_OBJECT *_object, UI_WINDOW_OBJECT *_reference,
ATCF_FLAGS _atcFlags, int _offset = 0);

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

virtual void Modify(void);

h f defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL NULLP(ZIL STORAGE OBJECT READ ONLY),
UI_ITEM-*objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UI_ATTACHMENT(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP{UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Jlendif
Jlif defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
UI_WINDOW_OBJECT *reference;
ZIL_NUMBERID refNumberID;
ATCF_FLAGS atcFlags;
int offset;

};

General Members

This section describes those members that are used for general purposes.

Chapter 2 - ULATTACHMENT 25

• reference is the sibling object to which the managed object is tied.

• refNumberID is the numberID of the reference object to which the attachment is tied.

• atcFlags are flags that define the operation of the UCATTACHMENT class. A full
description of the attachment flags is given in the UCATTACHMENT constructor.

• offset is how far the managed object should be positioned from the object to which
it is tied. This value is specified in cell dimensions.

UI_ATTACHMENT::UI_ATTACHMENT

Syntax

#include <ui_win.hpp>

UCATTACHMENT(UCWINDOW_OBJECT *_object,
ATCF_FLAGS _atcFlags =ATCF_NO_FLAGS, int _offset =0);
or

UCATTACHMENT(UCWINDOW_OBJECT *_object,
UCWINDOW_OBJECT *_reference, ATCF_FLAGS _atcFlags, int _offset = 0);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded constructors create a new UCATTACHMENT class object.

The first overloaded constructor creates a new UCATTACHMENT object that ties the
managed object to its parent.

• _objectin is the object to be managed.

26 Zinc Application Framework-Programmer's Reference Volume 1

• _atcFlagsin are flags that define the operation of the UCATTACHMENT class. The
following flags (declared in UI_WIN.HPP) control the general operation of a UC­
ATTACHMENT class object:

ATCF_BOTTOM-Maintains the bottom edge of the managed object at the
specified distance from the object to which it is tied.

ATCF_LEFT-Maintains the left edge of the managed object at the specified
distance from the object to which it is tied.

ATCF_OPPOSITE-Causes the managed object to be tied to the opposite edge
of the object to which it is tied. For example, if the ATCF_TOP flag is set, the
top edge of the managed object will be tied to the bottom edge of the object to
which it is tied.

ATCF_NO_FLAGS-Does not associate any special flags with the UCAT­
TACHMENT class. This flag should not be used in conjunction with any other
ATCF flags.

ATCF_RIGHT-Maintains the right edge of the managed object at the specified
distance from the object to which it is tied.

ATCF_STRETCH-Causes the managed object to be stretched, if necessary,
to maintain its attachments. For example, if the left and right edges of the object
are tied to the parent window and the window is sized, the managed object must
stretch or shrink to maintain its distance from the edges.

ATCF_TOP-Maintains the top edge of the managed object at the specified
distance from the object to which it is tied.

• _pffsetin is how far the managed object should be positioned from the object to which
it is tied. This value is specified in cell dimensions.

The second overloaded constructor creates a new UCATTACHMENT object that ties the
managed object to a sibling object.

_objectin is the object to be managed.

_Ieferencein is the sibling object to which the object should be tied.

__atcFlagsin are flags that define the operation of the UCATTACHMENT class. For
more details, see the description of _atcFlags with the first constructor.

Chapter 2 - ULATTACHMENT 27

• _offsetin is how far the managed object should be positioned from the object to which
it is tied. This value is specified in cell dimensions.

Syntax

#include <uLwin.hpp>

virtual "UI_ATTACHMENT(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the UCATTACH­
MENT object.

UI_ATTACHMENT::lnformation

Syntax

#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2

• NEXTSTEP

28 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function allows Zinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueou1 is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the attachment
object:

1_CLEAR_FLAGS-Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type ATCF_FLAGS that
contains the flags to be cleared. This request only clears those flags that are
passed in; it does not simply clear the entire field.

I_GET_FLAGS-Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type ATCF_FLAGS.

I_GET_OFFSET-Returns the offset associated with the attachment. If this
message is sent, data must be a pointer to a variable of type int where the
attachment's offset will be copied.

I_GET_REFERENCE_OBJECT-Returns the reference object associated with
the attachment. If this message is sent, data should be a doubly indirected
pointer to UI_WINDOW_OBJECT. data will be set to point to reference. If
data is NULL, a pointer to reference is returned.

I_SET_FLAGS-Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type ATCF_FLAGS that contains
the flags to be set. This request only sets those flags that are passed in; it does
not clear any flags that are already set.

I_SET_OFFSET-Sets the offset associated with the attachment. If this
message is sent, data must be a pointer to a variable of type int that contains the
attachment's new offset.

I_SET_REFERENCE_OBJECT-Sets the reference object associated with the
attachment. If this message is sent, data must be a pointer to the sibling object
that the managed object should be tied to.

Chapter 2 - ULATTACHMENT 29

All other requests are passed to UI_CONSTRAINT: :Information() for processing.

• datainJoUI is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• object/Din is not used.

UI_ATTACHMENT::Modify

Syntax

#include <uLwin.hpp>

virtual void Modify(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

.OS/2
• NEXTSTEP

This virtual function updates the managed object's posItIOn and, if necessary, size
according to the constraints specified for the attachment. The geometry manager calls
each constraint's Modify() function whenever the parent object's position is changed.

Storage Members

This section describes those class members that are used for storage purposes.

30 Zinc Application Framework-Programmer's Reference Volume 1

UI_ATTACHMENT::UI_ATTACHMENT

Syntax

#include <uLwin.hpp>

UCATTACHMENT(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UCITEM),
UCITEM *userTable = ZIL_NULLP(UCITEM));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced constructor creates a new UCATTACHMENT by loading the object from
a data file. Typically, the programmer does not need to use this constructor. If a
constraint is stored in a data file it is usually stored as part of a geometry manager and
will be loaded when the geometry manager is loaded.

• namein is the name of the object to be loaded.

• jilein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the

Chapter 2 - UCATTACHMENT 31

object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTable jn is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI_ATTACHMENT::Load

Syntax

#include <uLwin.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UCITEM *objectTable,
UCITEM *userTable);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

32

This advanced function is used to load a UCATTACHMENT from a persistent object
data file. It is called by the persistent constructor and is typically not used by the
programmer.

namein is the name of the object to be loaded.

file jn is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

Zinc Application Framework-Programmer's Reference Volume 1

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object infonnation will be loaded. This must be allocated by the
programmer. For more infonnation on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI_ATTACHMENT::New

Syntax

#include <ui_win.hpp>

static UCWINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *.file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UCITEM *objectTable = ZIL_NULLP(UCITEM),
UCITEM *userTable = ZIL_NULLP(UCITEM));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 2 - ULATTACHMENT 33

Remarks

This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UI_WINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI_ATTACHMENT::NewFunction

Syntax

#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

34 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function returns a pointer to the object's New() function.

returnValueout is a pointer to the object's New() function.

UI_ATTACHMENT::Store

Syntax

#inc1ude <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UCITEM *objectTable,
UCITEM *userTable);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to write an object to a data file.

namein is the name of the object to be stored.

• file in is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66-ZIL_STORAGE."

Chapter 2 - ULATTACHMENT 35

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68-ZIL_STORAGE_­
OBJECT."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

36 Zinc Application Framework-Programmer's Reference Volume 1

The UCBGCDISPLAY class implements a graphics display that uses the Borland BGI
graphics library package to draw to the screen. Since the UI_BGCDISPLAY class is
derived from UCDISPLAY, only details specific to the UI_BGCDISPLAY class are
given in this chapter. For descriptions and examples regarding virtual or inherited display
members, see "Chapter 7-UI_DISPLAY."

The UI_BGCDISPLAY class is declared in UI_DSP.HPP. Its public and protected
members are:

class ZIL EXPORT CLASS UI BGI DISPLAY
public UI_REGION_LIST

{
public:

struct BGIFONT
{

int fonti
int charSizei
int multX, divXi
int multY, divYi
int maxWidth, maxHeighti

}i
typedef char BGIPATTERN[8Ji

public UI_DISPLAY,

static UI_PATH *searchPathi
static BGIFONT fontTable[ZIL_MAXFONTSJi
static BGIPATTERN patternTable[ZIL_MAXPATTERNSJi

UI BGI DISPLAY(int driver = 0, int mode = 0);
vi~tual -UI_BGI_DISPLAY(void)i
virtual void Bitmap(ZIL_SCREENID screenID, int column, int line,

int bitmapWidth, int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette = ZIL_NULLP(UI_PALETTE),
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_BITMAP_HANDLE *colorBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE),
ZIL_BITMAP_HANDLE *monoBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE)) i

virtual void BitmapArrayToHandle(ZIL_SCREENID screenID, int bitmapWidth,
int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette, ZIL_BITMAP_HANDLE *colorBitmap,
ZIL_BITMAP_HANDLE *monoBitmap)i

virtual void BitmapHandleToArray(ZIL_SCREENID screenID,
ZIL_BITMAP_HANDLE colorBitmap, ZIL_BITMAP_HANDLE monoBitmap,
int *bitmapWidth, int *bitmapHeight, ZIL_UINT8 **bitmapArray) i

virtual void Ellipse(ZIL_SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION)) i

virtual void IconArrayToHandle(ZIL_SCREENID screenID, int iconWidth,
int iconHeight, const ZIL_UINT8 *iconArray,
const UI_PALETTE *palette, ZIL_ICON_HANDLE *icon) i

virtual void IconHandleToArray(ZIL_SCREENID screenID,
ZIL_ICON_HANDLE icon, int *iconwidth, int *iconHeight,
ZIL_UINT8 **iconArray) i

virtual void Line (ZIL_SCREENID screenID, int columnl, int linel,
int column2, int line2, const UI_PALETTE *palette, int width = 1,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION)) i

virtual ZIL_COLOR MapColor(const UI_PALETTE *palette, int isForeground);
virtual void Polygon(ZIL_SCREENID screenID, int numPoints,

Chapter 3 - ULBGLOISPLA Y 37

const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void Rectangle(ZIL_SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RectangleXORDiff(const UI_REGION &oldRegion,
const UI_REGION &newRegion, ZIL_SCREENID screenID = ID_SCREEN,
consy UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RegionDefine(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual void RegionMove(const UI_REGION &oldRegion, int newColumn,
int newLine, ZIL_SCREENID oldScreenID = ID_SCREEN,
ZIL_SCREENID newScreenID = ID_SCREEN);

virtual void Text (ZIL_SCREENID screenID, int left, int top,
const ZIL_ICHAR *text, const UI_PALETTE *palette, int length -1,
int fill = TRUE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextHeight(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL LOGICAL FONT font = FNT DIALOG FONT);

virtual-int TextWidth(const ZIL=ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL LOGICAL FONT font = FNT DIALOG FONT);

virtual-int VirtualGet(ZIL_SCREENID sc~eenID, int left, int top,
int right, int bottom);

virtual int virtualPut(ZIL_SCREENID screenID);

protected:
int maxColors;
signed char _virtualCount;
UI_REGION _virtualRegion;
char _stopDevice;

void SetFont(ZIL_LOGICAL_FONT logicalFont);
void SetPattern(const DI_PALETTE *palette, int _xor);

};

General Members

This section describes those members that are used for general purposes.

• BGIFONT is a structure that contains the following font information:

font contains the value of the font. FNT_SMALL_FONT (font is 0), FNT_­
DIALOG_FONT (font is 1) and FNT_SYSTEM_FONT (font is 2) are pre­
defined by Zinc.

charSize can be used to magnify the size of a character. For more information
see settextstyle() in the Borland C++ Library Reference.

multX, divX, multYand divY provide additional ways to scale the font. For more
information see setusercharsize() in the Borland C++ Library Reference.

38 Zinc Application Framework-Programmer's Reference Volume 1

maxHeight is the height of the tallest character.

maxWidth is the width of the widest character.

• BGIPA1TERN is an array of 8 bytes that make up the 8x8 bitmap pattern. Each byte
(8 bits) corresponds to 8 pixels in the pattern. The patterns defined by Zinc are:
PTN_SOLID_FILL, PTN_INTERLEAVE_FILL and PTN_BACKGROUND_FILL.
For more information see setfillpattern() in the Borland C++ Library Reference.

• searchPath contains the path to be searched for the BGI drivers or CHR font files.
The BGI graphics library must have access to the BGI drivers in order to initialize
graphics mode. Unless the BGI drivers are linked in, they must be accessible at run­
time. Similarly, an application may rely on CHR font definition files. These files
provide font information and, if used, must be accessible at run-time. The default
fonts used by Zinc are linked into the application and thus do not require CHR files.
Setting searchPath to include a path node for the BGI or CHR files will allow the
application to run properly in graphics mode.

• fontTable is an array of BGIFONT. The default array contains space for 10
BGIFONT entries. The following entries are pre-defined by Zinc:

FNT_SMALL_FONT-A font used to display an icon's text string.

FNT_DIALOG_FONT-A font used when text is displayed on window objects
(e.g., UIW_BUTTON, UIW_STRING, UIW_TEXT, etc.).

FNT_SYSTEM_FONT-A sans-serif style font used to display a window's title.

NOTE: When these three fonts are used, no CHR files are needed since they are
linked into Zinc Application Framework. However, if other "stroked" fonts are
added to this table, the proper CHR files must either be in the current path or be
linked into the application.

The remaining entries in fontTable are initially set to Borland's DEFAULT_FONT,
a fixed-width, 8x8, bitmapped font.

See the description of the UI_WINDOW_OBJECT: .font member variable in "Chapter
43-UCWINDOW_OBJECT" for information on specifying which font an object
uses.

• patternTable is an array of BGIPA1TERN. The default array contains space for 15
BGIPA1TERN entries. The following entries are pre-defined by Zinc:

Chapter 3 - ULBGLDISPLA Y 39

PTN_SOLID_FILL-A solid fill pattern.

PTN_INTERLEAVE_FILL-An interleaving line fill pattern.

PTN_BACKGROUND_FILL-The background fill pattern.

• maxColors is the maximum number of colors supported by the graphics mode that
was initialized. For example, an EGA display might support sixteen colors. This
member will be filled in according to information obtained from the BGI graphics
library after it has initialized. The BGI graphics library has limited support for
SVGA modes, including 256 color mode. Zinc will support whatever mode is
initialized by the BGI graphics library.

• _virtualCount is a count of the number of virtual screen operations that have taken
place. For example, when the VirtualGet() function is called, _virtualCount is
decremented. Additionally, when the VirtualPut() function is called, _virtualCount
is incremented.

• _virtualRegion is the region affected by either VirtualGet() or VirtualPut().

• _stopDevice is a variable used to prevent recursive updates of device images on the
display. If _stopDevice is TRUE, no drawing will be done to the screen. Otherwise,
drawing will be made directly to the screen display.

Syntax

#include <ui_dsp.hpp>

UCBGCDISPLAY(int driver =0, int mode =0);

Portability

This function is available on the following environments:

D DOS Text
D Macintosh

• DOS Graphics
D OSFlMotif

D Windows
D Curses

D OS/2
D NEXTSTEP

40 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This constructor creates a new UI_BGCDISPLAY object. When a new UCBGC­
DISPLAY class is constructed, the system finds the associated BGI device driver and sets
the screen display to the background color and pattern specified by the inherited variable
backgroundPalette.

• driverin and modein are arguments passed to the Borland initgraph() function. The
argument driver specifies the graphics driver to be used. (The value 0 indicates an
auto-detection.) The argument mode specifies the initial graphics mode (used only
if driver is not auto-detect). For more information on these arguments see
initgraph() in the Borland C++ Library Reference manual.

Example 1

#include <ui_win.hpp>

main()
{

II Initialize Zinc Application Framework.
UI_DISPLAY *display = new UI_BGI_DISPLAY;

UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

UI_WINDOW_MANAGER *windowManager
new UI_WINDOW_MANAGER(display, eventManager);

II Restore the system.
delete windowManageri
delete eventManager;
delete display;
return (0);

Example 2

This example shows how a different font can be installed into the fontTable so that it may
be used by the system.

#include <ui_win.hpp>

main ()
{

II Initialize Zinc Application Framework.
UI_DISPLAY *display = new UI_BGI_DISPLAYi
if (display->installed)

Chapter 3 - ULBGLDISPLA Y 41

II Set up a BGIFONT structure with the Borland default font.
UI_BGI_DISPLAY::BGIFONT BGIFont = { DEFAULT_FONT, 1, 1, 1, 1, 1, 8, 8 };
UI_BGI_DISPLAY::fontTable[S] = BGIFont;

UI_EVENT_MANAGER *eventManager new UI_EVENT_MANAGER(display);
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

UI_WINDOW_MANAGER *windowManager
new UI_WINDOW_MANAGER(display, eventManager);

II Restore the system.
delete windowManager;
delete eventManager;
delete display;
return (0);

Syntax

#include <uLdsp.hpp>

-UCBGCDISPLAY(void);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

• DOS Graphics
o OSF/Motif

o Windows
o Curses

o OS/2
o NEXTSTEP

42

This virtual destructor destroys the class information associated with the
UCBGCDISPLAY class. Care should be taken to only destroy a UCBGCDISPLAY
class that is not attached to another associated object.

Zinc Application Framework-Programmer's Reference Volume 1

Syntax

#include <ui_dsp.hpp>

void SetFont(ZIL_LOGICAL_FONT logicalFont);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

• DOS Graphics
o OSFlMotif

o Windows
o Curses

DOSI2
o NEXTSTEP

This function is used to set the font information used by the BGI graphics library. The
information contained in the logicalFont entry of the fontTable array is used to set the
font.

logicalFontin is the font to be used. logicalFont is an entry into the fontTable array.

UI_BGI_DISPLAY::SetPattern

Syntax

#include <ui_dsp.hpp>

void SetPattern(const UCPALETTE *palette, int _xor);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

• DOS Graphics
o OSFlMotif

o Windows
o Curses

o OS/2
o NEXTSTEP

Chapter 3 - ULBGLOISPLA Y 43

Remarks

This function is used to set the pattern information used by the BGI graphics library. The
information contained in palette is used to set the pattern.

• palettein contains the pattern style, foreground color, and background color to be used
when setting the pattern.

• _xorin indicates if the pattern should be drawn with the xor attribute on. If _xor is
TRUE, the pattern will be an xor pattern. Otherwise, the pattern will not be xor.

44 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 4 - UI_CONSTRAINT

The UI_CONSTRAINT class is the base class for all geometry management constraint
classes used in Zinc. A constraint defines where an object can be positioned or how it
can be sized in relation to its parent or sibling objects. Constraints are added to a
geometry manager. The UCCONSTRAINT class is an abstract class that defines the
functionality that must exist in each derived constraint class. Only derived constraint
classes, such as UCATTACHMENT, UCDIMENSION_CONSTRAINT and UCREL­
ATIVE_CONSTRAINT, can be created.

The UCCONSTRAINT class is declared in UI_WIN.HPP. Its public and protected
members are:

class UI_CONSTRAINT : public UI_ELEMENT
{
public:

UI_CONSTRAINT(UI_WINDOW_OBJECT *_object);
virtual -UI_CONSTRAINT(void);

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

virtual void Modify (void) = 0;
UI_GEOMETRY_MANAGER *Manager(UI_GEOMETRY_MANAGER *_manager =

ZIL_NULLP(UI_GEOMETRY_MANAGER)) ;
ZIL_OBJECTID SearchID(void);

II List members.
UI CONSTRAINT *Next(void);
UI=CONSTRAINT *Previous(void);

#if defined (ZIL_LOAD)
static UI_CONSTRAINT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY) ,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UI_CONSTRAINT(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
UI_WINDOW_OBJECT *object;
ZIL_NUMBERID numberID;
ZIL_OBJECTID searchID;
UI_GEOMETRY_MANAGER *manager;

};

Chapter 4 - ULCONSTRAINT 45

General Members

This section describes those members that are used for general purposes.

object is the object being managed by the constraint.

• numberID is the numberID that identifies this constraint uniquely in the geometry
manager's list.

• searchID is an objectID that identifies what type of constraint this is.

• manager is a pointer to the geometry manager with which this constraint is
associated.

UI_CONSTRAINT::UI_CONSTRAINT

Syntax

#include <ui_win.hpp>

UCCONSTRAINT(UCWINDOW_OBJECT *_object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UCCONSTRAINT object.

• _objectin is the object to be managed by the constraint.

46 Zinc Application Framework-Programmer's Reference Volume 1

UI_CONSTRAINT::-UI_CONSTRAINT

Syntax

#include <uLwin.hpp>

virtual -UCCONSTRAINT(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2

• NEXTSTEP

This virtual destructor destroys the class information associated with the UCCON­
STRAINT object.

UI_CONSTRAINT::lnformation

Syntax

#include <uLwin.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectlD = ID_DEFAULT);

PortabiIity

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function allows Zinc Application Framework objects and programmer functions to

Chapter 4 - ULCONSTRAINT 47

get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information. associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the constraint object:

I_GET_NUMBERID-Returns the numberID of this constraint. If this request
is sent, data should be a pointer to ZIL_NUMBERID.

I_GET_OBJECT-Returns the object associated with the constraint. If this
message is sent, data should be a doubly indirected pointer to UCWINDOW_­
OBJECT. data will be set to point to object. If data is NULL, a pointer to
object is returned.

I_SET_NUMBERID-Sets the numberID of this constraint. If this request is
sent, data should be a pointer to ZIL_NUMBERID.

I_SET_OBJECT-Sets the object associated with the constraint. If this
message is sent, data must be a pointer to the object to be managed.

• datainlout is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• object/Din is not used.

UI_CONSTRAINT::Manager

Syntax

#include <ui_win.hpp>

UCGEOMETRY_MANAGER *Manager(UCGEOMETRY_MANAGER *_manager =
ZIL_NULLP(UCGEOMETRY_MANAGER»;

48 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function is used to either set the manager member or get a pointer to it.

• returnValueout is a pointer to manager, the geometry manager with which this
constraint is associated.

• _managerin is a pointer to the geometry manager with which this constraint is
associated. If _manager is NULL, the manager member will not be modified, but
a pointer to manager will be returned.

UI_CONSTRAINT::Modify

Syntax

#include <uLwin.hpp>

virtual void Modify(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function updates the managed object's posItIOn and, if necessary, size
according to the constraints specified. The geometry manager calls each constraint's
Modify() function whenever the parent object's position is changed.

Chapter 4 - ULCONSTRAINT 49

UI_CONSTRAINT::Next

Syntax

#include <ui_win.hpp>

UCCONSTRAINT *Next(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the next constraint, if one exists, in the list of
constraints.

• returnValueout is a pointer to the next constraint in the list. If there is not a next
constraint, returnValue is NULL.

UI_CONSTRAINT::Previous

Syntax

#include <ui_win.hpp>

UI_CONSTRAINT *Previous(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

.OS/2

• NEXTSTEP

50 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function returns a pointer to the previous constraint, if one exists, in the list of
constraints.

• returnValueout is a pointer to the previous constraint in the list. If there is not a
previous constraint, returnValue is NULL.

UI_CONSTRAINT::SearchID

Syntax

#include <ui_win.hpp>

ZIL_OBJECTID SearchID(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the constraint's search/D.

Storage Members

This section describes those class members that are used for storage purposes.

Chapter 4 - ULCONSTRAINT 51

UI_CONSTRAINT::UI_CONSTRAINT

Syntax

#include <ui_win.hpp>

UCCONSTRAINT(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UCITEM *userTable = ZIL_NULLP(UCITEM));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced constructor creates a new UCCONSTRAINT by loading the object from
a data file. Typically, the programmer does not need to use this constructor. If a
constraint is stored in a data file it is usually stored as part of a geometry manager and
will be loaded when the geometry manager is loaded.

• namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the

52 Zinc Application Framework-Programmer's Reference Volume 1

object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI_CONSTRAINT::Load

Syntax

#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UCITEM *userTable);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to load a UCCONSTRAINT from a persistent object data
file. It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
7D-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the

Chapter 4 - ULCONSTRAINT 53

programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UI_WIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI_CONSTRAINT::New

Syntax

#include <ui_win.hpp>

static UCWINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UCITEM *objectTable = ZIL_NULLP(UCITEM),
UCITEM *userTable = ZIL_NULLP(UCITEM));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

54 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI_CONSTRAINT::NewFunction

Syntax

#include <uLwin.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Chapter 4 - ULCONSTRAINT 55

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

U1_CONSTRAINT::Store

Syntax

#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UCITEM *objectTable,
UCITEM *userTable);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• file in is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66-ZIL_STORAGE."

56 Zinc Application Framework-Programmer's Reference Volume 1

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68-ZIL_STORAGE_­
OBJECT."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

Chapter 4 - ULCONSTRAINT 57

58 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 5 - UI DEVICE

The UCDEVICE class is an abstract class that defines basic information associated with
input devices (e.g., keyboard, mouse). Since the UCDEVICE class is abstract, it cannot
be used as a constructed class. Rather, derived classes, such as UID_KEYBOARD,
UID_CURSOR, or UID_MOUSE must be used. The figure below shows the device
object hierarchy:

IDEVICE OBJECT HIERARCHYI

(other programmer
defined device
objects)

Classes derived from the UCDEVICE base class include:

UID_CURSOR-A blinking cursor shown on the screen. In text mode, this device
is implemented as the hardware cursor. In graphics mode, this device paints a
blinking cursor on the screen.

UID_KEYBOARD-A polled keyboard interface that retrieves keyboard information
from the end-user.

UID_MOUSE-A polled mouse device that receives mouse information from the
end-user.

UID_TIMER-A timer device that generates timer messages when a period of time
specified by the programmer has expired.

Chapter 5 - ULOEVICE 59

Other programmer defined device objects-Any other programmer defined device
that conforms to the operating protocol defined by the VCDEVICE base class.

Input devices are attached to the Event Manager at run-time by the programmer. Once
a device is attached, it feeds input information to the event queue when polled by the
Event Manager, or it feeds directly to the event queue if it is an interrupt device.

The VI_DEVICE class is declared in UI_EVT.HPP. Its public and protected members
are:

enum ALT_STATE
{

ALT_NOT_PRESSED,
ALT_PRESSED_NO_EVENTS,
ALT_PRESSED_EVENTS

};

class ZIL_EXPORT_CLASS UI_DEVICE public UI_ELEMENT
{
public:

static ALT_STATE altState;
static UI_DISPLAY *display;
static UI_EVENT_MANAGER *eventManager;

int installed;
ZIL_DEVICE_TYPE type;
ZIL_DEVICE_STATE state;

virtual -UI_DEVICE(void);
virtual EVENT_TYPE Event (const UI_EVENT &event) 0;

II List members.
UI_DEVICE *Next(void);
UI_DEVICE *Previous(void);

protected:
UI_DEVICE(ZIL_DEVICE_TYPE type, ZIL_DEVICE_STATE state);
static int CompareDevices(void *devicel, void *device2);
virtual void Poll (void) = 0;

};

General Members

This section describes those members that are used for general purposes.

ALT_STATE contains values that are used to indicate the status of the <ALT> key
when an event occurs. The following values are used:

ALT_NOT_PRESSED-The <ALT> key has not been pressed.

ALT_PRESSED_NO_EVENTS-The <ALT> key has been pressed, but no
other input information has been received since the key was pressed.

60 Zinc Application Framework-Programmer's Reference Volume 1

ALT_PRESSED_EVENTS-The <ALT> key continues to be pressed while
another event has been received.

• altState is a static variable that indicates whether the keyboard <ALT> key is being
pressed. It is used by the keyboard and mouse to detect the selection of <ALT> keys
or else to send an <ALT> message if the <ALT> key is pressed and then released
with no other keyboard or mouse event information.

• display is a pointer to a constructed display class. This variable is automatically set
when the derived device is added to the Event Manager.

• eventManager is a pointer to a constructed Event Manager class. This variable is
automatically set when the derived device is added to the Event Manager.

• installed indicates whether the input device was able to initialize itself. If installation
is successful, installed is TRUE. If installation is not successful-for instance, if the
mouse input device cannot find a mouse driver-installed is FALSE.

• type is the type of device that has been created. For example, the keyboard generates
a type of E_KEY, the mouse generates a type of E_MOUSE and the cursor generates
a type of E_CURSOR. Every device created either has a unique type or else it must
have the generic device type E_DEVICE. The Event Manager uses the type infor­
mation to route messages it receives to the proper device. The Event Manager
receives device events via its Event() member function.

state describes the current state of the device. For example, the device may be on
or off. The state can be any of several D_ codes, defined in UI_EVT.HPP. These
codes are: D_OFF, D_ON, and D_HIDE. For example, if a keyboard device is in
the D_OFF state, it will not generate any events. If a mouse is in the D_HIDE state,
it will still be active, but it will not be visible on the screen.

Syntax

#include <uLevt.hpp>

Chapter 5 - ULOEVICE 61

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

62

This advanced constructor initializes the information associated with all devices derived
from the UCDEVICE base class. The UCDEVICE constructor is protected since
UCDEVICE is an abstract class (i.e., only derived instances of UCDEVICE can be
made.)

• typein specifies the type of derived device that is to be initialized. The contents of
this argument are copied into the protected type member variable. Zinc Application
Framework reserves the values 0 though 99 for raw input devices. The following
devices are defined within Zinc Application Framework:

E_CURSOR(50)-Identification for the UID_CURSOR class.

E_DEVICE(99)-Identification used to define a generic device.

E_KEY(IO)-Identification for the UID_KEYBOARD class.

E_MACINTOSH(4)-Identification for Macintosh events.

E_MOTIF(3)-Identification for Motif events.

E_MOUSE(30)-Identification for the UID_MOUSE class.

E_MSWINDOWS(I)-Identification for MS Windows events.

E_NEXTSTEP(11)-Identification for NEXTSTEP events.

E_OS2(2)-Identification for OS/2 events.

The type value associated with each device is significant, because the Event Manager
polls devices in ascending order. Each derived device class must either use the
E_DEVICE type or have a type that is unique and is within the 0-99 value
restrictions. The following additional raw device identifications are reserved by Zinc

Zinc Application Framework-Programmer's Reference Volume 1

Application Framework for future use: 12-19, 31-39, 51-59, 70-79 and 90-98. The
remaining values 5-9, 20-29, 40-49, 60-69 and 80-89 can be used by the programmer.

• initialStatein specifies the initial state of the derived device. The information
contained in this argument depends on the type of device created but should either
be D_OFF or D_ON.

Example

#include <ui_evt.hpp>

UID_CURSOR: :UID_CURSOR(ZIL_DEVICE_STATE initialState)
UI_DEVICE(E_CURSOR, initialState)

Syntax

#include <ui_evt.hpp>

virtual -VCDEVICE(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the VI_DEVICE
object. It is called when a derived device class is destroyed.

Chapter 5 - ULOEVICE 63

UI_DEVICE::CompareDevices

Syntax

#include <ui_evt.hpp>

static int CompareDevices(void *devicel, void *device2);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to compare two devices according to their types.

• returnValueout is 0 if the two devices have the same type. returnValue is positive if
devicel has a greater device type than device2. returnValue is negative if devicel has
a lower device type than device2.

• devicel in is a pointer to a UCDEVICE object.

• device2in is a pointer to a UCDEVICE object.

Example

#include <ui_evt.hpp>

UI_EVENT_MANAGER::UI_EVENT_MANAGER(UI_DISPLAY *_display, int _noOfElements)
UI_LIST(UI_DEVICE::CompareDevices), queueBlock(_noOfElements) , level(l)

display = _display;
UI_DEVICE::display = display;
UI_DEVICE::eventManager = this;

64 Zinc Application Framework-Programmer's Reference Volume 1

UI_DEVICE::Event

Syntax

#include <uLevt.hpp>

virtual EVENT_TYPE Event(const UCEVENT &event) = 0;

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFfMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is a pure virtual function, so it has no declaration. This means
that every class which is derived from UCDEVICE must have an Event() function.

The Event() function is used to communicate run-time state information to a particular
device. For example, the UID_KEYBOARD::Event() function can receive event infor­
mation to tum on or off keyboard input. The type of information required by the
Event() function depends on the type of device that is to receive the message.

The event. type value contains the state information to be passed to the device. For
example, if a programmer wanted to send the D_OFF message to all timer devices in the
Event Manager, the following code could be used:

event.type = D_OFF;
event.region.left = 0; II Define the whole screen.
event.region.top = 0;
event.region.right = display->columns - 1;
event.region.bottom = display->lines - 1;
eventManager->Event(event, E_TIMER);

The following general messages can be sent to a device:

D_HIDE-Hides the device while the application paints information to the screen.
This advanced message prevents the device from leaving blank areas on the screen
when low-level screen painting operations are performed. In general, a programmer
should not use this message. Window objects and display classes automatically hide
the input devices when they paint information to the screen. If the D_HIDE message
is used, the event. region information must contain the region that will be re-painted.

Chapter 5 - ULDEVICE 65

66

This allows the affected device to only tum itself off when the affected region
overlaps the device's screen position. This message must be used in conjunction with
the D_ON message (described below) and should be used in the following order:

II Hide all devices before painting information to the screen.
UI_EVENT event;
event. type = D_HIDE;
event.region.left = 0; II Define the whole screen.
event.region.top = 0;
event.region.right = display->columns - 1;
event.region.bottom = display->lines - 1;
eventManager->Event(event, E_DEVICE);
II Paint information directly to the screen.

II Show all devices that may have been shut off.
event.type = D_ON; II event.region was defined previously
eventManager->Event(event, E_DEVICE);

D_OFF-Turns the device off.

D_ON-Turns the device on.

S_DEINITIALIZE-Serves as a warning that the device is being subtracted from
the Event Manager. This allows the device to halt further execution and/or prepare
to be deleted.

S_INITIALIZE-Initializes internal information associated with the device. This
message can be used when the device cannot initialize all its information at the time
that the class constructor is called.

S_POSITION-Changes the screen position of the device. If this message is sent,
event.position.column and event.position.line must contain the run-time display
position of the device on the screen. The values of event.position.column and
event.position.line depend on the type of display mode in which the application is
running. For example, if a UID_CURSOR object is to be positioned at the center of
the screen while the application is running in text mode (e.g., an 80 column by 25
line screen) the position values should be:

event.position.column = 40;
event.position.line = 13;

If, on the other hand, the application is running in a 640 column by 480 line graphics
mode, the position values should be:

event.position.column = 320;
event.position.line = 240;

Zinc Application Framework-Programmer's Reference Volume 1

If the device is in a D_OFF state, the position change should be reflected when the
device is turned back on.

In addition to the messages described above, each device may be sent private messages
defined by the programmer. Zinc Application Framework reserves message numbers
OxOOOO through OxOOFF. (Programmers may use any unsigned values greater than
OxOOFF.)

NOTE: The chapters for the UID_CURSOR, UID_KEYBOARD and UID_MOUSE
classes contain more information about some messages specific to those classes.

Example

#include <ui_evt.hpp>

main()
{

II Attach the keyboard to the event manager.
UI_TEXT_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER eventManager(display);
eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

II Turn all the devices off.
UI_EVENT event;
event.type = D_OFF;
for (UI_DEVICE *device = eventManager.First(); device;

device = device->Next())
device->Event(event);

UI_DEVICE::Next

Syntax

#include <ui_win.hpp>

UCDEVICE *Next(void);

Chapter 5 - ULOEVICE 67

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the next device, if one exists, in the list of devices.

Example

UI_DISPLAY *display = new UI_TEXT_DISPLAYi
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(displaY)i
*eventManager

+ new UID_KEYBOARD
+ new DID_MOUSE
+ new DID_CURSORi

for (UI_DEVICE *device = eventManager->First()i devicei
device = device->Next(»)i

UI_DEVICE::Poll

Syntax

#include <ui_evt.hpp>

virtual void Poll(void) = 0;

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2

• NEXTSTEP

68 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This advanced function is a pure virtual function, so it has no declaration. This means
that every class which is derived from VI_DEVICE must have a Poll function.

The Poll() function is used by DI_EVENT_MANAGER::Get() to give input devices
time to put event information into the event queue. For example, in DOS the DID_KEY­
BOARD::Poll() function gets information from the keyboard BIOS and enters that infor­
mation, as VI_EVENT information, into the Event Manager's queue of events.

The Poll() function is called every time an event is requested from the Event Manager
unless the Q_NO_POLL flag was set when requesting the event.

Example

#include <ui_evt.hpp>

int VI_EVENT_MANAGER::Get(UI_EVENT &event, Q_FLAGS flags)
{

II Stay in loop while no event conditions are met.
int error = -1;
do
{

II Call all the polled devices.
VI_DEVICE *device;
if (lFlagSet(flags, Q_NO_POLL))

for (device = First(); device; device device->Next())
device->Pol1();

while (error);

II Return the error status.
return (error);

UI_DEVICE::Previous

Syntax

#include <uLwin.hpp>

VCDEVICE *Previous(void);

Chapter 5 - ULOEVICE 69

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the previous device, if one exists, in the list of devices.

Example

DI_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new DID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

for (UI_DEVICE *device = eventManager->Last(); device;
device = device->Previous(»);

70 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 6 - UI_DIMENSION_CONSTRAINT

The UI_DIMENSION_CONSTRAINT class object is used for geometry management.
Specifically, this class limits the width and height dimensions of a managed object. The
UCDIMENSION_CONSTRAINT is added to the parent object's geometry manager. See
"Chapter 14-UCGEOMETRY_MANAGER" for more details on using the geometry
manager.

The UI_DIMENSION_CONSTRAINT class is declared in UI_WIN.HPP. Its public and
protected members are:

class UI_DIMENSION_CONSTRAINT : public UI_CONSTRAINT
{
public:

UI_DIMENSION_CONSTRAINT(UI_WINDOW_OBJECT *_object,
DNCF_FLAGS _dncFlags = DNCF_NO_FLAGS, int _minimum 0,
int _maximum = 0);

virtual -UI_DIMENSION_CONSTRAINT(void);

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

virtual void Modify(void);

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void};
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NOLLP(OI_ITEM)};

OI_DIMENSION_CONSTRAINT(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NOLLP(UI_ITEM),
01 ITEM *userTable = ZIL NOLLP(OI ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, OI_ITEM *objectTable,
OI_ITEM *userTable);

#endif
#if defined(ZIL STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, OI_ITEM *objectTable,
OI_ITEM *userTable);

#endif

protected:
DNCF_FLAGS dncFlags;
int maximum;
int minimum;

};

Chapter 6 - ULOIMENSION_CONSTRAINT 71

General Members

This section describes those members that are used for general purposes.

• dncFlags are flags that define the operation of the UCDIMENSION_CONSTRAINT
class. A full description of the dimension constraint flags is given in the UCDI­
MENSION_CONSTRAINT constructor.

• maximum is the maximum size allowed by the constraint. This value is specified in
cell dimensions.

• minimum is the minimum size allowed by the constraint. This value is specified in
cell dimensions.

UI_DIMENSION_CONSTRAINT::UI_DIMENSION_CONSTRAINT

Syntax

#include <ui_win.hpp>

UCDIMENSION_CONSTRAINT(UCWINDOW_OBJECT *_object,
DNCF_FLAGS _dncFlags = DNCF_NO_FLAGS, int _minimum = 0,
int _maximum =0);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UCDIMENSION_CONSTRAINT object.

• _objectin is the object to be managed.

72 Zinc Application Framework-Programmer's Reference Volume 1

• _dncFlagsin are flags that define the operation of the UCDIMENSION_­
CONSTRAINT class. The following flags (declared in UI_WIN.HPP) control the
general operation of a UCDIMENSION_CONSTRAINT class object:

DNCF_HEIGHT-Causes the constraint to manage the height of the managed
object.

DNCF_NO_FLAGS-Does not associate any special flags with the UCDIMEN­
SION_CONSTRAINT class. This flag should not be used in conjunction with
any other DNCF_ flags.

DNCF_WIDTH-Causes the constraint to manage the width of the managed
object.

• _minimumin is the minimum size allowed by the constraint. This value is specified
in cell dimensions.

• _maximumin is the maximum size allowed by the constraint. This value is specified
in cell dimensions.

UI_DIMENSION_CONSTRAINT::-UI_DIMENSION_CONSTRAINT

Syntax

#include <ui_win.hpp>

virtual -UCDIMENSION_CONSTRAINT(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the
UCDIMENSION_CONSTRAINT object.

Chapter 6 - ULOIMENSION_CONSTRAINT 73

U1_01MENSION_CONSTRAINT::1nformation

Syntax

#include <uLwin.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID =ID_DEFAULT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

74

This function allows Zinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the attachment
object:

I_CLEAR_FLAGS-Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type DNCF_FLAGS that
contains the flags to be cleared. This request only clears those flags that are
passed in; it does not simply clear the entire field.

I_GET_FLAGS-Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type DNCF_FLAGS.
If data is NULL, a pointer to dncFlags will be returned.

I_GET_MAXDIMENSION-Returns the maximum size allowed by the
constraint. If this message is sent, data must be a pointer to a variable of type
int where the constraint's maximum will be copied.

Zinc Application Framework-Programmer's Reference Volume 1

I_GET_MINDIMENSION-Retums the mmlmum size allowed by the
constraint. If this message is sent, data must be a pointer to a variable of type
iot where the constraint's minimum will be copied.

I_SET_FLAGS-Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type DNCF_FLAGS that contains
the flags to be set. This request only sets those flags that are passed in; it does
not clear any flags that are already set.

I_SET_MAXDIMENSION-Sets the maximum size allowed by the constraint.
If this message is sent, data must be a pointer to a variable of type iot that
contains the constraint's new maximum.

I_SET_MINDIMENSION-Sets the minimum size allowed by the constraint.
If this message is sent, data must be a pointer to a variable of type iot that
contains the constraint's new minimum.

All other requests are passed to UI_CONSTRAINT::Ioformatioo() for processing.

datainloul is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

objectIDin is not used.

UI_DIMENSION_CONSTRAINT::Modify

Syntax

#include <ui_win.hpp>

virtual void Modify(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 6 - ULOIMENSION_CONSTRAINT 75

Remarks

This virtual function ensures that the managed object's size is within the range specified
for the constraint. The geometry manager calls each constraint's Modify() function
whenever the parent object's position is changed.

Storage Members

This section describes those class members that are used for storage purposes.

UI_DIMENSION_CONSTRAINT::UI_DIMENSION_CONSTRAINT

Syntax

#include <uLwin.hpp>

UCDIMENSION_CONSTRAINT(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UCITEM *objectTable = ZIL_NULLP(UCITEM),
UCITEM *userTable =ZIL_NULLP(UCITEM));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced constructor creates a new UCDIMENSION_CONSTRAINT by loading the
object from a data file. Typically, the programmer does not need to use this constructor.
If a constraint is stored in a data file it is usually stored as part of a geometry manager
and will be loaded when the geometry manager is loaded.

• namein is the name of the object to be loaded.

76 Zinc Application Framework-Programmer's Reference Volume 1

• file jn is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

objectjn is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTable jn is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI_DIMENSION_CONSTRAINT::Load

Syntax

#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UCITEM *objectTable,
UCITEM *userTable);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 6 - ULOIMENSION_CONSTRAINT 77

Remarks

This advanced function is used to load a UCDIMENSION_CONSTRAINT from a
persistent object data file. It is called by the persistent constructor and is typically not
used by the programmer.

• namein is the name of the object to be loaded.

file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI_DIMENSION_CONSTRAINT::New

Syntax

#include <ui_win.hpp>

static UCWINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),

78 Zinc Application Framework-Programmer's Reference Volume 1

UCITEM *objectTable = ZIL_NULLP(UCITEM),
UI_ITEM *userTable = ZIL_NULLP(UCITEM));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table

Chapter 6 - ULOIMENSION_CONSTRAINT 79

created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI_DIMENSION_CONSTRAINT::NewFunction

Syntax

#include <uLwin.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UI DIMENSION_CONSTRAINT::Store

Syntax

#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *jile,
ZIL_STORAGE_OBJECT *object, UCITEM *objectTable,
UCITEM *userTable);

80 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• file in is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66-ZIL_STORAGE."

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68-ZIL_STORAGE_­
OBJECT."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UI_WIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

Chapter 6 - UCOIMENSION_CONSTRAINT 81

82 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 7 - UI_DISPLAY

The UCDISPLAY class is the base class for all display classes used in Zinc. A display
class is used to draw to the screen, whether in graphics mode, in text mode or in a
graphical operating system. The UI_DISPLAY class defines the functionality that must
exist in each derived display class. While the UCDISPLAY class is not technically
abstract (i.e., it contains no pure virtual functions), it should not be used as a constructed
class. Rather, derived classes, such as UCBGCDISPLAY, UCMSWINDOWS_DISPLAY
or UI_NEXTSTEP_DISPLAY must be used. The figure below shows the display object
hierarchy:

I DISPLAY OBJECT HIERARCHYI

,.--- UI_BGI_DISPLAY

r-- ULFG_DISPLAY

r-- ULGRAPHICS_DISPLAY

r-- ULMOTIF_DISPLAY

II UI_DISPLAY !! ULMSC_DISPLAY

r-- UI_MSWINDOWS_DISPLAY

1----1 UI_OS2_DISPLAY

IIUI_TEXT_DISPLAY

'---- ...
(other programmer
defined display
objects)

Classes derived from the UCDISPLAY base class include:

VI_BGI_DISPLAY-A DOS graphics display that uses the Borland BGI graphics
library to draw on the screen. The UCBGI_DISPLAY class provides support for
CGA, EGA, VGA and Hercules monochrome display adapters running in graphics
mode.

VI_GRAPHICS_DISPLAY-A graphics display that uses the GFX graphics library
to draw on the screen. The UCGRAPHICS_DISPLAY class provides support for
CGA, EGA, VGA, SVGA and Hercules monochrome display adapters running in
graphics mode.

VI_MACINTOSH_DISPLAY-A graphics display class that uses the Macintosh
graphics interface to draw within the Macintosh environment.

Chapter 7 - ULDISPLA Y 83

84

UI_MSC_DISPLAY-A DOS graphics display that uses the Microsoft C Graphics
library to draw on the screen. The UCMSC_DISPLAY class provides support for
CGA, EGA, VGA, SVGA and Hercules monochrome display adapters running in
graphics mode.

UI_MSWINDOWS_DISPLAY-A graphics display that uses the Microsoft
Windows graphics interface to draw within the Windows environment.

UI_NEXTSTEP_DISPLAY-A graphics display class that uses the NEXTSTEP
graphics interface to draw within the NEXTSTEP environment.

UI_OS2_DISPLAY-A graphics display class that uses the OS/2 graphics interface
to draw within the OS/2 environment.

UI_TEXT_DISPLAY-A text display that draws to screen memory. The UC­
TEXT_DISPLAY class provides support for MDA, CGA, EGA and VGA display
adapters running DOS text mode or Curses. This includes the following modes of
operation:

• 25 line x 40 column mode
• 25 line x 80 column mode
• 43 line x 80 column mode
• 50 line x 80 column mode

This class also contains support for snow checking (CGA monitors) and IBM
TopView (which supports operation in the Microsoft Windows and Quarterdeck
desqVIEWenvironments).

UI_WCC_DISPLAY-A DOS graphics display class that uses the Watcom graphics
library to draw on the screen. The UCWCC_DISPLAY class provides support for
CGA, EGA, VGA, SVGA and Hercules monochrome display adapters running in
graphics mode.

UI_XT_DISPLAY-A graphics display class that uses the Motif graphics interface
to draw within the Motif environment.

Other programmer defined screen display objects-Any other programmer defined
display class that conforms to the operating protocol defined by the UCDISPLAY
base class.

By abstracting the display class, an application does not need to know which display class
has been created. If, for example, the application needs to draw a rectangle, it can simply

Zinc Application Framework-Programmer's Reference Volume 1

call the display's virtual Rectangle() member function. The application can thus be
written generically for all environments.

The UCDISPLAY class is declared in UI_DSP.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UI_DISPLAY public ZIL_INTERNATIONAL
{
public:

int installed;
int isText;
int isMono;
int columns, lines;
int cellWidth, cellHeight;
int preSpace, postSpace;
ZIL_INT32 miniNumeratorX, miniDenominatorX;
ZIL_INT32 miniNumeratorY, miniDenominatorY;
ZIL_ICHAR *operatingSystem;
ZIL_ICHAR *windowingSystem;

static UI PALETTE *backgroundPalette;
static UI_PALETTE *xorPalette;
static UI_PALETTE *colorMap;

#if defined (ZIL_MSDOS) I I defined (ZIL_CURSES)
static UI_PALETTE *markPalette;

#elif defined (ZIL_MSWINDOWS)
#if defined (ZIL_MSWINDOWS)

HANDLE hInstance;
HANDLE hPrevInstance;
int nCmdShow;

#elif defined(ZIL_OS2)
HAB hab;

#elif defined (ZIL_XT)
XtAppContext appContext;
Widget topShell;
Display *xDisplay;
Screen *xScreen;
int xScreenNumber;
GC xGc;
GC xorGC;
char *appClass;
Pixmap interleaveStipple;

#endif

virtual -UI_DISPLAY(void);
virtual void Bitmap(ZIL_SCREENID screenID, int column, int line,

int bitmapWidth, int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette = ZIL_NULLP(UI_PALETTE),
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_BITMAP_HANDLE *colorBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE),
ZIL_BITMAP_HANDLE *monoBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE));

virtual void BitmapArrayToHandle(ZIL_SCREENID screenID, int bitmapWidth,
int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette, ZIL_BITMAP_HANDLE *colorBitmap,
ZIL_BITMAP_HANDLE *monoBitmap);

virtual void BitmapHandleToArray(ZIL_SCREENID screenID,
ZIL_BITMAP_HANDLE colorBitmap, ZIL_BITMAP_HANDLE monoBitmap,
int *bitmapWidth, int *bitmapHeight, ZIL_UINT8 **bitmapArray);

virtual void Ellipse(ZIL_SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void IconArrayToHandle(ZIL_SCREENID screenID, int iconWidth,
int iconHeight, const ZIL_UINT8 *iconArray,

Chapter 7 - ULOISPLA Y 85

86

const UI_PALETTE *palette, ZIL_ICON_HANDLE *icon};
virtual void IconHandleToArray(ZIL_SCREENID screenID,

ZIL_ICON_HANOLE icon, int *iconWidth, int *iconHeight,
ZIL_UINT8 **iconArray);

virtual void Line(ZIL_SCREENID screenID, int columnl, int linel,
int column2, int line2, const UI_PALETTE *palette, int width = 1,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION)};

virtual ZIL_COLOR MapColor(const UI_PALETTE *palette, int isForeground};
static RGBColor MapRGBColor(ZIL_COLOR fromColor);
virtual void Polygon(ZIL_SCREENIO screenID, int numPoints,

const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION)};

void Rectangle(ZIL_SCREENID screenID, const UI_REGION ®ion,
const UI_PALETTE *palette, int width = 1, int fill = FALSE,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION});

virtual void Rectangle(ZIL_SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION}};

virtual void RectangleXORDiff(const UI_REGION &oldRegion,
const UI_REGION &newRegion, ZIL_SCREENIO screenID = ID_SCREEN,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

void RegionDefine(ZIL_SCREENID screenID, const UI_REGION ®ion);
virtual void RegionDefine(ZIL_SCREENID screenID, int left, int top,

int right, int bottom);
virtual void RegionMove(const UI_REGION &oldRegion, int newColumn,

int neWLine, ZIL_SCREENID oldScreenID = ID_SCREEN,
ZIL_SCREENID newScreenID = ID_SCREEN);

virtual void Text (ZIL_SCREENID screenIO, int left, int top,
const ZIL_ICHAR *text, const UI_PALETTE *palette, int length -1,
int fill = TRUE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT};

virtual int TextHeight(const ZIL_ICHAR *string,
ZIL_SCREENIO screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT};

virtual int TextWidth(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = IO_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT};

int VirtualGet(ZIL_SCREENID screenID, const UI_REGION ®ion);
virtual int VirtualGet(ZIL_SCREENID screenID, int left, int top,

int right, int bottom};
virtual int VirtualPut(ZIL_SCREENID screenID);

protected:
struct ZIL EXPORT_CLASS UI_DISPLAY_IMAGE
{

UI_REGION region;
ZIL_UINT8 *image;
ZIL_UINT8 *screen;
ZIL_UINT8 *backup;

};

UI_DISPLAY(int isText,
const ZIL_ICHAR *operatingSystem = ZIL_NULLP(ZIL_ICHAR},
const ZIL_ICHAR *windowingSystem = ZIL_NULLP(ZIL_ICHAR)};

int RegionInitialize(UI_REGION ®ion, const UI_REGION *clipRegion,
int left, int top, int right, int bottom};

Zinc Application Framework-Programmer's Reference Volume 1

public:
II Character encoding
static ZIL_ICHAR codeSet[15];

};

General Members

This section describes those members that are used for general purposes.

• installed indicates if the display class has been successfully installed. installed is set
to FALSE by the UCDISPLAY class. Derived display classes will set this variable
to TRUE if the display installs correctly.

• isText indicates whether the display is a text mode display or a graphics mode
display. isText is TRUE if the application is running in text mode. Otherwise, isText
is FALSE.

• isMono indicates if the display class is operating in monochrome mode. isMono is
TRUE if the display is a monochrome display. Otherwise, it is FALSE.

• columns contains the number of columns that can be displayed in the current mode.

• lines contains the number of lines that can be displayed in the current mode.

• eellWidth is the width of a cell. Zinc logically divides the display into a grid of cells.
Most objects are positioned based on cell coordinates. If the display is a text mode
display, eellWidth is 1. Otherwise, eellWidth is a pixel value set in the display class
constructor based on the width of characters in the font.

• eellHeight is the height of a cell. Zinc logically divides the display into a grid of
cells. Most objects are positioned based on cell coordinates. If the display is a text
mode display, eellHeight is 1. Otherwise, eellHeight is a pixel value set in the
display class constructor based on the height of characters in the font.

• preSpaee denotes the size (in pixels) of the white space between the top of an object
and the top of a cell.

postSpaee denotes the size (in pixels) of the white space between the bottom of an
object and the bottom of a cell.

• miniNumeratorX and miniDenominatorX are values used to determine the width of
a minicell. A minicell is a fraction of a cell. By using minicells to size or position

Chapter 7 - UCOISPLA Y 87

objects instead of cells, more precise placement can be achieved. By default,
miniNumeratorX is 1 and miniDenominatorX is 10. These values result in a minicell
being 1/l0th the width of a normal cell.

• miniNumeratorYand miniDenominatorY are values used to determine the height of
a minicell. A minicell is a fraction of a cell. By using minicells to size or position
objects instead of cells, more precise placement can be achieved. By default,
miniNumeratorY is 1 and miniDenominatorY is 10. These values result in a minicell
being I/lOth the height of a normal cell.

• operatingSystem identifies the operating system the application is running on. For
example, when running in DOS, operatingSystem is "DOS." In MS-Windows it is
"Windows."

• windowingSystem identifies the windowing system the application is using. For
example, when using the UCGRAPHICS_DISPLAY class, windowingSystem is
"GFX." In MS-Windows, it is "Windows."

• backgroundPalette is a pointer to the color palette used to draw the background of
the screen.

• xorPalette is a pointer to the color palette used when doing XOR drawing.

• colorMap is a palette table containing basic colors and their appropriate black-and­
white or grayscale equivalents.

• markPalette is a palette table used to draw marked portions of editable fields. This
member is only available in DOS and Curses.

• hlnstance is a handle that identifies the current instance of the application. This
member is only available in Windows.

• hPrevlnstance indicates if the current instance of the application is the first instance.
This member is only available in Windows.

nCmdShow is a pointer to any parameters entered from the command line. This
member is only available in Windows.

• hab is the OS/2 anchor block handle. This member is only available in OS/2.

• appContext is the Xt Intrinsics application context. This member is only available
in Motif.

88 Zinc Application Framework-Programmer's Reference Volume 1

• topShell is the initial application shell instance returned by XtAppInitialize(). This
member is only available in Motif.

• xDisplay is the X Window display. This member is only available in Motif.

• xScreen is a pointer to the X Window screen. This member is only available in
Motif.

• xScreenNumber is the X Window screen number. This member is only available in
Motif.

• xGc is the X Window graphics context. This member is only available in Motif.

xorGC is the X Window graphics context used when doing XOR drawing. This
member is only available in Motif.

appClass is the application class name used in the call to XtInitialize. This member
is set to "ZincApp" by default but can be set to whatever the programmer wishes.
X Windows looks for a resource file by the same name. This resource file can be
used to set default values for fonts, colors and other values. Zinc distributes a file
called ZincApp that contains the default values for a Zinc application. The
programmer may alter this file as desired. This member is only available in Motif.

• interleaveStipple is a Pixmap specifying the interleave fill pattern. This member is
only available in Motif.

• VI_DISPLAY_IMAGE is a structure used when drawing device images. It maintains
the following: a region where the device image is located; the device image itself; an
image of the screen before the device image is placed there; and a scratch pad used
when getting or putting images from and to the screen.

region is the region of the images being maintained.

image is the device image.

screen is a "picture" of the screen at the region specified by region before the
device image was displayed in the region. This image is used to restore the
display after the device image is moved to another location.

backup is a "scratch pad" used when transferring images to and from the screen.

Chapter 7 - ULOISPLA Y 89

• display/mage is an array of UCDISPLAY_IMAGE structures. This array maintains
the information used to restore the region of the screen where a device image, such
as the mouse pointer, has been displayed.

• codeSet identifies the code set the application is using. This is used to map
characters between the hardware code set and the code set used internally by Zinc
(e.g., either IS08859-1 or Unicode).

UI_DISPLAY::UI_DISPLAY

Syntax

#include <ui_dsp.hpp>

UCDISPLAY(int isText,
const ZIL_ICHAR *operatingSystem = ZIL_NULLP(ZIL_ICHAR),
const ZIL_ICHAR *windowingSystem = ZIL_NULLP(ZIL_ICHAR));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

90

This advanced constructor creates a new UCDISPLAY object. The UCDISPLAY
constructor is protected, since only derived instances of UCDISPLAY should be created.

• isTextin indicates whether a text or graphics display is being created. isText is TRUE
if a text mode display is being created. Otherwise, it is FALSE. isText is used to
set the isText member variable.

operatingSystemin identifies the operating system the application is running on. For
example, when running in DOS, operatingSystem is "DOS." In MS-Windows it is
"Windows."

Zinc Application Framework-Programmer's Reference Volume 1

• windowingSystemin identifies the windowing system the application is using. For
example, when using the VI_GRAPHICS_DISPLAY class, windowingSystem is
"GFX." In MS-Windows, it is "Windows."

Example 1

#include <ui_win.hpp>

main()
{

II Initialize Zinc Application Framework.
UI_DISPLAY *display = new UI_MSC_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

UI_WINDOW_MANAGER *windowManager
new UI_WINDOW_MANAGER(display, eventManager);

II Restore the system.
delete windowManager;
delete eventManager;
delete display;
return (0);

Example 2
#include <ui_dsp.hpp>

UI_MSC_DISPLAY: :UI_MSC_DISPLAY(int mode) :
UI_DISPLAY(FALSE)

Syntax

#include <ui_dsp.hpp>

virtual -VI_DISPLAY(void);

Chapter 7 - ULDISPLA Y 91

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the UCDISPLAY
object.

Example

#include <ui_win.hpp>

main()
{

II Initialize zinc Application Framework.
UI_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

UI_WINDOW_MANAGER *windowManager = UI_WINDOW_MANAGER(display, eventManager);

II Restore the system.
delete windowManager;
delete eventManager;
delete display;
return (0);

UI_DISPLAV::Bitmap

Syntax

#include <uLdsp.hpp>

virtual void Bitmap(ZIL_SCREENID screenID, int column, int line, int bitmapWidth,
int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UCPALETTE *palette = ZIL_NULLP(UCPALETTE),
const UCREGION *clipRegion = ZIL_NULLP(UCREGION),
ZIL_BITMAP_HANDLE *colorBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE),
ZIL_BITMAP_HANDLE *monoBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE»;

92 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function draws a bitmap image. The bitmap is defined by either an array of
ZIL_UINT8 values, where each array element represents a bitmap pixel color, or by
environment-specific bitmap handles.

• screen/Din is the screenID of the object in whose region the drawing should take
place. Each object has a screenID that identifies it. The screenID is used to ensure
that drawing takes place only on those parts of the screen where the object identified
by screen/D is visible. In addition to objects' screenID's, there are two special
screenID values that can be used:

ID_DIRECT-Causes drawing to be done directly to the display, no matter
where the drawing location is. This screenID may not have any effect in
graphical operating systems since drawing outside the application's window
regions may be restricted by the operating system.

ID_SCREEN-Causes drawing to be done to the screen background. Clipping
will be performed so that the drawing does not overlap any windows. This
screenID may not have any effect in graphical operating systems since drawing
outside the application's window regions may be restricted by the operating
system.

• columnin and linein is the upper-left comer of the bitmap, in pixel coordinates, relative
to the upper-left comer of the region identified by the screen/D that was passed in.

• bitmapWidthin and bitmapHeightin are the bitmap's pixel width and height.

• bitmapArraYin is the bitmap pattern to be displayed. The bitmap pattern is mapped
into an internal palette map (shown below). The color mapping is done to ensure that
the bitmap can be shown as clearly as possible if the display is a monochrome or
black-and-white display.

• palettein is a pointer to a palette table that overrides the default palette map. The
default palette map is shown below:

Chapter 7 - ULOISPLA Y 93

static UI_PALETTE _colorMap[16] =
{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

};

" attrib(BLACK, BLACK), attrib(MONO_BLACK, MONO_BLACK),
PTN_SOLID_FILL, BLACK, BLACK, BW_BLACK, BW_BLACK, GS_BLACK,
GS_BLACK },
" attrib(BLUE, BLUE), attrib(MONO_DIM, MONO_DIM),
PTN_SOLID_FILL, BLUE, BLUE, BW_BLACK, BW_BLACK, GS_GRAY,
GS_GRAY },
" attrib(GREEN, GREEN), attrib(MONO_DIM, MONO_DIM),
PTN_SOLID_FILL, GREEN, GREEN, BW_BLACK, BW_BLACK, GS_GRAY,
GS_GRAY },
" attrib(CYAN, CYAN), attrib(MONO_DIM, MONO_DIM),
PTN_SOLID_FILL, CYAN, CYAN, BW_BLACK, BW_BLACK, GS_GRAY,
GS_GRAY },
" attrib(RED, RED), attrib(MONO_DIM, MONO_BLACK),
PTN_SOLID_FILL, RED, RED, BW_BLACK, BW_BLACK, GS_GRAY,
GS_GRAY },
" attrib(MAGENTA, MAGENTA), attrib(MONO_DIM, MONO_DIM),
PTN_SOLID_FILL, MAGENTA, MAGENTA, BW_BLACK, BW_BLACK, GS_GRAY,
GS_GRAY },
" attrib(BROWN, BROWN), attrib(MONO_DIM, MONO_DIM),
PTN_SOLID_FILL, BROWN, BROWN, BW_BLACK, BW_BLACK, GS_GRAY,
GS_GRAY },
" attrib(LIGHTGRAY, LIGHTGRAY), attrib(MONO_DIM, MONO_DIM),
PTN_SOLID_FILL, LIGHTGRAY, LIGHTGRAY, BW_BLACK, BW_BLACK,
GS_GRAY,GS_GRAY},
" attrib(DARKGRAY, DARKGRAY), attrib(MONO_DIM, MONO_DIM),
PTN_SOLID_FILL, DARKGRAY, DARKGRAY, BW_BLACK, BW_BLACK, GS_GRAY,
GS_GRAY },
" attrib(LIGHTBLUE, LIGHTBLUE), attrib(MONO_NORMAL, MONO_DIM),
PTN_SOLID_FILL, LIGHTBLUE, LIGHTBLUE, BW_WHITE, BW_WHITE,
GS_WHITE, GS_WHITE },
" attrib(LIGHTGREEN, LIGHTGREEN), attrib(MONO_NORMAL,
MONO_DIM), PTN_SOLID_FILL, LIGHTGREEN, LIGHTGREEN, BW_WHITE,
BW_WHITE, GS_WHITE, GS_WHITE },
" attrib(LIGHTCYAN, LIGHTCYAN), attrib(MONO_NORMAL, MONO_DIM),
PTN_SOLID_FILL, LIGHTCYAN, LIGHTCYAN, BW_WHITE, BW_WHITE,
GS_WHITE, GS_WHITE },
" attrib(LIGHTRED, LIGHTRED), attrib(MONO_NORMAL, MONO_DIM),
PTN_SOLID_FILL, LIGHTRED, LIGHTRED, BW_WHITE, BW_WHITE,
GS_WHITE, GS_WHITE },
" attrib(LIGHTMAGENTA, LIGHTMAGENTA), attrib(MONO_NORMAL,
MONO_DIM), PTN_SOLID_FILL, LIGHTMAGENTA, LIGHTMAGENTA,
BW_WHITE, BW_WHITE, GS_WHITE, GS_WHITE },
" attrib(YELLOW, YELLOW), attrib(MONO_NORMAL, MONO_DIM),
PTN_SOLID_FILL, YELLOW, YELLOW, BW_WHITE, BW_WHITE, GS_WHITE,
GS_WHITE },
" attrib(WHITE, WHITE), attrib(MONO_NORMAL, MONO_DIM),
PTN_SOLID_FILL, WHITE, WHITE, BW_WHITE, BW_WHITE, GS_WHITE,
GS_WHITE }

94

•

NOTE: If a palette map is provided it must contain entries for all possible bitmap
colors.

clipRegionin is a region that specifies an additional clipping boundary (in addition to
the boundary automatically determined by screen/D) for the Bitmap() function. If
clipRegion is NULL, no additional clipping is performed.

colorBitmaPin is a ZIL_BITMAP_HANDLE structure that is specific to the native
environment. colorBitmap is the bitmap image to be displayed.

Zinc Application Framework-Programmer's Reference Volume 1

• monoBitmaPin is a ZIL_BITMAP_HANDLE structure that is specific to the native
environment. monoBitmap is a mask that specifies which pixels of the colorBitmap
to draw and which ones to ignore. Those parts of the bitmap that are not drawn will
appear transparent.

NOTE: Bitmaps do not have text screen equivalents. Thus, this function should be used
with caution.

Example

#include <ui_win.hpp>
#include <string.h>

EVENT_TYPE UIW_ICON: : Event (const UI_EVENT &event)
{

II Switch on the event type.
int redisplay = FALSE;
int border = FlagSet(woFlags, WOF_BORDER) ? 1 : 0;
EVENT_TYPE ccode = UI_WINDOW_OBJECT::LogicalEvent(event, ID_ICON);
switch (ccode)
{

II Redisplay the object information.
if (redisplay && ratioWidth == 1 && !display->istext)

display->Bitmap(screenID, iconRegion.left, iconRegion.top, bitmapWidth,
bitmapHeight, bitmapArray);

II Return the control code.
return (ccode);

UI_DISPLAY::BitmapArrayToHandIe

Syntax

#include <uLdsp.hpp>

virtual void BitmapArrayToHandle(ZIL_SCREENID screen/D, int bitmapWidth,
int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UCPALETTE *palette, ZIL_BITMAP_HANDLE *colorBitmap,
ZIL_BITMAP_HANDLE *monoBitmap);

Chapter 7 - ULDISPLA Y 95

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

96

This virtual function converts a bitmap array to two handles. Handles are pointers to
environment specific storage structures that allow the bitmap to be drawn much faster than
drawing individual pixels. The bitmap is defined by an array of ZIL_UINT8 values
where each array element represents a bitmap pixel color.

• screen/Din is the screenID of the object in whose region the drawing should take
place. Each object has a screenID that identifies it. The screenID is used to ensure
that drawing takes place only on those parts of the screen where the object identified
by screen/D is visible. In addition to objects' screenID's, there are two special
screenID values, ID_DIRECT and ID_SCREEN, that can be used. See the
description of the Bitmap() function for details.

• bitmapWidthin and bitmapHeightin are the bitmap's pixel width and height.

• bitmapArraYin is the bitmap pattern to be converted. The bitmap pattern is mapped
into an internal palette map. The color mapping is done to ensure that the bitmap can
be shown as clearly as possible if the display is a monochrome or black-and-white
display.

• pa1ettein is a pointer to a palette table that overrides the default palette map.

co10rBitmaPout is a ZIL_BITMAP_HANDLE structure that is specific to the native
environment. colorBitmap is the bitmap image to be displayed.

• monoBitmaPout is a ZIL_BITMAP_HANDLE structure that is specific to the native
environment. monoBitmap is a mask that specifies which pixels of the co1orBitmap
to draw and which ones to ignore. Those parts of the bitmap that are not drawn will
appear transparent.

NOTE: Bitmaps do not have text screen equivalents. Thus, this function should be used
with caution.

Zinc Application Framework-Programmer's Reference Volume 1

Example

#include <ui_dsp.hpp>

void UI_OS2_DISPLAY::Bitmap(ZIL_SCREENID screenID, int left, int top,
int bitmapWidth, int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette, const UI_REGION *,
ZIL_BITMAP_HANDLE *_colorBitmap, ZIL_BITMAP_HANDLE *_monoBitmap)

II Convert the bitmap array then draw the bitmap.
if (!colorBitmap)

BitmapArrayToHandle(screenID, bitmapWidth, bitmapHeight, bitmapArray,
palette, &colorBitmap, &monoBitmap);

UI_DISPLAY::BitmapHandleToArray

Syntax

#include <ui_dsp.hpp>

virtual void BitmapHandleToArray(ZIL_SCREENID screen/D,
ZIL_BITMAP_HANDLE colorBitmap, ZIL_BITMAP_HANDLE monoBitmap,
int *bitmapWidth, int *bitmapHeight, ZIL_UINT8 **bitmapArray);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function converts an environment-specific bitmap handle to an array of ZIL_UINT8
values where each array element represents a bitmap pixel color.

• screen/Din is the screenID of the object in whose region the drawing should take
place. Each object has a screenID that identifies it. The screenID is used to ensure
that drawing takes place only on those parts of the screen where the object identified

Chapter 7 - ULOISPLA Y 97

by screen/D is visible. In addition to objects' screenID's there are two special
screenID values, ID_DIRECT and ID_SCREEN, that can be used. See the
description of the Bitmap() function for details.

• colorBitmaPin is a ZIL_BITMAP_HANDLE structure that is specific to the native
environment. colorBitmap is the bitmap image to be displayed.

monoBitmaPin is a ZIL_BITMAP_HANDLE structure that is specific to the native
environment. monoBitmap is a mask that specifies which pixels of the colorBitmap
to draw and which ones to ignore. Those parts of the bitmap that are not drawn will
appear transparent.

• bitmapWidthoul and bitmapHeightoul are the bitmap's pixel width and height.

• bitmapArraYoul is the bitmap pattern that was converted.

UI_DISPLAV::Ellipse

Syntax

#include <uLdsp.hpp>

virtual void Ellipse(ZIL_SCREENID screen/D, int column, int line, int startAngle,
int endAngle, int xRadius, int yRadius, const UCPALETTE *palette,
int fill = FALSE, int _xor = FALSE,
const UCREGION *clipRegion = ZIL_NULLP(UCREGION»;

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

98

This virtual function draws and/or fills an ellipse. The ellipse is defined by starting and
ending angles and horizontal and vertical radii.

Zinc Application Framework-Programmer's Reference Volume 1

• screen/Din is the screenID of the object in whose region the drawing should take
place. Each object has a screenID that identifies it. The screenID is used to ensure
that drawing takes place only on those parts of the screen where the object identified
by screen/D is visible. In addition to objects' screenID's there are two special
screenID values, ID_DIRECT and ID_SCREEN, that can be used. See the
description of the Bitmap() function for details.

• columnin and linein is the upper-left comer of the bitmap, in pixel coordinates, relative
to the upper-left comer of the region identified by the screen/D that was passed in.

• startAnglein and endAnglein are starting and ending angles, in degrees, of the ellipse.
If a complete ellipse is desired, startAngle should be 0 and endAngle should be 360.

• xRadiusin and yRadiusin are the horizontal and vertical radii of the ellipse, in pixels.

• palettein is a pointer to the palette structure that defines the color to draw the ellipse.
The palette's foreground color is used to draw the border of the ellipse. The palette's
background color is used to fill the ellipse (if fill is TRUE).

• fillin indicates whether the ellipse should be filled. If fill is TRUE, the ellipse is filled
according to the specified palette's fill pattern and background color. Otherwise the
ellipse is not filled.

• _xorin indicates if the ellipse should be XOR'ed with the image it overwrites. If _xor
is TRUE, the ellipse is drawn using an XOR attribute. Otherwise it simply draws
over the existing image.

• clipRegionin is a region that specifies an additional clipping boundary (in addition to
the boundary automatically determined by screen/D) for the Ellipse() function. If
clipRegion is NULL, no additional clipping is performed.

NOTE: Ellipses do not have text screen equivalents. Thus, this function should be used
with caution.

Example

#include <ui_dsp.hpp>

class CIRCLE : public DI_WINDOW_OBJECT
{

public:

Chapter 7 - ULOISPLA Y 99

int fill;
};

EVENT_TYPE CIRCLE::Event(const UI_EVENT &event)
{

EVENT_TYPE ccode = UI_WINDOW_OBJECT::LogicalEvent(event, ID_CIRCLE);

switch (ccode)
{
case S_DISPLAY_INACTIVE:
case S_DISPLAY_ACTIVE:

if (display->isText I I !UI_WINDOW_OBJECT::NeedsUpdate(event, ccode))
break;

II Set up a temporary clip region then draw the circle.
display->RegionDefine(screenID I OxlOOO, true);
int column = true. left + (relative.right - relative. left) I 2;
int line = true. top + (relative.bottom - relative. top) I 2;
int radius = (relative.bottom - relative. top) I 2;
if (radius < (relative. right - relative. left) I 2)

radius = (relative. right - relative. left) I 2;
display->Ellipse(screenID, column, line, 0, 360, radius,

radius, lastPalette, fill);
II Restore the normal region.
display->RegionDefine(screenID, true);
break;

II Return the control code.
return (ccode)i

UI_DISPLAY::lconArrayToHandle

Syntax

#include <uLdsp.hpp>

virtual void lconArrayToHandle(ZIL_SCREENID screen/D, int iconWidth, int iconHeight,
const ZIL_UINT8 *iconArray, const UI_PALETTE *palette,
ZIL_ICON_HANDLE *icon);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

100 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This virtual function converts an icon image array to an icon handle. A handle is a
pointer to an environment specific storage structure that allows the icon to be drawn much
faster than drawing individual pixels. The bitmap is defined by an array of ZIL_UINT8
values where each array element represents a pixel color.

• screen/Din is the screenID of the object in whose region the drawing should take
place. Each object has a screenID that identifies it. The screenID is used to ensure
that drawing takes place only on those parts of the screen where the object identified
by screen/D is visible. In addition to objects' screenID's there are two special
screenID values, ID_DIRECT and ID_SCREEN, that can be used. See the
description of the Bitmap() function for details.

• iconWidthin and iconHeightin are the icon's pixel width and height.

• iconArraYin is the icon image pattern. The icon image pattern is mapped into an
internal palette map. The color mapping is done to ensure that the image can be
shown as clearly as possible if the display is a monochrome or black-and-white
display.

• palettein is a pointer to a palette table that overrides the default palette map.

• iconout is an operating system-specific icon handle. Wherever possible, the icon array
is converted to a format that the operating system or graphics library can process
more efficiently than a bitmap array.

NOTE: Icons do not have text screen equivalents. Thus, this function should be used
with caution.

UI_DISPLAY::lconHandleToArray

Syntax

#include <uLdsp.hpp>

virtual void IconHandleToArray(ZIL_SCREENID screen/D, ZIL_ICON_HANDLE icon,
int *iconWidth, int *iconHeight, ZIL_UINT8 **iconArray);

Chapter 7 - ULDISPLAY 101

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function converts an icon handle to an array of ZIL_DINTS values where
each array element represents an icon image pixel color.

• screen/Din is the screenID of the object in whose region the drawing should take
place. Each object has a screenID that identifies it. The screenID is used to ensure
that drawing takes place only on those parts of the screen where the object identified
by screen/D is visible. In addition to objects' screenID's there are two special
screenID values, ID_DIRECT and ID_SCREEN, that can be used. See the
description of the Bitmap() function for details.

• icon in is an operating system-specific icon handle that is to be converted. Wherever
possible, the icon array is converted to a format that the operating system or graphics
library can process more efficiently than a bitmap array.

• iconWidthou1 and iconHeightou1 are the pixel width and height of the icon array.

• iconArraYoul is the icon image pattern that was converted.

NOTE: Icons do not have text screen equivalents. Thus, this function should be used
with caution.

UI_DISPLAV::Line

Syntax

#include <ui_dsp.hpp>

virtual void Line(ZIL_SCREENID screen/D, int column], int line], int column2, int line2,
const UCPALETTE *palette, int width = I, int _xor = FALSE,
const UCREGION *clipRegion = ZIL_NULLP(UCREGION»;

102 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function draws a line. The line is defined by a starting point and an ending
point. Care should be taken when using this function in text mode, as diagonal lines will
not display as expected.

• screen/Din is the screenID of the object in whose region the drawing should take
place. Each object has a screenID that identifies it: The screenID is used to ensure
that drawing takes place only on those parts of the screen where the object identified
by screen/D is visible. In addition to objects' screenID's there are two special
screenID values, ID_DIRECT and ID_SCREEN, that can be used. See the
description of the Bitmap() function for details.

• column/in and line/in is the starting position of the line relative to the upper-left
comer of the region identified by the screen/D that was passed in. These values
should be in pixel coordinates if the display is a graphics display or in text
coordinates if it is a text mode display.

• column2in and line2in is the ending position of the line relative to the upper-left comer
of the region identified by the screen/D that was passed in. These values should be
in pixel coordinates if the display is a graphics display or in text coordinates if it is
a text mode display.

• palettein is a pointer to the palette structure that defines the color to draw the line.
The palette's foreground color is used to draw the line.

widthin is the width of the line. If the application is running in text mode, width is
in cell widths. Otherwise, width is in pixel coordinates.

_xorin indicates if the line should be XOR'ed with the image it overwrites. If _xor
is TRUE, the line is drawn using an XOR attribute. Otherwise it simply draws over
the existing image.

Chapter 7 - ULOISPLAY 103

• clipRegionin is a region that specifies an additional clipping boundary (in addition to
the boundary automatically determined by screen/D) for the Line() function. If
clipRegion is NULL, no additional clipping is performed.

Example

void UI_WINDOW_OBJECT: :Border(EVENT_TYPE ccode, UI_REGION ®ion,
const UI_PALETTE *palette)

II Determine the border and update the region.
region = true;

int displayBorder = (ccode == S_DISPLAY_ACTIVE I I
ccode S_NON_CURRENT I I ccode == S_DISPLAY_INACTIVE I I
ccode == S_CURRENT) ? TRUE : FALSE;

if (displayBorder && palette)
{

UI_PALETTE tPalette = *palette;
tPalette.colorForeground = tPalette.colorBackground;
tPalette.bwForeground = tPalette.bwBackground;
tPalette.grayScaleForeground = tPalette.grayScaleBackground;
display->Line(screenID, region. left, region. top, region. left,

region. bottom, &tPalette);
display->Line(screenID, region. right, region. top, region. right,

region. bottom, &tPalette);

}
region.left++;
region.right--;

UI_DISPLAY::MapColor

Syntax

#include <ui_dsp.hpp>

virtual ZIL_COLOR MapColor(const UCPALETTE *palette, int isForeground);

104 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function returns the mapped color from a palette according to the type of
display and the programmer request. For example, if the display is a black-and-white
display, the appropriate black-and-white color will be returned.

• returnValueou1 is the color that was mapped to, according to the type of display and
the type of request.

• palettein is the palette from which the colors are to be mapped.

• isForegroundin indicates whether the palette's foreground or background color is
desired. If isForeground is TRUE, the foreground color will be returned. Otherwise,
the background color will be returned.

UI_DISPLAV::Polygon

Syntax

#include <ui_dsp.hpp>

virtual void Polygon(ZIL_SCREENID screen/D, int numPoints, const int *polygonPoints,
const UCPALETTE *palette, int fill = FALSE, int _xor = FALSE,
const UCREGION *clipRegion = ZIL_NULLP(UCREGION));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Chapter 7 - UCOISPLA Y

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

105

Remarks

This virtual function draws and/or fills a polygon. The polygon is defined by a set of
vertices.

• screen/Din is the screenID of the object in whose region the drawing should take
place. Each object has a screenID that identifies it. The screenID is used to ensure
that drawing takes place only on those parts of the screen where the object identified
by screen/D is visible. In addition to objects' screenID's there are two special
screenID values, ID_DIRECT and ID_SCREEN, that can be used. See the
description of the Bitmap() function for details.

• numPointsin is the number of points in the polygon.

• polygonPointsin is a pointer to an array of integers (i.e., numPoints x 2). Each integer
pair gives a column and line point on the polygon. These values should be in pixel
coordinates relative to the upper-left comer of the region identified by the screen/D
that was passed in.

• palettein is a pointer to the palette structure that defines the color to draw the polygon.
The palette's foreground color is used to draw the border of the polygon. The
palette's background color is used to fill the polygon (if fill is TRUE).

• fillin indicates whether the polygon should be filled. If fill is TRUE, the polygon is
filled according to the specified palette's fill pattern and background color.
Otherwise the polygon is not filled.

• _xorin indicates if the polygon should be XOR'ed with the image it overwrites. If
_xor is TRUE, the polygon is drawn using an XOR attribute. Otherwise it simply
draws over the existing image.

• clipRegionin is a region that specifies an additional clipping boundary (in addition to
the boundary automatically determined by screen/D) for the Polygon() function. If
clipRegion is NULL, no additional clipping is performed.

NOTE: Polygons do not have text screen equivalents. Thus, this function should be used
with caution.

Example

#include <ui_dsp.hpp>

class TRIANGLE : public UI_WINDOW_OBJECT
{

106 Zinc Application Framework-Programmer's Reference Volume 1

public:

int fill;
};

EVENT_TYPE TRIANGLE::Event(const UI_EVENT &event)
{

EVENT_TYPE ccode = UI_WINDOW_OBJECT::LogicalEvent(event, ID_TRIANGLE);
switch (ccode)
{
case S_DISPLAY_INACTIVE:
case S DISPLAY ACTIVE:

if-(display->isText I I !UI_WINDOW_OBJECT: :NeedsUpdate(event, ccode))
break;

II Set up a temporary clip region then draw the triangle.
display->RegionDefine(screenID I OxlOOO, true);
int triangle[8];
triangle[O] = triangle[6] =

true. left + (relative.right - relative. left) I 2;
triangle[l] triangle[7] = true. top;
triangle[2J = true. left;
triangle[3] = triangle[5] = true. top + relative.bottom;
triangle[4] = true. left + relative. right;
display->Polygon(screenID, 4, triangle, lastPalette, fill);
II Restore the normal region.
display->RegionDef'ine(screenID, true);
break;

II Return the control code.
return (ccode);

UI_DISPLAY::Rectangle

Syntax

#include <ui_dsp.hpp>

vaid Rectangle(ZIL_SCREENID screen/D, canst UCREGION ®ion,
canst UCPALETTE *palette, int width = I, intfill =FALSE, int _xor = FALSE,
canst UCREGION *clipRegion =ZIL_NULLP(UCREGION));
or

virtual vaid Rectangle(ZIL_SCREENID screen/D, int left, int top, int right, int bottom,
canst UCPALETTE *palette, int width = I, intfill = FALSE, int _xor = FALSE,
canst UCREGION *clipRegion =ZIL_NULLP(UCREGION));

Chapter 7 - UCOISPLA Y 107

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions draw and/or fill a bar or rectangle.

The first virtual function draws a rectangular box determined by the region specified.

• screen/Din is the screenID of the object in whose region the drawing should take
place. Each object has a screenID that identifies it. The screenID is used to ensure
that drawing takes place only on those parts of the screen where the object identified
by screen/D is visible. In addition to objects' screenID's there are two special
screenID values, ID_DIRECT and ID_SCREEN, that can be used. See the
description of the Bitmap() function for details.

• regionin is the region that defines the coordinates of the rectangle. The region should
be specified in pixels if in graphics mode or in screen coordinates if in text mode.
The region is relative to the upper-left comer of the region identified by the screen/D
that was passed in.

• palettein is a pointer to the palette structure that defines the color to draw the
rectangle. The palette's foreground color is used to draw the border of the rectangle.
The palette's background color is used to fill the rectangle (if fill is TRUE).

widthin specifies the width of the rectangle's border. If the application is running in
text mode, width is in cell widths. Otherwise, width is in pixel coordinates.

• fillin indicates whether the rectangle should be filled. If fill is TRUE, the rectangle
is filled according to the specified palette's fill pattern and background color.
Otherwise the rectangle is not filled.

• _xorin indicates if the rectangle should be XOR' ed with the image it overwrites. If
_xor is TRUE, the rectangle is drawn using an XOR attribute. Otherwise it simply
draws over the existing image.

108 Zinc Application Framework-Programmer's Reference Volume 1

• clipRegionin is a region that specifies an additional clipping boundary (in addition to
the boundary automatically determined by screen/D) for the Rectangle() function.
If clipRegion is NULL, no additional clipping is performed.

The second virtual function draws a rectangular box defined by the comers specified.

• screen/Din is the screenID of the object in whose region the drawing should take
place. Each object has a screenID that identifies it. The screenID is used to ensure
that drawing takes place only on those parts of the screen where the object identified
by screen/D is visible. In addition to objects' screenID's there are two special
screenID values, ID_DIRECT and ID_SCREEN, that can be used. See the
description of the Bitmap() function for details.

• leftin and tOPin is the starting position of the rectangle relative to the upper-left comer
of the region identified by the screen/D that was passed in. These values should be
in pixel coordinates if the display is a graphics display or in text coordinates if it is
a text mode display.

• rightin and bottomin are the ending position of the rectangle relative to the upper-left
comer of the region identified by the screen/D that was passed in. These values
should be in pixel coordinates if the display is a graphics display or in text
coordinates if it is a text mode display.

• palettein is a pointer to the palette structure that defines the color to draw the
rectangle. The palette's foreground color is used to draw the border of the rectangle.
The palette's background color is used to fill the rectangle (if fill is TRUE).

• widthin specifies the width of the rectangle's border. If the application is running in
text mode, width is in cell widths. Otherwise, width is in pixel coordinates.

• fillin indicates whether the rectangle should be filled. If fill is TRUE, the rectangle
is filled according to the specified palette's fill pattern and background color.
Otherwise the rectangle is not filled.

• _xorin indicates if the rectangle should be XOR'ed with the image it overwrites. If
_xor is TRUE, the rectangle is drawn using an XOR attribute. Otherwise it simply
draws over the existing image.

• clipRegionin is a region that specifies an additional clipping boundary (in addition to
the boundary automatically determined by screen/D) for the Rectangle() function.
If clipRegion is NULL, no additional clipping is performed.

Chapter 7 - ULOISPLA Y 109

Example

#include <ui_win.hpp>

EVENT_TYPE UIW_BORDER::Event(const UI_EVENT &event)
{

II Switch on the event type.
UI_REGION region;
EVENT_TYPE ccode = UI_WINDOW_OBJECT: : LogicalEvent (event, ID_BORDER);
switch (ccode)
{
case S_DISPLAY_INACTIVE:
case S_DISPLAY_ACTIVE:

II Draw the borders around the object.
if (!display->isText && lUI_WINDOW_OBJECT::NeedsUpdate(event, ccode))

break;
UI_PALETTE *palette = UI_WINDOW_OBJECT: :LogicalPalette(ccode);
lastPalette = palette;
if (display->isText)

display->Rectangle(screenID, true, palette,
(ccode == S_DISPLAY_ACTlVE) ? 2 : 1);

else
{

region = parent->true;
eventManager->DevicesHide(parent->true);
UI_PALETTE *outlinePalette = MapPalette(paletteMapTable,

PM_ACTIVE, ID_BLACK_SHADOW);
display->Rectangle(screenID, true, outlinePalette)i
display->Rectangle(screenID, region, outlinePalette)i
UI_WINDOW_OBJECT: :Shadow(region, 1);

II Display the top and bottom lines.
int temp = region. bottom;
region.bottom = true. top - 1;
display->Rectangle(screenID, region, palette, 0, TRUE);
region. bottom = temp;

temp = region. top;
region. top = true.bottom + 1;
display->Rectangle(screenID, region, palette, 0, TRUE);
region. top = temp;

II Return the control code.
return (ccode);

UI_DISPLAY::RectangleXORDiff

Syntax

#include <uLdsp.hpp>

virtual void RectangleXORDiff(const UCREGION &oldRegion,
const UI_REGION &newRegion, ZIL_SCREENID screenID = ID_SCREEN,
const UCREGION *clipRegion = ZIL_NULLP(UCREGION));

110 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced virtual function draws an XOR rectangle at two locations: an original
region and a new region. An example of when this function may be necessary is when
dragging the thumb button of a scroll bar. Often, the original thumb button position is
highlighted by drawing an XOR rectangle at that location, and the current location it is
being dragged to is also highlighted by an XOR rectangle.

• oldRegionin defines the original rectangle that is to be drawn.

• newRegionin defines the new rectangle that is to be drawn.

• screenIDin is the screenID of the object in whose region the drawing should take
place. Each object has a screenID that identifies it. The screenID is used to ensure
that drawing takes place only on those parts of the screen where the object identified
by screenID is visible. In addition to objects' screenID's there are two special
screenID values, ID_DIRECT and ID_SCREEN, that can be used. See the
description of the Bitmap() function for details.

• clipRegionin is a region that specifies an additional clipping boundary (in addition to
the boundary automatically determined by screenID) for the RectangleXORDiff()
function. If clipRegion is NULL, no additional clipping is performed.

Example

#include <ui_win.hpp>

void UI_WINDOW_MANAGER::Modify(UI_WINDOW_OBJECT *object,
const UI_EVENT &event)

DI_REGION newRegion object->truei
UI_REGION oldRegion = newRegioni

II Update the new region.
if (oldRegion.left != newRegion.left II

oldRegion.top != newRegion.top I I
oldRegion. right ! = newRegion. right I I

Chapter 7 - U,-OISPLA Y 111

oldRegion.bottom != newRegion.bottom)

II Compute the lower-right coordinates.
newRegion.right = newRegion.left + width - 1;
newRegion.bottom = newRegion.top + height - 1i

II Remove the old region and update the new region.
if (eventManager->Get(tEvent, Q_NO_BLOCK I Q_NO_DESTROY) != 0 I I

MapEvent(eventMapTable, tEvent, ID_WINDOW_OBJECT, ID_WINDOW_OBJECT)
!= L_CONTINUE_SELECT)

display->RectangleXORDiff(oldRegion, newRegion)i
oldRegion = newRegioni

UI_DISPLAV::RegionDefine

Syntax

#include <ui_dsp.hpp>

void RegionDefine(ZIL_SCREENID screen/D, const UCREGION ®ion);
or

virtual void RegionDefine(ZIL_SCREENID screen/D, int left, int top, int right,
int bottom);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

112

These advanced overloaded functions are used to reserve a specified region of the screen
for a particular screenID. The region is added to the display's region list. While this
function exists for all environments, it performs no action except for DOS and Curses
displays.

The first function defines a region determined by the region specified.

Zinc Application Framework-Programmer's Reference Volume 1

• screen/Din is the identification associated with the defined region. Once a region has
been defined, only those objects with the same screenID will be allowed to write to
that screen region.

• regionin defines the rectangular region to be reserved.

The second virtual function defines a region determined by the comers specified.

screen/Din is the identification associated with the defined region. Once a region has
been defined, only those objects with the same screenID will be allowed to write to
that screen region.

• leftin' tOPin' rightin and bottomin define the rectangular region to be reserved.

Example

#include <ui_win.hpp>

EVENT_TYPE UIW_ICON: : Event (const UI_EVENT &event)
{

II Switch on the event type.
int redisplay = FALSE;
int border = FlagSet(woFlags, WOF_BORDER) ? 1 : 0;
EVENT_TYPE ccode = UI_WINDOW_OBJECT: : LogicalEvent (event, ID_ICON);
switch (ccode)
{
case S_DEFINE_REGION:

if (!parent)
{

if (ldisplay->isText)
display->RegionDefine(screenID, iconRegion);

if (string)
display->RegionDefine(screenID, stringRegion);

}
break;

II Return the control code.
return (ccode);

Chapter 7 - ULOISPLA Y 113

UI_DISPLAY::RegionInitialize

Syntax

#include <ui_dsp.hpp>

virtual void RegionInitialize(UCREGION ®ion, const UCREGION *clipRegion,
int left, int top, int right, int bottom);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function initializes region with the region defined by left, top, right and
bottom.

• returnValueoul indicates if the region has a positive area. returnValue is TRUE if the
upper-left comer of the region is above and to the left of the lower-right comer.
Otherwise, it is FALSE.

• regionoul is the region that is to be initialized.

• clipRegionin is a region that specifies a clipping boundary. The region defined by left,
top, right and bottom is clipped by clipRegion before being placed in region. If
clipRegion is NULL, no additional clipping is performed.

• leftin' tOPin' rightin and bottomin define the rectangular region to be initialized.

UI_DISPLAY::RegionMove

Syntax

#include <uLdsp.hpp>

virtual void RegionMove(const UCREGION &oldRegion, int newColumn, int newLine,

114 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_SCREENID oldScreenID = ID_SCREEN,
ZIL_SCREENID newScreenID =ID_SCREEN);

PortabiIity

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function copies the screen image from one region to another region.

• oldRegionin is the screen region to be moved.

• newColumnin and newLinein is the upper-left corner of the new screen location for the
screen image.

• oldScreenIDin is the screenID of the original screen image location.

newScreenIDin is the screenID of the destination screen location.

Example

#include <ui_win.hpp>

void UI_WINDOW_OBJECT: :Modify(UI_WINDOW_OBJECT *object,
const UI_EVENT &event)

UI_REGION newRegion object->truei
UI_REGION oldRegion = newRegioni

II Move the region.
if (lsizeObject)

display->RegionMove(object->true, newRegion.left, newRegion.top);

Chapter 7 - ULDISPLA Y 115

UI_DISPLAV::Text

Syntax

#include <uLdsp.hpp>

virtual void Text(ZIL_SCREENID screen/D, int left, int top, const ZIL_ICHAR *text,
const UCPALETTE *palette, int length =-1, intfill =TRUE, int _xor =FALSE,
const UCREGION *clipRegion = ZIL_NULLP(UCREGION),
ZIL_LOGICAL_FONT font =FNT_DIALOG_FONT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
.NEXTSTEP

This virtual function draws a text string.

• screen/Din is the screenID of the object in whose region the drawing should take
place. Each object has a screenID that identifies it. The screenID is used to ensure
that drawing takes place only on those parts of the screen where the object identified
by screen/D is visible. In addition to objects' screenID's there are two special
screenID values, ID_DIRECT and ID_SCREEN, that can be used. See the
description of the Bitmap() function for details.

• leftin and tOPin is the starting position of the text relative to the upper-left comer of
the region identified by the screen/D that was passed in. These values should be in
pixel coordinates if the display is a graphics display or in text coordinates if it is a
text mode display.

• textin is a pointer to the text that is to be displayed.

• palettein is a pointer to the palette structure that defines the color to draw the text.
The palette's foreground color is used to draw the text. The palette's background
color is used to draw the background of the text (if fill is TRUE).

116 Zinc Application Framework-Programmer's Reference Volume 1

• jil/in indicates whether the text background should be filled. If fill is TRUE, the text
background is filled according to the specified palette's fill pattern and background
color. Otherwise the text background is not filled.

• _xorin indicates if the text should be XOR'ed with the image it overwrites. If _xor
is TRUE, the text is drawn using an XOR attribute. Otherwise it simply draws over
the existing image.

• clipRegionin is a region that specifies an additional clipping boundary (in addition to
the boundary automatically determined by screen/D) for the Text() function. If
clipRegion is NULL, no additional clipping is performed.

• fontin is the font to be used when drawing the text. font is an index into the display's
fontTable array.

Example

#include <ui_win.hpp>

EVENT_TYPE GRAPH::DrawItem(const UI_EVENT &, EVENT_TYPE
{

II Virtualize the display;
display->VirtualGet(screenID, true);

display->Text(screenID, true. left, true. top + display->cellHeight / 2,
" Item 1", &redPalette, -1, FALSE);

display->Text(screenID, true.left, true. top + display->cellHeight * 3 2,
" Item 2", &bluePalette, -1, FALSE);

display->Text(screenID, true.left, true.top + display->cellHeight * 5 I 2,
" Item 2", &greenPalette, -1, FALSE);

II Un-virtualize the display;
display->VirtualPut(screenID) ;

return (TRUE);

UI_DISPLAV::TextHeight

Syntax

#include <ui_dsp.hpp>

virtual int TextHeight(const ZIL_ICHAR *string,
ZIL_SCREENID screen/D = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

Chapter 7 - ULDISPLA Y 117

Portability

This virtual function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the height of a specified string.

• returnValueou1 is the height of the string. If the application is running in text mode,
this value is always 1. Otherwise, returnValue is the pixel height of the string.

stringin is a pointer to the string whose height is to be determined.

screen/Din is the screenID of an object or of the screen (i.e., ID_SCREEN). In some
environments, the screenID is required to calculate the text parameters.

• fontin is the font to be used when measuring the text string.

Example

#include <ui_win.hpp>

void UI_WINDOW_OBJECT::Text(char *string, int depth, int ccode,
const UI_PALETTE *palette)

II Display the text to the screen.

II Make sure it is a valid string.
if (string == 0 I I string[O] == '\0')

return;

II See if the string will fit.
int height = display->TextHeight(string);
if (region.bottom - region. top + 1 < height)

return;

char scrapBuffer[128J;
strncpy(scrapBuffer, string, 128);
scrapBuffer[127] = '\0';
char *hotKey = strchr(scrapBuffer, '-');
if (hotKey)

strcpy(hotKey, hotKey + 1);

int width display->TextWidth(scrapBuffer);
if (width> region.right - region. left + 1)
{

118 Zinc Application Framework-Programmer's Reference Volume 1

width = region.right - region. left;
scrapBuffer[width / display->cellWidth] '\0';

UI_DISPLAY::TextWidth

Syntax

#include <uLdsp.hpp>

virtual int TextWidth(const ZIL_ICHAR *string,
ZIL_SCREENID screen/D = ID_SCREEN,
ZIL_LOGICAL_FONT font =FNT_DIALOG_FONT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function returns the width of a specified string.

returnValueout is the width of the string. If the application is running in text mode,
this value is in screen coordinates. Otherwise, returnValue is the pixel width of the
string.

stringin is a pointer to the string whose width is to be determined.

• screen/Din is the screenID of an object or of the screen (i.e., ID_SCREEN). In some
environments, the screenID is required to calculate the text parameters.

• fontin is the font to be used when measuring the text string.

Chapter 7 - ULDISPLA Y 119

Example
#include <ui_win.hpp>

void UI_WINDOW_OBJECT::Text(char *string, int depth, int ccode,
const UI_PALETTE *palette)

II Display the text to the screen.

II Make sure it is a valid string.
if (string == 0 I I string[O] == '\0')

return;

II See if the string will fit.
int height = display->TextHeight(string);
if (region.bottom - region. top + 1 < height)

return;

char scrapBuffer[128];
strncpy(scrapBuffer, string, 128);
scrapBuffer[127] = '\0';
char *hotKey = strchr(scrapBuffer, '-'I;
if (hotKey)

strcpy(hotKey, hotKey + 1);
int width display->TextWidth(scrapBuffer);
if (width> region. right - region. left + 1)
{

width = region.right - region. left;
scrapBuffer [width I display->cellWidth] '\0' ;

UI DISPLAY::VirtuaIGet

Syntax

#include <uLdsp.hpp>

int VirtuaIGet(ZIL_SCREENID screen/D, canst UCREGION ®ion);
or

virtual int VirtuaIGet(ZIL_SCREENID screen/D, int left, int top, int right, int bottom);

120 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

.OS/2
• NEXTSTEP

These overloaded functions attempt to optimize multiple successive drawing calls. In
some environments, all drawing done to a region after a call to VirtualGet() will be
performed on a virtual buffer that is not displayed until VirtualPut() is called. This
function may remove the images of all devices that are within the region specified, thus
preventing the device images from having to erase and redraw numerous times. Some
environments use this call to obtain information from the operating system that will allow
subsequent drawing to be performed properly.

This function must be called before any calls are made to display pnmlt1ves (e.g.,
Rectangle(), Bitmap(), etc.). The VirtualPut() function must be called when done
drawing.

The first overloaded function prepares for drawing within the region specified by region.

• returnValueoul is always TRUE.

screen/Din is the screenID of the object in whose region the drawing will be done.
Each object has a screenID that identifies it. The screenID is used to ensure that
drawing takes place only on those parts of the screen where the object identified by
screen/D is visible. In addition to objects' screenID's there are two special screenID
values, ID_DIRECT and ID_SCREEN, that can be used. See the description of the
Bitmap() function for details.

• regionin is the region where drawing is to occur. This region is relative to the upper­
left comer of the region identified by the screen/D that was passed in.

The second overloaded function prepares for drawing within the region specified by left,
top, right and bottom.

• returnValueoul is always TRUE.

• screen/Din is the screenID of the object in whose region the drawing will be done.
Each object has a screenID that identifies it. The screenID is used to ensure that

Chapter 7 - ULOISPLA Y 121

drawing takes place only on those parts of the screen where the object identified by
screen/D is visible. In addition to objects' screenID's there are two special screenID
values, ID_DIRECT and ID_SCREEN, that can be used. See the description of the
Bitmap() function for details.

• leltin, tOPin' rightin and bottomin is the region where drawing is to occur. This region
is relative to the upper-left comer of the region identified by the screen/D that was
passed in.

Example

WO_GRAPH: : DrawX (UI_DISPLAY *display)
{

II Copy the screen into the virtual buffer.
display->VirtualGet(screenID, 0, 0, 100, 100);

display->Line(screenID, 0, 0, 100, 100);
display->Line(screenID, 0, 100, 100, 0);

II Copy the virtual buffer back to the screen.
display->VirtualPut(screenID};

UI_DISPLAV::VirtualPut

Syntax

#include <ui_dsp.hpp>

virtual int VirtuaIPut(ZIL_SCREENID screen/D);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

122

This function completes the process started with the call to VirtualGet(). In those
environments that did subsequent drawing to a virtual buffer, this function causes the
buffer to be displayed. In those environments whose device images were disabled, they
will be enabled.

Zinc Application Framework-Programmer's Reference Volume 1

This function must be called after drawing has been completed.

• returnValueOUI is always TRUE.

• screen/Din is the screenID of the object in whose region the drawing was done. Each
object has a screenID that identifies it. The screenID is used to ensure that drawing
takes place only on those parts of the screen where the object identified by screen/D
is visible. In addition to objects' screenID's there are two special screenID values,
ID_DIRECT and ID_SCREEN, that can be used. See the description of the
Bitmap() function for details.

Example

WO_GRAPH: : DrawX(UI_DISPLAY *display)
{

II Copy the screen into the virtual buffer.
display->VirtualGet(screenID, 0, 0, 100, 100);

display->line(O, 0, 100, 100);
display->line(O, 100, 100, 0);

II Copy the virtual buffer back to the screen.
display->VirtualPut(screenID);

Chapter 7 - ULOISPLA Y 123

124 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 8 - UI_ELEMENT

The UCELEMENT class serves as the base class to all window object classes, all input
device classes and several other specialized classes in Zinc Application Framework. The
UCELEMENT class works with the UCLIST class to form a doubly-linked list. Objects
derived from UCELEMENT are added to a list derived from UCLIST. This allows for
the simple creation of a doubly-linked list containing any types of objects. Classes
derived from the UI_ELEMENT base class can be viewed in the following manner:

Cursor

UI DEVICE

i
i

Keyboard I
I IL. .1

ULELEMENT

ULDEVICE

1

!
Mouse !

!
I IL .I

UI ELEMENT

UI DEVICE

j

!
j

iL .J

NOTE: In the figure above, the solid line denotes the base class (i.e., UCELEMENT) and
the dotted line shows the possible logical extensions of a derived class.

The UCELEMENT class is declared in UI_GEN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UI_ELEMENT
{
public:

virtual -UI_ELEMENT(void);
virtual ZIL_ICHAR *ClassName(void);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);
int ListIndex(void);
UI_ELEMENT *Next(void);
UI_ELEMENT *Previous(void);

protected:
UI_ELEMENT *previous, *next;

UI_ELEMENT(void) ;
};

Chapter 8 - ULELEMENT 125

General Members

This section describes those members that are used for general purposes.

previous and next are pointers to the siblings of the element. If the sibling doesn't
exist, the pointer will be NULL.

UI_ELEMENT::UI ELEMENT

Syntax

#include <ui_gen.hpp>

UCELEMENT(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced constructor creates a new UCELEMENT object. As the UCELEMENT
class cannot contain any information specific to the list being created, it is of little use by
itself; rather, Zinc Application Framework uses the element class as a base class, relying
on class members of derived classes for data storage and manipulation. This constructor
is called when constructing one of these derived objects.

Example 1

Hincludo <ui_evc.hpp>
DI_DEVICE: :UI_DEVICE(RAW_EVENT _type, ZIL_DEVICE_STATE _state) : UI_ELEMENT(),

installed(FALSE) , enabled (TRUE) , type (_type) , state(_state) ,
display(NULL) , eventHanaqer(NULL)

126 Zinc Application Framework-Programmer's Reference Volume 1

Example 2

#include <ui_win.hpp>

UI_WINDOW_OBJECT: :UI_WINDOW_OBJECT(int left, int top, int width, int height,
WOF_FLAGS _woFlags, WOAF_FLAGS _woAdvancedFlags) : UI_ELEMENT(),
woFlags(_woFlags), woAdvancedFlags(_woAdvancedFlags)

Syntax

#include <ui_gen.hpp>

virtual -UCELEMENT(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the UCELEMENT
object. The destructor is declared virtual so that derived list element destructors can be
called. (If the destructor for the UCELEMENT class were not declared virtual, the
programmer would need to call the destroy function associated with each derived class.)

Example

#include <ui_gen.hpp>

ElementFunction()
{

UI_ELEMENT elementl;
UI_ELEMENT *element2;

Chapter 8 - ULELEMENT 127

II The elementl destructor is automatically called when the function ends.
delete element2;

UI_ELEMENT::ClassName

Syntax

#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function is a stub. Since all objects derived from UCELEMENT use a virtual
ClassName() function, this stub is necessary. If this function does get called, it simply
returns NULL.

• returnValueou1 is NULL.

UI_ELEMENT::Information

Syntax

#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectlD = ID_DEFAULT);

128 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function is a stub. Since all objects derived from UCELEMENT use a virtual
Information() function, this stub is necessary. If this function does get called, it simply
returns NULL.

UI_ELEMENT::Listlndex

Syntax

#include <ui_win.hpp>

int ListIndex(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the ordinal position of the element in its parent UCLIST.

UI_ELEMENT::Next

Syntax

#include <ui_win.hpp>

UCELEMENT *Next(void);

Chapter 8 - ULELEMENT 129

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

130

This function returns a pointer to the next element, if one exists, in the list of elements.

• returnValueout is a pointer to the next element in the list. If there is not a next
element, returnValue is NULL.

NOTE: The Next() function is also used by window objects and input devices. In each
case, the function is overloaded to return an object pointer typecast according to the
context. For example, window objects generally return a UCWINDOW_OBJECT pointer
when Next() is called:

UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE ("Window 1")
+newUIW_TEXT(1, 1, 10, 5, "Hello world.", 256);

for (UI_WINDOW_OBJECT *object window->First(); object;
object = object->Next(»)

Input devices, however, return a UCDEVICE pointer:

UI_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

for (UI_DEVICE *device = eventManager->First(); device;
device = device->Next(»);

Some other class objects return specific element pointers (e.g., UCQUEUE_ELEMENT,
UCREGION_ELEMENT, UIW_POP_UP_ITEM). Refer to each class definition for
information about the return value of Next().

Zinc Application Framework-Programmer's Reference Volume 1

UI_ELEMENT::Previous

Syntax

#include <ui_win.hpp>

UCELEMENT *Previous(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the previous element, if one exists, in the list of
elements.

returnValueou, is a pointer to the previous element in the list. If there is not a
previous element, returnValue is NULL.

NOTE: The Previous() function is also used by window objects and input devices. In
each case, the function is overloaded to return an object pointer typecast according to the
context. For example, window objects generally return a UCWINDOW_OBJECT pointer
when Previous() is called:

UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE ("Window 1")
+ new UIW_TEXT(l, 1, 10, 5, "Hello world.", 256);

for (UI_WINDOW_OBJECT *object = window->Last(); object;
object = object->previous(»)

Input devices, however, return a UCDEVICE pointer:

UI_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display);

Chapter 8 - UCELEMENT 131

132

*eventManager
+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

for (UI_DEVICE *device = eventManager->Last(); device;
device = device->Previous(»);

Some other class objects return specific element pointers (e.g., UI_QUEUE_ELEMENT,
UI_REGION_ELEMENT, UIW_POP_UP_ITEM). Refer to each class definition for
information about the return value of Previous().

Zinc Application Framework-Programmer's Reference Volume 1

The UI_ERROR_STUB class is the base class for the error system. The error system is
used to display an error message and to get a response from the end-user. The UI_­
ERROR_STUB class defines the functionality that must exist in the error system. It is
an abstract class, so only classes derived from UCERROR_STUB, such as UCERROR_­
SYSTEM, can be created.

The UCERROR_STUB class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UI_ERROR_STUB public ZIL_INTERNATIONAL
{
public:

virtual -UI ERROR STUB (void) ;
static void-Beep(~oid);
UIS_STATUS ReportError(UI_WINDOW_MANAGER *windowManager,

UIS_STATUS errorStatus, ZIL_ICHAR *forrnat, ...);
UIS_STATUS ReportError(UI_WINDOW_MANAGER *windowManager,

ZIL_ICHAR *titleMessage, UIS_STATUS errorStatus, ZIL_ICHAR *forrnat,
...);

virtual UIS_STATUS ErrorMessage(UI_WINDOW_MANAGER *windowManager,
UIS_STATUS errorStatus, ZIL_ICHAR *rnessage,
ZIL_ICHAR *titleMessage = ZIL_NULLP(ZIL_ICHAR)) = 0;

};

General Members

This section describes those members that are used for general purposes.

UI_ERROR_STUB::-UI_ERROR_STUB

Syntax

#include <ui_win.hpp>

Chapter 9 - ULERROR_STUB 133

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the UCERROR_­
STUB object.

Syntax

#include <ui_win.h>

static void Beep(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function produces a beep.

UI_ERROR_STUB::ErrorMessage

Syntax

#include <ui_win.h>

virtual UIS_STATUS ErrorMessage(UCWINDOW_MANAGER *windowManager,
UIS_STATUS errorStatus, ZIL_ICHAR *message,

134 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_ICHAR *titleMessage =ZIL_NULLP(ZIL_ICHAR));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This pure virtual function displays the error window. See "Chapter 10-UCERROR_­
SYSTEM" for details on the error system's implementation of this function.

NOTE: This function does not accept a variable length argument format. If printf style
formatting is required, use the ReportError() function.

• returnValueoul identifies the user's action on the error window. returnValue is
WOS_INVALID if the "OK" button is pressed or WOS_NO_STATUS if the
"Cancel" button is pressed.

• windowManagerin is a pointer to the Window Manager.

• errorStatusin specifies what error window button options to present to the end-user.
errorStatus can be set to one of the following:

WOS_INVALID-If this status is set, the error window will contain "OK" and
"CANCEL" buttons. Selecting "OK" causes the error window to be deleted
and the field's value to be restored to the value it contained before the invalid
entry was made. Pressing the "CANCEL" button causes the error window to
be deleted and the invalid field entry to remain.

WOS_NO_STATUS-If this status is set, the error window will contain only
an "OK" button. Pressing the "OK" button causes the error window to be
deleted and the field's value to be restored to the value it contained before the
invalid entry was made.

messagein is the message to be displayed on the window.

titleMessagein is the string to be displayed in the error window's title bar.

Chapter 9 - ULERROR_STUB 135

UI_ERROR_STUB::ReportError

Syntax

#include <ui_win.h>

UIS_STATUS ReportError(UCWINDOW_MANAGER *windowManager,
UIS_STATUS errorStatus, ZIL_ICHAR *format, ...);
or

UIS_STATUS ReportError(UCWINDOW_MANAGER *windowManager,
ZIL_ICHAR *titleMessage, UIS_STATUS errorStatus, ZIL_ICHAR *format, ...);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses -

• OS/2
• NEXTSTEP

These overloaded functions display the error window using a variable-length argument list.
These functions create a string from the argument list and call ErrorMessage().

The first overloaded function can be used to specify the button options and the message.

• returnValueout identifies the user's action on the error window. For more details, see
the description of returnValue with the ErrorMessage() function description.

• windowManagerin is a pointer to the Window Manager.

errorStatusin specifies what error window button options to present to the end-user.
For more details, see the description of errorStatus with the ErrorMessage()
function description.

• format in is the printf style format string that specifies how the error string is to be
displayed.

• ••• in is the variable-length argument list that contains any arguments required by
format.

136 Zinc Application Framework-Programmer's Reference Volume 1

The second overloaded function can be used to specify the button options, the error
message and the title bar string.

• returnValueout identifies the user's action on the error window. For more details, see
the description of returnValue with the ErrorMessage() function description.

windowManagerin is a pointer to the Window Manager.

• titleMessagein is the string to be displayed in the error window's title bar.

• errorStatusin specifies what error window button options to present to the end-user.
For more details, see the description of errorStatus with the ErrorMessage()
function description.

• formatin is the printf style format string that specifies how the string is to be
displayed.

• .. 'in is the variable-length argument list that contains any arguments required by
format.

Chapter 9 - ULERROR_STUB 137

138 Zinc Application Framework-Programmer's Reference Volume 1

The ULERROR_SYSTEM class is used to report run-time errors. It displays an error
window with one or more buttons allowing the end-user to specify what action to take.
The programmer provides a message to be displayed in the error window as well as the
title for the error window, if desired. If the environment where the application is running
(e.g., Windows) has a native error system, then ULERROR_SYSTEM calls that error
system.

The ULERROR_SYSTEM class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UI_ERROR_SYSTEM public UI_ERROR_STUB
{
public:

static ZIL_ICHAR _className[];
static int default Initialized;

UI_ERROR_SYSTEM(void) ;
virtual -UI_ERROR_SYSTEM(void);
virtual UIS_STATUS ErrorMessage(UI_WINDOW_MANAGER *windowManager,

UIS_STATUS errorStatus, ZIL_ICHAR *message,
ZIL_ICHAR *titleMessage= ZJL_NULLP(ZIL_ICHAP));

void SetLanguage(const ZIL_ICHAR *languageName);

protected:
canst ZIL_LANGUAGE *myLanguage;

};

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
ULERROR_SYSTEM class, ._className is "ULERROR_SYSTEM."

default/nitialized indicates if the default language strings for this object have been set
up. The default strings are located in the file LANG_DEF.CPP. If default/nitialized
is TRUE, the strings have been set up. Otherwise they have not been.
default/nitialized is set to TRUE when the strings are set up in the object's
constructor.

myLanguage is the ZIL_LANGUAGE object that contains the string translations for
this object.

Chapter 10 - UCERROR_SYSTEM 139

Syntax

#include <uLwin.hpp>

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UI_ERROR_SYSTEM class object.

Example
#include <ui_win.hpp>

main()
{

II Install the error system.
UI_ERROR_SYSTEM *errorSystem = new UI_ERROR_SYSTEM();
UI_WINDOW_OBJECT::errorSystem = errorSystem;

II Clean up.
delete errorSystem;
delete windowManager;
delete eventManager;
delete display;

140 Zinc Application Framework-Programmer's Reference Volume 1

UI_ERROR_SYSTEM::-UI_ERROR_SYSTEM

Syntax

#include <uLwin.hpp>

virtual -UCERROR_SYSTEM(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the UI_ERROR_­
SYSTEM object.

Example

#include <ui_win.hpp>

main ()
{

II Install the error system.
UI_ERROR_SYSTEM *errorSystem = new UI_ERROR_SYSTEM();
UI_WINDOW_OBJECT::errorSystem = errorSystem;

II Clean up.
delete errorSystem;
delete windowManager;
delete eventManager;
delete display;

Chapter 10 - ULERROR_SYSTEM 141

UI_ERROR_SYSTEM::ErrorMessage

Syntax

#include <ui_win.h>

virtual UIS_STATUS ErrorMessage(UCWINDOW_MANAGER *windowManager,
UIS_STATUS errorStatus, ZIL_ICHAR *message,
ZIL_ICHAR *titleMessage = ZIL_NULLP(ZIL_ICHAR));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function beeps and displays an error window. The programmer can specify
a message and a title to appear on the window. If no title is specified, an appropriate
language-specific error title will be displayed. This function is declared virtual so that any
derived error system class can override its default operation. The figure below shows a
graphical UCERROR_SYSTEM presentation window:

The path c:\zinc\bin\~.exe is invalid.....
NOTE: This function does not accept a variable length argument format. If printf-type
formatting is required, use the UI_ERROR_STUB::ReportError() function.

• returnValueOUI identifies the user's action on the error window. returnValue is
WOS_INVALID if the "OK" button is pressed or WOS_NO_STATUS if the
"Cancel" button is pressed.

142 Zinc Application Framework-Programmer's Reference Volume 1

• windowManagerin is a pointer to the Window Manager.

• errorStatusin specifies what error window button options to present to the end-user.
errorStatus can be set to one of the following:

WOS_INVALID-If this status is set, the error window will contain "OK" and
"CANCEL" buttons. Selecting "OK" causes the error window to be deleted
and the field's value to be restored to the value it contained before the invalid
entry was made. Pressing the "CANCEL" button causes the error window to
be deleted and the invalid field entry to remain.

WOS_NO_STATUS-If this status is set, the error window will contain only
an "OK" button. Pressing the "OK" button causes the error window to be
deleted and the field's value to be restored to the value it contained before the
invalid entry was made.

• messagein is the message to be displayed on the window.

• titleMessagein is the string to be displayed in the error window's title bar.

NOTE: In DOS mode the ErrorMessage() function looks for an icon called
"ASTERISK." This icon must be in the UI_WINDOW_OBJECT::defaultStorage .DAT
file in order for the error icon to be displayed. This icon is placed in any .DAT file
created by a Zinc utility, including the Designer.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_OBJECT *item)
{

item->errorSystem->ErrorMessage(item->windowManager, WaS_INVALID,
"The path c:\\zinc\\bin*.exe is invalid.", "Invalid Path");

Chapter 10 - ULERROR_SYSTEM 143

UI_ERROR_SYSTEM::SetLanguage

Syntax

#include <uLwin.hpp>

void SetLanguage(const ZIL_ICHAR *languageName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sets the language to be used by the object. The string translations for the
object will be loaded and the object's myLanguage member will be updated to point to
the new ZIL_LANGUAGE object. By default, the object uses the language identified in
the LANG_DEF.CPP file, which compiles into the library. (If a different default
language is desired, simply copy a LANG_<ISO>.CPP file from the ZINC\SOURCE\­
INTL directory to the \zINC\SOURCE directory, and rename it to LANG_DEF.CPP
before compiling the library.) The language translations are loaded from the I18N.DAT
file, so it must be shipped with your application.

• languageNamein is the two-letter ISO language code identifying which language the
object should use.

144 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 11 - UI_EVENT

The UCEVENT structure manages all information pertammg to an event. The
UCEVENT structure is used to pass events through Zinc Application Framework (from
the Event Manager to the Window Manager).

The UCEVENT structure is declared in UI_EVT.HPP. Its public and protected members
are:

struct ZIL_EXPORT_CLASS UI_EVENT
{

II Declaration of classes used by UI_EVENT.
friend class ZIL_EXPORT_CLASS UI_DEVICE;
friend class ZIL_EXPORT_CLASS UI_DISPLAY;
friend class ZIL_EXPORT_CLASS UI_EVENT_MANAGER;
friend class ZIL_EXPORT_CLASS UI_WINDOW_OBJECT;
friend class ZIL_EXPORT_CLASS UIW_WINDOW;
friend class ZIL_EXPORT_CLASS UI_WINDOW_MANAGER;

EVENT_TYPE type;
ZIL_RAW_CODE rawCode;
ZIL_RAW_CODE modifiers;

#if defined (ZIL_MSWINDOWS)
MSG message;

#elif defined (ZIL_OS2)
QMSG message;

#elif defined (ZIL_MOTIF)
XEvent message;

#elif defined (ZIL_MACINTOSH)
EventRecord message;

#elif defined (ZIL_NEXTSTEP)
NXEvent message;

#endif

union
{

UI_KEY key;
UI_REGION region;
UI_POSITION position;
UI_SCROLL_INFORMATION scroll;
UI_EVENT *event;

UI_DEVICE *device;
UI_DISPLAY *display;
UI_EVENT_MANAGER *eventManager;
UI_WINDOW_OBJECT *windowObject;
UIW_WINDOW *window;
UI_WINDOW_MANAGER *windowManager;

void *data;
};

UI_EVENT(void);
UI_EVENT(EVENT_TYPE type, ZIL_RAW_CODE rawCode = 0);
UI_EVENT(EVENT_TYPE type, ZIL_RAW_CODE rawCode, const UI_KEY &key);
UI_EVENT(EVENT_TYPE type, ZIL_RAW_CODE rawCode,

const UI_REGION ®ion) ;
UI_EVENT(EVENT_TYPE type, ZIL_RAW_CODE rawCode,

const UI_POSITION &position) ;
UI_EVENT(EVENT_TYPE type, ZIL_RAW_CODE rawCode,

const UI_SCROLL_INFORMATION &scroll) ;
#if defined (ZIL_MSWINDOWS)

Chapter 11 - ULEVENT 145

UI_EVENT(EVENT_TYPE type, HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM lParam);

#elif defined (ZIL_OS2)
UI_EVENT(EVENT_TYPE type, HWND hWnd, ULONG msg, MPARAM mpl, MPARAM mp2);

#elif defined (ZIL_MOTIF)
UI_EVENT(EVENT_TYPE _type, XEvent &xevent);

#elif defined (ZIL_MACINTOSH)
UI_EVENT(EVENT_TYPE type, EventRecard &mevent);

#elif defined (ZIL_NEXTSTEP)
UI_EVENT(EVENT_TYPE type, NXEvent &nevent);

#endif
EVENT_TYPE InputType(vaid) canst;

} ;

General Members

This section describes those members that are used for general purposes.

• type is the type of event. Events are numbered as follows:

-32,767 to -1,OOO-Reserved by Zinc Application Framework for future use.

-999 to -I-Reserved by Zinc Application Framework for system messages.
System messages are declared in UI_EVT.HPP. A full description of these
messages is given in "Appendix B-System Events" of Programmer's
Reference Volume 2.

o to 99-Reserved for raw device identifications. The following constants
(declared in UI_EVT.HPP) are pre-defined:

E_CURSOR(50)-Identification for the UID_CURSOR class.

E_DEVICE(99)-Identification used to define a generic device.

E_KEY(IO)-Identification for the UID_KEYBOARD class.

E_MACINTOSH(4)-Identification for Macintosh events.

E_MOTIF(3)-Identification for Motif events.

E_MOUSE(30)-Identification for the UID_MOUSE class.

E_MSWINDOWS(I)-Identification for MS Windows events.

E_NEXTSTEP(II)-Identification for NEXTSTEP events.

146 Zinc Application Framework-Programmer's Reference Volume 1

E_OS2(2)-Identification for OS/2 events.

The following additional raw device identifications are reserved by Zinc
Application Framework for future use: 12-19, 31-39, 51-59, 70-79 and 90-98.
The remaining values 5-9, 20-29, 40-49, 60-69 and 80-89 can be used by the
programmer.

100 to 9,999-Reserved by Zinc Application Framework for logical events.
Logical messages are declared in UI_EVT.HPP. A full description of these
messages is given in "Appendix C-Logical Events" of Programmer's
Reference Volume 2.

10,000 to 32,767-Available to the programmer for private use. These values
are not used by Zinc Application Framework.

• rawCode is the raw code value associated with the event. The following devices
(declared in UI_EVT.HPP) use the rawCode event field:

UID_KEYBOARD-The rawCode for the keyboard device is the raw scan code
associated with the key. For example, pressing <F1> in DOS generates a raw
scan code of Ox3BOO. In this case, the UCEVENT structure would contain the
following values:

event. type = E_KEY;
event.rawCode = Ox3BOO;
event. key. value = 0;
event.key.shiftState = 0;

II low 8 bits of rawCode

NOTE: Curses does not place scan code values in rawCode. Instead, rawCode
will contain the key's ASCII value.

UID_MOUSE-The rawCode for the mouse device is the keyboard shift state
(low 8 bits) and the mouse button state (high 8 bits). For example, pressing the
left mouse button while holding the <Left-shift> key generates a raw code of
Ox0102 (Ox0002 for the <Left-shift> key and Ox0100 for the left-mouse button).
In this case, the UCEVENT structure would contain the following values:

event. type = E_MOUSE;
event.rawCode = Ox0102;
event.position.column = <current mouse column position>;
event.position.line = <current mouse row position>;

Chapter 11 - ULEVENT 147

• modifiers is a bit field that indicates which modifier keys (i.e., shift keys, meta keys,
etc.) were pressed at the time the event occurred.

• message is the message received from the graphical operating system if the
application is running in such an environment.

• key, region, position, scroll and data are types of specific information associated with
the event.

• event, device, display, eventManager, windowObject, window and windowManager
are used for routing events.

Syntax

UI_EVENT(void);
or

UI_EVENT(EVENT_TYPE type, ZIL_RAW_CODE rawCode = 0);
or

UI_EVENT(EVENT_TYPE type, ZIL_RAW_CODE rawCode, const UCKEY &key);
or

UI_EVENT(EVENT_TYPE type, ZIL_RAW_CODE rawCode,
const UCREGION ®ion);
or

UCEVENT(EVENT_TYPE type, ZIL_RAW_CODE rawCode,
const UCPOSITION &position);
or

UI_EVENT(EVENT_TYPE type, ZIL_RAW_CODE rawCode,
const UCSCROLL_INFORMATION &scroll);
or

UI_EVENT(EVENT_TYPE type, HWND hWnd, UINT wMsg, WPARAM wParam,
LPARAM IParam);
or

UCEVENT(EVENT_TYPE type, HWND hWnd, ULONG msg, MPARAM mpl,
MPARAM mp2);
or

UCEVENT(EVENT_TYPE _type, XEvent &xevent);
or

UI_EVENT(EVENT_TYPE type, EventRecord &mevent);

148 Zinc Application Framework-Programmer's Reference Volume 1

or
UCEVENT(EVENT_TYPE type, NXEvent &nevent);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

The first overloaded constructor takes no arguments. It creates a basic event structure
with no special initialization.

The second overloaded constructor initializes an event structure with the following
arguments:

• typein contains a valid EVENT_TYPE.

• rawCodein contains a valid ZIL_RAW_CODE.

The third overloaded constructor initializes an event structure with the following
arguments:

• typein contains a valid EVENT_TYPE.

• rawCodein contains a valid ZIL_RAW_CODE.

• keYin contains the address of a UCKEY structure.

The fourth overloaded constructor initializes an event structure with the following
arguments:

• typein contains a valid EVENT_TYPE.

• rawCodein contains a valid ZIL_RAW_CODE.

• regionin contains the address of a VI_REGION structure.

The fifth overloaded constructor initializes an event structure with the following

Chapter 11 - ULEVENT 149

150

arguments:

• typein contains a valid EVENT_TYPE.

• rawCodein contains a valid ZIL_RAW_CODE.

• positionin contains the address of a UCPOSITION structure.

The sixth overloaded constructor initializes an event structure with the following
arguments:

• typein contains a valid EVENT_TYPE.

• rawCodein contains a valid ZIL_RAW_CODE.

scrollin contains the address of a UCSCROLL_INFORMATION structure.

The seventh overloaded constructor is used only for Windows and Windows NT
programs. It initializes an event structure with the following arguments:

• typein contains a valid EVENT_TYPE.

• hWndin contains a handle to a window.

• wMsgin contains an input message.

wParamin is a UINT value containing specific message information.

lParamin is an LPARAM value containing specific message information.

The eighth overloaded constructor is used only for OS/2 programs. It initializes an event
structure with the following arguments:

• typein contains a valid EVENT_TYPE.

• hWndin contains a handle to a window.

msgin contains an input message.

• mp1in is an MPARAM value containing specific message information.

mp2in is an MPARAM value containing specific message information.

Zinc Application Framework-Programmer's Reference Volume 1

The ninth overloaded constructor is used only for Motif programs. It initializes an event
structure with the following arguments:

• _type in contains a valid EVENT_TYPE.

• xeventin is an XEvent value containing specific message information.

The tenth overloaded constructor is used only for Macintosh programs. It initializes an
event structure with the following arguments:

• typein contains a valid EVENT_TYPE.

• meventin is a Macintosh EventRecord value containing specific message information.

The eleventh overloaded constructor is used only for NEXTSTEP programs. It initializes
an event structure with the following arguments:

• typein contains a valid EVENT_TYPE.

• neventin is a NEXTSTEP NXEvent value containing specific message information.

Example 1

#include <ui_win.hpp>

main ()
{

II Initialize Zinc Application Framework.
UI_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

UI_WINDOW_MANAGER *windowManager new UI_WINDOW_MANAGER(display,
eventManager) ;

EVENT_TYPE ccode;

do
{

II Get an event from the event manager.
UI_EVENT event;
eventManager->Get(event, Q_NORMAL);

II Pass the event to the window manager.
windowManager->Event(event);

while (ccode != L_EXIT);

Chapter 11 - UCEVENT 151

static void Exit (UI_WINDOW_OBJECT *item, UI_EVENT &event, EVENT_TYPE ccode)
{

II Send an L_EXIT message through the system.
event. type = L_EXIT;
UI_EVENT_MANAGER *eventManager = ((UIW_POP_UP_ITEM *)item)->eventManager;
eventManager->Put(event, Q_BEGIN);

Example 2

void UI_WINDOW_MANAGER: :Add(UI_WINDOW_OBJECT *object)
{

II Flag the old object as non-current.
if (firstObject && object != firstObject)

firstObject->Event(UI_EVENT(S_NON_CURRENT»);

II Flag the new object as current.
if (object != firstObject && UI_LIST::lndex(object) != -1)
{

UI_LIST::Subtract(object);
UI_LIST::Add(firstObject, object);

}
else if (object != firstObject)
{

UI_LIST::Add(firstObject, object);
object->Event(UI_EVENT(S_INITIALIZE»);
object->Event(UI_EVENT(S_CREATE») ;

}
display->RegionDefine(object->screenID, object->true);

UI_EVENT::InputType

Syntax

#include <ui_evt.hpp>

EVENT_TYPE InputType(void) const;

152 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the type of device that generated the event if the event was
generated by a mouse or keyboard in a graphical operating system.

• returnValueout indicates the type of device that generated the event. returnValue will
be either E_MOUSE if the event was a mouse event, or E_KEY if the event was a
keyboard event.

Chapter 11 - ULEVENT 153

154 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 12 - UI_EVENT_MANAGER

The UCEVENT_MANAGER class manages input devices and the event queue that
temporarily stores messages waiting to be processed. The graphic illustration below
shows the conceptual operation of the Event Manager within the library:

MAIN PROGRAM CONTROL

ULWINDOW_MANAGER

The controlling portion of the UCEVENT_MANAGER class contains a list of input
devices. Whenever an event is requested, the Event Manager polls each device, allowing
it to place any events it may have on the event queue. This portion of the UI_EVENT_­
MANAGER class is used only in those operating systems that do not provide an event
driven messaging system (e.g., DOS and Curses).

The storage portion of the UCEVENT_MANAGER class is implemented as an array of
UCEVENT structures. The size of this array is specified by the programmer when the
Event Manager class is constructed. Input devices place events on the event queue so that
they may be processed by the system. In addition to input devices, the operating system
(only those operating systems that provide an event driven messaging system) and the
programmer may also place events on the queue.

The UCEVENT_MANAGER class is declared in UI_EVT.HPP. Its public and protected
members are:

class ZIL EXPORT_CLASS UI_EVENT_MANAGER : public UI_LIST
{

public:
UI_EVENT_MANAGER(UI_DISPLAY *display, int noOfElements = 100);
virtual -UI_EVENT_MANAGER(void);
EVENT_TYPE DevicePosition(ZIL_DEVICE_TYPE deviceType, int column,

int line);

Chapter 12 - ULEVENT_MANAGER 155

EVENT_TYPE DeviceState(ZIL_DEVICE_TYPE deviceType,
ZIL_DEVICE_STATE deviceState);

EVENT_TYPE DeviceImage(ZIL_DEVICE_TYPE deviceType,
DEVICE_IMAGE deviceImage);

virtual EVENT_TYPE Event (const UI_EVENT &event,
ZIL_DEVICE_TYPE deviceType = E_DEVICE);

virtual int Get (UI_EVENT &event, Q_FLAGS flags = Q_NORMAL);
virtual void Put (const UI_EVENT &event, Q_FLAGS flags = Q_END);
Q_FLAGS QFlags(void);

II List members.
void Add(UI_DEVICE *device);
UI_DEVICE *Current(void);
UI_DEVICE *First(void);
UI_DEVICE *Last(void);
void Subtract (UI_DEVICE *device);
UI_EVENT_MANAGER &operator+(UI_DEVICE *device);
UI_EVENT_MANAGER &operator-(UI_DEVICE *device);

II Version 2.0 and 1.0 compatibility.
UI_EVENT_MANAGER(int noOfElements, UI_DISPLAY *display);

protected:
int level;
Q_FLAGS qFlags;
UI_DISPLAY *display;
UI_QUEUE_BLOCK queueBlock;

#if defined (ZIL_OS2)
HMQ hmq;

#endif
};

General Members

This section describes those members that are used for general purposes.

• level indicates if a recursive call to the Get() function is being made. If level is 1,
then only a first-level call has been made to Get(). level is incremented each time
Get() is called, and decremented each time it exits. Thus, if level is greater than 1,
the function is at a recursive level.

• qFlags contains the flag settings for the current first-level call to Get().

• display is a pointer to the current display class.

• queueBlock is a pointer to the event queue, which contains all of the unprocessed
messages sent by the devices, the operating system, or the programmer.

• hmq is a pointer to the OS/2 message queue.

156 Zinc Application Framework-Programmer's Reference Volume 1

Syntax

#include <ui_evt.hpp>

UCEVENT_MANAGER(UI_DISPLAY *display, int noOfElements = 100);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UCEVENT_MANAGER class object. It must be called
after the display class constructor has been called.

• displaYin is a pointer to the screen display. This pointer is used by input devices
when they display their information to the screen display (e.g., the blinking cursor of
the UID_CURSOR class object).

• noOfElementsin tells the maximum number of elements to reserve in the event queue.
The Event Manager automatically allocates space for noOfElements.

Example

#include <ui_win.hpp>

main()
{

II Initialize Zinc Application Framework.
UI_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display, 100);
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

UI_WINDOW_MANAGER *windowManager new UI_WINDOW_MANAGER(display,
eventManager) ;

II Restore the system. We must explicitly call the destructor for the
II window manager and event manager to preserve the creation order.

Chapter 12 - ULEVENT_MANAGER 157

delete windowManagerj
delete eventManagerj
delete displayj
return (0) j

Syntax

#include <ui_evt.hpp>

virtual -UCEVENT_MANAGER(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the UCEVENT_­
MANAGER object and destroys the class information of any input device that remains
attached to the Event Manager.

Example

#include <ui_win.hpp>

main ()
{

II Initialize Zinc Application Framework.
UI_DISPLAY *display = new UI_TEXT_DISPLAYj
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) j

*eventManager
+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSORj

UI_WINDOW_MANAGER *windowManager new UI_WINDOW_MANAGER(display,
eventManager) j

II Restore the system. We must explicitly call the destructor for the
II window manager and event manager to preserve the creation order.
delete windowManagerj

158 Zinc Application Framework-Programmer's Reference Volume 1

delete eventManager;
delete display;
return (O);

Syntax

#include <uLevt.hpp>

virtual void Add(UCDEVICE *device);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function adds a device to the Event Manager. When devices are added to the Event
Manager, they are ordered so that devices with a higher priority (i.e., lower device type
value) will be at the beginning of the Event Manager's list.

device in is the device to be added to the Event Manager.

UI_EVENT_MANAGER::Current

Syntax

#include <uLevt.hpp>

UCDEVICE *Current(void);

Chapter 12 - ULEVENT_MANAGER 159

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the current device in the Event Manager's list.

• returnValueout is the current device in the Event Manager's list.

UI_EVENT_MANAGER: :Devicelmage

Syntax

#include <uLevt.hpp>

EVENT_TYPE DeviceImage(ZIL_DEVICE_TYPE deviceType,
DEVICE_IMAGE device/mage);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sets the image displayed by the input device specified by deviceType.

returnValueout is the new state of the device (i.e., its image as specified in
device/mage) .

• deviceTypein is the device identification where the image message is to be sent. The
following device types (declared in UI_EVT.HPP) may be specified:

160 Zinc Application Framework-Programmer's Reference Volume 1

E_CURSOR-Sends the state information to the UID_CURSOR class object (if
it is in the device list).

E_DEVICE-Sends the state information to an input device whose device type
is E_DEVICE (if it is in the device list).

E_MOUSE-Sends the state information to the UID_MOUSE class object (if
it is in the device list.)

• device/magein is the new image of the device. For mouse, pen, and cursor devices,
the allowable image changes (declared in UI_EVT.HPP) are:

E_CURSOR-The UID_CURSOR class recognizes the following image
information:

DC_INSERT-Changes the cursor to an insert cursor. In DOS graphics
mode, if device/mage is DC_INSERT, the cursor device displays a thick
vertical bar cursor on the screen. In DOS text mode, the DC_INSERT
cursor is a wide box. This image applies to DOS only.

DC_OVERSTRIKE-Changes the cursor to an overstrike cursor. In DOS
graphics mode, if device/mage is DC_OVERSTRIKE, the cursor device
displays a thin vertical bar cursor on the screen. In DOS text mode, the
DC_OVERSTRIKE cursor is a short, wide underline. This image applies
to DOS only. (e.g., a thin vertical bar).

E_MOUSE-The UID_MOUSE class recognizes the following image
information:

DM_DIAGONAL_ULLR-Displays the image shown when sizing the top­
left or bottom-right comer of a window.

DM_DIAGONAL_LLUR-Displays the image shown when sizing the top­
right or bottom-left comer of a window.

DM_EDIT-Displays the image shown when positioned over an editable
field.

DM_HORIZONTAL-Displays the image shown when sizing a window
horizontally.

Chapter 12 - ULEVENT_MANAGER 161

DM_MOVE-Displays the image shown when indicating that the object is
to be moved.

DM_POSITION-Displays the image shown when indicating that
something is to be positioned by the device.

DM_VERTICAL-Displays the image shown when sizing a window
vertically.

DM_VIEW-Displays the default image, typically an arrow.

DM_WAIT-Displays the image shown to indicate to the user that some
processing is taking place and that he should wait.

NOTE: Because Zinc allows the graphical operating systems to handle their
images, not all of these images may be supported in all environments.

Example

#include <ui_evt.hpp>

main()
{

II Initialize Zinc Application Framework.
UI_DISPLAY *display = new UI_GRAPHICS_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

II Display an hour glass until the program is ready to receive user input.
eventManager->Devicelmage(E_MOUSE, DM_WAIT);

UI_EVENT_MANAGER: :DevicePosition

Syntax

#include <uLevt.hpp>

void DevicePosition(ZIL_DEVICE_TYPE deviceType, int column, int line);

162 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sets the posItIon for the device (e.g., mouse, pen, or cursor). Some
graphical operating systems may not allow this type of action for all devices.

• deviceTypein is the type of device (e.g., E_CURSOR, or E_MOUSE) for which the
message is intended.

• columnin and linein is the position to where the device will be moved. The value of
column and line depends on the type of display mode in which the application is
running. For example, if the cursor is to be positioned at the center of the screen
while the application is running in text mode (i.e., an 80 column by 25 line screen)
the position values should be:

column = 40;
1 ine = 13;
eventManager->DevicePosition(E_CURSOR, column, line);

If on the other hand, the application is running in a 640 column by 480 line graphics
mode, the position values should be:

column = 320;
line = 240;
eventManager->DevicePosition(E_CURSOR, column, line);

Example

#include <ui_evt.hpp>

main()
{

II Initialize Zinc Application Framework.
UI_DISPLAY *display = new UI_GRAPHICS_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

II Reposition the cursor at the top-left side of the screen.
eventManager->DevicePosition(E_CURSOR, 0, 0);

Chapter 12 - ULEVENT_MANAGER 163

UI_EVENT_MANAGER::DeviceState

Syntax

#include <ui_evt.hpp>

EVENT_TYPE DeviceState(ZIL_DEVICE_TYPE deviceType ,
ZIL_DEVICE_STATE deviceState);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

164

This function sets the state for the input device specified by deviceType .

• returnValueout is the new state of the device.

• deviceTypein is the device identification where the state message is to be sent. The
following device types (declared in UI_EVT.HPP) may be specified:

E_CURSOR-Sends the state information to the UID_CURSOR class object (if
it is in the device list).

E_DEVICE-Sends the state information to an input device whose device type
is E_DEVICE (if it is in the device list).

E_MOUSE-Sends the state information to the UID_MOUSE class object (if
it is in the device list.)

E_KEY-Sends the state information to the UID_KEYBOARD class object (if
it is in the device list).

Zinc Application Framework-Programmer's Reference Volume 1

• deviceStatein is the new state of the device. Allowable state changes (declared in
UI_EVT.HPP) are:

D_HIDE-Hides the specified device's image. If deviceType is E_DEVICE, aU
devices in the Event Manager's device list are sent the D_HIDE message.

D_ON-Turns the specified device on. If deviceType is E_DEVICE, all devices
in the Event Manager's device list are sent the D_ON message.

D_OFF-Turns the specified device off. If deviceType is E_DEVICE, all
devices in the Event Manager's device list are sent the D_OFF message.

D_STATE-Gets the state information associated with the specified device. If
deviceType is E_DEVICE, only the state of the last device in the Event
Manager's device list is returned.

Other device states-These must be recognized by the device whose type is
deviceType. For example, the UID_MOUSE class also recognizes the following
state information:

DM_DIAGONAL_ULLR-Displays the image shown when sizing the top­
left or bottom-right comer of a window.

DM_DIAGONAL_LLUR-Displays the image shown when sizing the top­
right or bottom-left comer of a window.

DM_EDIT-Displays the image shown when positioned over an editable
field.

DM_HORIZONTAL-Displays the image shown when sizing a window
horizontally.

DM_MOVE-Displays the image shown when indicating that the object is
to be moved.

DM_POSITION-Displays the image shown when indicating that
something is to be positioned by the device.

DM_VERTICAL-Displays the image shown when sizing a window
vertically.

DM_VIEW-Displays the default image, typically an arrow.

Chapter 12 - ULEVENT_MANAGER 165

DM_WAIT-Displays the image shown to indicate to the user that some
processing is taking place and that he should wait.

Example

#include <ui_evt.hpp>

main ()
{

II Initialize Zinc Application Framework.
UI_DISPLAY *display = new UI_GRAPHICS_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

II Display an hour glass until the program is ready to receive user input.
eventManager->DeviceState(E_MOUSE, DM_WAIT);

Syntax

#include <uLevt.hpp>

virtual EVENT_TYPE Event(const UCEVENT &event,
ZIL_DEVICE_TYPE deviceType = E_DEVICE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

166

This virtual function allows the programmer to communicate with devices through the
Event Manager. This permits the programmer to change the interaction of input devices
without having a pointer to the device.

Zinc Application Framework-Programmer's Reference Volume 1

• eventin is the message to be passed to an input device.

• deviceTypein is the type of device to which the message will be passed.
ZIL_DEVICE_TYPE values used by the library include: E_CURSOR, E_KEY, and
E_MOUSE.

Example

#include <ui_evt.hpp>

ExampleFunction()
{

II Attach the keyboard to the event manager.
UI_DISPLAY *display = new UI_GRAPHICS_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

II Turn all the devices off.
UI_EVENT event;
event.type = D_OFF;
eventManager->Event(event, E_DEVICE);

UI EVENT_MANAGER::First

Syntax

#include <ui_evt.hpp>

UCDEVICE *First(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 12 - UCEVENT_MANAGER 167

Remarks

This function returns a pointer to the first device in the Event Manager's list. When
devices are added to the Event Manager, they are ordered so that devices with a higher
priority (i.e., lower device type value) will be at the beginning of the Event Manager's
list. Thus, this function will return a pointer to the highest priority device.

• returnValueou, is the first device in the Event Manager's list.

UI_EVENT_MANAGER::Get

Syntax

#include <uLevt.hpp>

virtual int Get(UCEVENT &event, Q_FLAGS flags = Q_NORMAL);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function gets an event from the Event Manager's event queue, if one is available.
The event queue is used to temporarily store events that are waiting to be processed.
These events can be from input devices, from the operating system (if the operating
system provides an event driven messaging system), or from the programmer.

• returnValueou, is set to 0 if an event was available and copied to the event argument.
Otherwise, a negative value is returned, indicating that an event was not available.

• eventou1 is a reference pointer to the event. This argument is a copy of the event
information.

• flags in indicates what actions should take place when attempting to get an event from
the event queue. The following flags (declared in UI.EVT_HPP) specify the
available actions:

168 Zinc Application Framework-Programmer's Reference Volume 1

Q_BEGIN-Retrieves the event from the beginning of the input queue. Setting
this flag forces the Event Manager to return the oldest event in the event queue.

Q_BLOCK-Remains in the UI_EVENT_MANAGER::Get() function polling
the devices until there is an event on the queue.

Q_DESTROY-Destroys the event information from the Event Manager after
it is copied to event. NOTE: The Q_NO_DESTROY flag takes precedence over
this flag.

Q_END-Retrieves the event from the end of the input queue. Setting this flag
forces the Event Manager to return the most recent event in the event queue.

Q_NO_BLOCK-Polls the devices and then immediately returns from the UI_­
EVENT_MANAGER::Get() function, even if there is not an event in the event
queue.

Q_NO_DESTROY-Does not destroy the event information from the input
queue. If this flag is set, the next call to UI_EVENT_MANAGER::Get() will
return the same event.

Q_NO_POLL-Does not poll the devices before checking the event queue.
This is an advanced flag that should only be used by VI_DEVICE class objects
when they communicate with the Event Manager. It prevents VCDEVICE class
objects from being recursively called by the UI_EVENT_MANAGER::Get()
function.

Q_NORMAL-This flag is equivalent to setting the Q_BLOCK, Q_BEGIN,
Q_DESTROY and Q_POLL flags. This flag is the default if no other flag is set.

Q_POLL-Ensures that all devices in the Event Manager's device list are called
before information is retrieved from the event queue. This enables the devices
to place any events they may have stored on the queue.

Example
#include <ui_win.hpp>

main()
{

EVENT_TYPE ccode;
do

Chapter 12 - ULEVENT_MANAGER 169

II Get an event from the event manager.
DI_EVENT event;
eventManager->Get(event, Q_NORMAL);

II Pass the event to the window manager.
ccode = windowManager->Event(event)i

while (ccode != L_EXIT);

UI_EVENT_MANAGER::Last

Syntax

#include <ui_evt.hpp>

UCDEVICE *Last(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the last device in the Event Manager's list. When
devices are added to the Event Manager, they are ordered so that devices with a higher
priority (i.e., lower device type value) will be at the beginning of the Event Manager's
list. Thus, this function will return a pointer to the lowest priority device.

• returnValueOUl is the last device in the Event Manager's list.

170 Zinc Application Framework-Programmer's Reference Volume 1

Syntax

#include <ui_evt.hpp>

virtual void Put(const UCEVENT &event, Q_FLAGS flags =Q_END);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function puts an event into the event queue.

• eventin is a reference pointer to the event. This argument has the event information
that is put in the input queue.

• flagsin indicates the order in which to insert the event into the event queue. The
following flags (declared in UI_EVT.HPP) are recognized by the UI_EVENT_­
MANAGER::Put() function:

Q_BEGIN-Puts the event information at the beginning of the input queue (i.e.,
before the oldest event in the input queue.)

Q_END-Puts the event information at the end of the input queue (i.e., after the
most recent event in the input queue.) This flag is the default if no other flag
is set.

Example

#include <ui_win.hpp>

static void Exit (UI_WINDOW_OBJECT *item, UI_EVENT &event, EVENT_TYPE ccode)
{

II Send an L_EXIT message through the system.
event.type = L_EXIT;

Chapter 12 - UCEVENT_MANAGER 171

UI_EVENT_MANAGER *eventManager = item->eventManageri
eventManager->Put(event, Q_BEGIN)i

Syntax

#include <ui_evt.hpp>

virtual Q_FLAGS QFlags(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the value of the qFlags member variable.

• returnValueout is the current flag setting for the event queue flags. If a call to Get()
is in progress, returnValue will indicate the flag setting passed in the call to Get().
If no call to Get() is in process, this value will be O.

UI_EVENT_MANAGER::Subtract

Syntax

#include <ui_evt.hpp>

void Subtract(UCDEVICE *device);

172 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

.OS/2

• NEXTSTEP

This function subtracts a device from the Event Manager.

• devicein is the device to be subtracted from the Event Manager.

UI_EVENT_MANAGER::operator +

Syntax

#include <ui_evt.hpp>

UCEVENT_MANAGER &operator + (UCDEVICE *device);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload adds a device to the Event Manager. When devices are added to
the Event Manager, they are ordered so that devices with a higher priority (i.e., lower
device type value) will be at the beginning of the Event Manager's list.

• returnValueou1 is a pointer to the Event Manager. This pointer is returned so that the
operator may be used in a statement containing other operations.

• devicein is the device to be added to the Event Manager.

Chapter 12 - ULEVENT_MANAGER 173

UI_EVENT_MANAGER: :operator -

Syntax

#include <ui_evt.hpp>

UCEVENT_MANAGER &operator - (UCDEVICE *device);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload subtracts a device from the Event Manager.

• returnValueout is a pointer to the Event Manager. This pointer is returned so that the
operator may be used in a statement containing other operations.

• devicein is the device to be subtracted from the Event Manager.

174 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 13 - UI_EVENT_MAP

The UI_EVENT_MAP structure is used to map raw input device events to logical events.
For example, Zinc Application Framework declares default event mapping for the UID_­
KEYBOARD and UID_MOUSE class objects. Some of their mapped values (in DOS)
are:

<Fl> - Mapped to L_HELP; a message that causes the system to generate context­
sensitive help information about the current window object.

<TAB> - Mapped to L_NEXT; a message that moves focus to the next object on
the window.

<Left-mouse-button click> - Mapped to L_BEGIN_SELECT if on a selection
object or L_BEGIN_MARK if on an editable object. These messages select a
window field or start a marking operation, respectively.

The UCEVENT_MAP class is declared in UI_WIN.HPP. Its public and protected
members are:

struct ZIL_EXPORT_CLASS UI_EVENT_MAP
{

ZIL_OBJECTID objectID;
ZIL_LOGICAL_EVENT logicalValue;
EVENT_TYPE eventType;
ZIL_RAW_CODE rawCode;
ZIL_RAW_CODE modifiers;

static LOGICAL_EVENT MapEvent(UI_EVENT_MAP *mapTable,
const UI_EVENT &event, ZIL_OBJECTID idl = ID_WINDOW_OBJECT,
ZIL_OBJECTID id2 ID_WINDOW_OBJECT,
ZIL_OBJECTID id3 ID_WINDOW_OBJECT,
ZIL_OBJECTID id4 ID_WINDOW_OBJECT,
ZIL_OBJECTID idS ID_WINDOW_OBJECT) ;

};

General Members

This section describes those members that are used for general purposes.

• objectID is the object identification for which the match applies. (A full list of object
identifications is given in UI_EVT.HPP.) Each window identification has an "ID_"
prefix. Some example window object identifications are:

Chapter 13 - ULEVENT_MAP 175

176

ID_WINDOW_OBJECT-This identification is a default identification
associated with all class objects derived from the UCWINDOW_OBJECT base
class.

ID_BORDER-This identification is associated with the UIW_BORDER class
object.

ID_STRING-This identification is associated with the UIW_STRING object
or with any class object derived from the UIW_STRING base class (e.g.,
UIW_DATE, UIW_TIME).

• logicalValue is the logical event to map. (A full list of logical values is given in
UI_EVT.HPP.) Each logical value has an "L_" prefix. Some example logical
values are:

L_EXIT-Exits the application program.

L_BEGIN_MARK-Begins a mark region.

• eventType is the raw device identification. The following event types (declared in
UI_EVT.HPP) are pre-defined by Zinc Application Framework:

E_CURSOR-Identification for the UID_CURSOR object.

E_KEY-Identification for the UID_KEYBOARD object. This device generates
keyboard input information.

E_MOUSE-Identification for the UID_MOUSE object. This device generates
mouse input information.

• rawCode is the raw scan code or button state (depending on the type of device) of
the event.

modifiers is a bit field that indicates which modifier keys (i.e., shift keys, meta keys,
etc.) were pressed at the time the event occurred.

Zinc Application Framework-Programmer's Reference Volume 1

Syntax

#include <ui_evt.hpp>

static LOGICAL_EVENT MapEvent(UCEVENT_MAP *mapTable,
const UCEVENT &event,
ZIL_OBJECTID idl = ID_WINDOW_OBJECT,
ZIL_OBJECTID id2 = ID_WINDOW_OBJECT,
ZIL_OBJECTID id3 = ID_WINDOW_OBJECT,
ZIL_OBJECTID id4 = ID_WINDOW_OBJECT,
ZIL_OBJECTID id5 = ID_WINDOW_OBJECT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function provides the logical mapping (if any) of a raw event.

• returnValueout is the logical event that matches the event and identification
parameters. If no match occurs, this value is event. type (i.e., the event type passed
into the MapEvent() function).

mapTablein is a pointer to the event map table to be used by the event mapping
function.

eventin is the raw event to be mapped. The event.type and event.rawCode values are
used by the event mapping function.

• idl in' id2in' id3in , id4in and id5in are hierarchal identification values used when
interpreting the raw event. For example, the UIW_TEXT class object uses the
following identification values when it looks for a logical mapping:

idl-ID_TEXT
id2-ID_WINDOW

Chapter 13 - ULEVENT_MAP 177

id3-ID_WINDOW_OBJECT
id4-unused
idS-unused

Example
#include <ui_evt.hpp>

class ZIL_EXPORT_CLASS DI_WINDOW_OBJECT : public DI_ELEMENT
{
protected:

EVENT_TYPE LogicalEvent(const DI_EVENT &event, ZIL_OBJECTID currentID)
{ return (UI_EVENT_MAP::MapEvent(eventMapTable, event, currentID,

windowID[O], windowID[l], windowID[2], windowID[3], windowID[4]»);

EVENT_TYPE DIW_TITLE: : Event (const DI_EVENT &event)
{

EVENT_TYPE ccode = UI_WINDOW_OBJECT::LogicalEvent(event, ID_TITLE);
switch (ccode)
{

}
return (ccode);

178 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 14 - UI_GEOMETRY_MANAGER

The UCGEOMETRY_MANAGER class object is the controlling class for geometry
management. Geometry management is used to restrict an object to minimum and
maximum sizes or to tie an edge of an object to other objects or its parent so that it
remains at a specified distance from the object. The objects can be stretched or shrunk
or can simply be repositioned. Different types of constraints can be applied to each
object, allowing flexible run-time positioning and sizing.

A geometry manager should be added to the window that contains the objects being
managed. If a child window has objects that should be managed, it should have its own
geometry manager. Otherwise, one geometry manager is sufficient to manage all objects
on a window. Constraints, such as UI_ATTACHMENT, UCDIMENSION_CON­
STRAINT and UCRELATIVE_CONSTRAINT, are added to the geometry manager.

The UCGEOMETRY_MANAGER class is declared in UI_WIN.HPP. Its public and
protected members are:

class UI_GEOMETRY_MANAGER : public UI_WINDOW_OBJECT, public UI_LIST
{
public:

static ZIL_ICHAR _className[Ji

UI_GEOMETRY_MANAGER(void) i
virtual -UI GEOMETRY MANAGER (void) i
virtual ZIL=ICHAR *ClassName(void) i
virtual EVENT_TYPE Event (const UI_EVENT &event) i
virtual void *Information(ZIL_ZIL_INFO_REQUEST request, void *data,

ZIL_ZIL_OBJECTID objectID = ID_DEFAULT) i

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void) i
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM)) i

UI_GEOMETRY_MANAGER(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM)) i

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

II List members.
UI_CONSTRAINT *Add(UI_CONSTRAINT *object)i
UI_CONSTRAINT *Current(void);
UI_CONSTRAINT *First(void);

Chapter 14 - U,-GEOMETRY_MANAGER 179

UI_CONSTRAINT *Last(void)i
UI_CONSTRAINT *Subtract(UI_CONSTRAINT *object)i
UI_GEOMETRY_MANAGER &Operator+(UI_CONSTRAINT *object) i
UI_GEOMETRY_MANAGER &Operator-(UI_CONSTRAINT *object) i

}i

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UCGEOMETRY_MANAGER class, _className is "UCGEOMETRY_MANA­
GER."

Syntax

#include <uLwin.hpp>

UCGEOMETRY_MANAGER(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

180

This constructor creates a new UCGEOMETRY_MANAGER class object.

Zinc Application Framework-Programmer's Reference Volume 1

Syntax

#include <ui_win.hpp>

virtual LJCGEOMETRY_MANAGER(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

.OS/2

• NEXTSTEP

This virtual destructor destroys the class information associated with the UCGEOME­
TRY_MANAGER object. All constraints attached to the geometry manager will also be
destroyed.

UI_GEOMETRY_MANAGER::Add
UI_GEOMETRY_MANAGER::operator +

Syntax

#include <uLwin.hpp>

UCCONSTRAINT *Add(UI_CONSTRAINT *object);
or

UCGEOMETRY_MANAGER &operator + (UCCONSTRAINT *object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 14 - ULGEOMETRY_MANAGER 181

Remarks

These overloaded functions are used to add a constraint to the geometry manager. The
order in which objects are added to a window is important because it affects the order in
which the constraints are processed. When the window to which the geometry manager
is attached is sized the geometry manager goes through its list of constraints, from first
to last, calling each constraint's Modify() function. If more than one constraint can
affect an object, then the constraints must be added to the geometry manager so that the
constraint that needs to be processed first is added first. For example, if object I is tied
to the left edge of object 2, using a UCATTACHMENT constraint, and object 2 is tied
to its parent, using a UCRELATIVE_CONSTRAINT. object 2's constraint should be
added to the geometry manager first. This is because its size or position will likely
change if the window is sized, and object l's position needs to be updated based on object
2's new position.

The first function adds a constraint to the geometry manager.

• returnValueout is a pointer to object.

• objectin is a pointer to the constraint to be added to the geometry manager.

The second operator overload adds a constraint to the geometry manager. This operator
overload is equivalent to calling the UI_GEOMETRY_MANAGER::Add() function
except that it allows the chaining of constraint additions to the geometry manager.

• returnValueout is a pointer to the UCGEOMETRY_MANAGER. This pointer is
returned so that the operator may be used in a statement containing other operations.

• objectin is a pointer to the constraint that is to be added to the geometry manager.

UI_GEOMETRY_MANAGER::ClassName

Syntax

#include <uLwin.hpp>

virtual ZIL_ICHAR *ClassName(void);

182 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

.0SI2
• NEXTSTEP

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UI_GEOMETRV_MANAGER::Current

Syntax

#include <uLwin.hpp>

UCCONSTRAINT *Current(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

.0SI2
• NEXTSTEP

This function returns a pointer to the current constraint, if one exists, in the geometry
manager.

• returnValueout is a pointer to the current constraint. If there is no current constraint,
returnValue is NULL.

Chapter 14 - UCGEOMETRY_MANAGER 183

UI_GEOMETRV_MANAGER::Event

Syntax

#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UCEVENT &event);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

184

This function processes run-time messages sent to the geometry manager. It is declared
virtual so that any derived geometry manager class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the geometry manager. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

S_CHANGED, S_CREATE and S_MOVE-These messages cause the window
and all its sub-objects to update their size and position. If the geometry manager
gets one of these messages from the window, it calls all its constraints'
Modify() functions.

All other messages return an S_UNKNOWN.

Zinc Application Framework-Programmer's Reference Volume 1

UI_GEOMETRV_MANAGER::First

Syntax

#include <uLwin.hpp>

UCCONSTRAINT *First(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the first constraint, if one exists, in the geometry
manager.

returnValueout is a pointer to the first constraint. If there is no first constraint,
returnValue is NULL.

UI_GEOMETRV_MANAGER::lnformation

Syntax

#include <uLwin.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectlD = ID_DEFAULT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 14 - ULGEOMETRY_MANAGER 185

Remarks

This function allows Zinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the geometry
manager:

I_INITIALIZE_CLASS-Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

All other requests are sent to UI_WINDOW_OBJECT::Information() for
processing.

• datainlout is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• object/Din is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for object/D, the object
will attempt to interpret the request with the objectID of the actual object type.

UI_GEOMETRV_MANAGER::Last

Syntax

#include <ui_win.hpp>

UCCONSTRAINT *Last(void);

186 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the last constraint, if one exists, in the geometry
manager.

• returnValueout is a pointer to the last constraint. If there is no last constraint,
returnValue is NULL.

UI_GEOMETRV_MANAGER::Subtract

Syntax

#include <uLwin.hpp>

UCCONSTRAINT *Subtract(UCCONSTRAINT *object);
or

UCGEOMETRY_MANAGER &operator - (UCCONSTRAINT *object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions are used to subtract a constraint from the geometry manager.
These functions do not delete the constraints, they merely remove them from the list. The
programmer is responsible for destroying any objects explicitly subtracted from the
geometry manager.

The first function subtracts a constraint from the geometry manager.

Chapter 14 - ULGEOMETRY_MANAGER 187

• returnValueoul is a pointer to object.

• objectin is a pointer to the constraint to be subtracted from the geometry manager.

The second operator overload subtracts a constraint from the geometry manager. This
operator overload is equivalent to calling the UI_GEOMETRY_MANAGER::­
Subtract() function except that it allows the chaining of constraint subtractions from the
geometry manager.

• returnValueoul is a pointer to the UCGEOMETRY_MANAGER. This pointer is
returned so that the operator may be used in a statement containing other operations.

• objectin is a pointer to the constraint that is to be subtracted from the geometry
manager.

Storage Members

This section describes those class members that are used for storage purposes.

Syntax

#include <uLwin.hpp>

UCGEOMETRY_MANAGER(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UCITEM *objectTable = ZIL_NULLP(UCITEM),
UCITEM *userTable = ZIL_NULLP(UCITEM»;

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

188 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This advanced constructor creates a new UCGEOMETRY_MANAGER by loading the
object from a data file. Typically, the programmer does not need to use this constructor.
If a geometry manager is stored in a data file it is usually stored as part of a UIW_­
WINDOW and will be loaded when the window is loaded.

• namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI_GEOMETRV_MANAGER::Load

Syntax

#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UCITEM *objectTable,
UCITEM *userTable);

Chapter 14 - ULGEOMETRY_MANAGER 189

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

190

This advanced function is used to load a UCGEOMETRY_MANAGER from a persistent
object data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT: :objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UI_WINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

Zinc Application Framework-Programmer's Reference Volume 1

UI_GEOMETRY_MANAGER::New

Syntax

#include <ui_win.hpp>

static UCWINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UCITEM *objectTable = ZIL_NULLP(UCITEM),
UCITEM *userTable = ZIL_NULLP(UCITEM»;

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

Chapter 14 - UCGEOMETRY_MANAGER 191

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI_GEOMETRV_MANAGER::NewFunction

Syntax

#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

192 Zinc Application Framework-Programmer's Reference Volume 1

UI_GEOMETRV_MANAGER: :Store

Syntax

#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UCITEM *objectTable,
UCITEM *userTable);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• file jn is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66-ZIL_STORAGE."

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68-ZIL_STORAGE_­
OBJECT."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT: :objectTable in "Chapter 43-UI_WIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_-

Chapter 14 - ULGEOMETRY_MANAGER 193

194

OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

Zinc Application Framework-Programmer's Reference Volume 1

t:HAPTER 15

The UCGRAPHICS_DISPLAY class implements a graphics display that uses the GFX
graphics library package to draw to the screen. The UCGRAPHICS_DISPLAY class is
the only DOS graphics display that supports Unicode mode. Thus, if a Unicode
application is being created for DOS graphics mode this display class must be used
instead of any other display class. Since the UCGRAPHICS_DISPLAY class is derived
from UCDISPLAY, only details specific to the UCGRAPHICS_DISPLAY class are
given in this chapter. For descriptions and examples regarding virtual or inherited display
members, see "Chapter 7-UI_DISPLAY."

The UCGRAPHICS_DISPLAY class is declared in UI_DSP.HPP. Its public and
protected members are:

class UI_GRAPHICS_DISPLAY public UI_DISPLAY, public UI_REGION_LIST
{
public:

struct GRAPHICSFONT
{

int font;
int maxWidth, maxHeight;

} ;
typedef unsigned char GRAPHICSPATTERN[lO];

static UI_PATH *searchPath;
static GRAPHICSFONT fontTable[ZIL_MAXFONTS];
static GRAPHICSPATTERN patternTable[ZIL_MAXPATTERNS];

UI_GRAPHICS_DISPLAY(int mode = 4);
virtual -UI_GRAPHICS_DISPLAY(void);
virtual void Bitmap (ZIL_SCREENID screenID, int column, int line,

int bitmapWidth, int bitmapHeight, canst ZIL_UINT8 *bitmapArray,
canst UI_PALETTE *palette = ZIL_NULLP(UI_PALETTE),
canst UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_BITMAP_HANDLE *colorBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE),
ZIL_BITMAP_HANDLE *monoBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE));

virtual void BitmapArrayToHandle(ZIL_SCREENID screenID, int bitmapWidth,
int bitmapHeight, canst ZIL_UINT8 *bitmapArray,
canst UI_PALETTE *palette, ZIL_BITMAP_HANDLE *colorBitmap,
ZIL_BITMAP_HANDLE *monoBitmap);

virtual void BitmapHandleToArray(ZIL_SCREENID screenID,
ZIL_BITMAP_HANDLE colorBitmap, ZIL_BITMAP_HANDLE monoBitmap,
int *bitmapWidth, int *bitmapHeight, ZIL_UINT8 **bitmapArray);

virtual void Ellipse(ZIL_SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
canst UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE,
canst UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void IconArrayToHandle(ZIL_SCREENID screenID, int iconWidth,
int iconHeight, const ZIL_UINT8 *iconArray,
canst UI_PALETTE *palette, ZIL_ICON_HANDLE *icon);

virtual void IconHandleToArray(ZIL_SCREENID screenID,
ZIL_ICON_HANDLE icon, int *iconWidth, int *iconHeight,
ZIL_UINT8 **iconArray);

virtual void Line(ZIL_SCREENID screenID, int columnl, int linel,
int column2, int line2, canst UI_PALETTE *palette, int width = 1,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual ZIL_COLOR MapColor(const UI_PALETTE *palette, int isForeground);

Chapter 15 - ULGRAPHICS_DISPLA Y 195

virtual void Polygon(ZIL_SCREENID screenID, int numPoints,
const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION))i

virtual void Rectangle(ZIL_SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION)) i

virtual void RectangleXORDiff(const UI_REGION &oldRegion,
const UI_REGION &newRegion, ZIL_SCREENID screenID = ID_SCREEN,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION)) i

virtual void RegionDefine(ZIL_SCREENID screenID, int left, int top,
int right, int bottom)i

virtual void RegionMove(const UI_REGION &oldRegion, int newColumn,
int neWLine, ZIL_SCREENID oldScreenID = ID_SCREEN,
ZIL_SCREENID newScreenID = ID_SCREEN)i

virtual void Text (ZIL_SCREENID screenID, int left, int top,
const ZIL_ICHAR *text, const UI_PALETTE *palette, int length -1,
int fill = TRUE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT) i

virtual int TextHeight(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT)i

virtual int TextWidth(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT) i

virtual int VirtualGet(ZIL_SCREENID screenID, int left, int top,
int right, int bottom)i

virtual int Virtual Put (ZIL_SCREENID screenID)i

protected:
int maxColorsi
int _fillPatterni
int _backgroundColori
int _foregroundColori
int _fillAttributesi
int _outlineAttributesi
signed char _virtualCounti
UI_REGION _virtualRegioni
char _stopDevicei

void SetFont(ZIL_LOGICAL_FONT logicalFont) i

void SetPattern(const UI_PALETTE *palette, int _xor)i
}i

General Members

This section describes those members that are used for general purposes.

• GRAPHICSFONT is a structure that contains the following font information:

font contains the value of the font. FNT_SMALL_FONT (font is 0), FNT_­
DIALOG_FONT (font is 1) and FNT_SYSTEM_FONT (font is 2) are pre­
defined by Zinc.

maxHeight is the height of the tallest character.

196 Zinc Application Framework-Programmer's Reference Volume 1

maxWidth is the width of the widest character.

• GRAPHICSPAITERN is an array of 10 bytes that make up the 8x8 bitmap pattern.
The first two bytes indicate the number of rows and columns defined in the pattern.
The remaining 8 bytes define the pattern. Each byte (8 bits) corresponds to 8 pixels
in the pattern. The patterns defined by Zinc are: PTN_SOLID_FILL, PTN_INTER­
LEAVE_FILL and PTN_BACKGROUND_FILL.

• searchPath contains the path to be searched for the Unicode font file. This file
contains character definitions for thousands of Unicode characters. The file, called
UNICODE.FNT, must be found at run-time or else the application will not be able
to display the proper characters.

• fontTable is an array of GRAPHICSFONT. The default array contains space for 10
ZINCFONT entries. The following entries are pre-defined by Zinc:

FNT_SMALL_FONT-A font used to display an icon's text string.

FNT_DIALOG_FONT-A font used when text is displayed on window objects
(e.g., UIW_BUTTON, UIW_STRING, UIW_TEXT, etc.).

FNT_SYSTEM_FONT-A sans-serif style font used to display a window's title.

The remaining entries in fontTable are initially set to ROM_8X8, which is a GFX
fixed-width, 8x8, bitmapped font.

See the description of the UI_WINDOW_OBJECT: .font member variable in "Chapter
43-UCWINDOW_OBJECT" for information on specifying which font an object
uses.

• patternTable is an array of GRAPHICSPAITERN. The default array contains space
for 15 GRAPHICSPAITERN entries. The following entries are pre-defined by Zinc:

PTN_SOLID_FILL-Solid fill.

PTN_INTERLEAVE_FILL-Interleaving line fill.

PTN_BACKGROUND_FILL-Background fill style.

• maxColors is the maximum number of colors supported by the graphics mode that
was initialized. For example, an EGA display might support sixteen colors. This
member will be filled in according to information obtained from the GFX graphics

Chapter 15 - ULGRAPHICS_DISPLA Y 197

library after it has initialized. The GFX graphics library supports SVGA modes,
including 256 color mode. Zinc will support whatever mode is initialized by the
GFX graphics library.

• JlllPattern is an index into the patternTable specifying the current fill pattern.

• _backgroundColor is the current background drawing color.

• JoregroundColor is the current foreground drawing color.

• JillAttributes is the type of filling that takes place (e.g., is the shape filled?, is a line
drawn around the filled area?, etc.). This field is only used by the UCGRAPHICS_­
DISPLAY when calling the GFX graphics functions.

• _outlineAttributes is the current line style. This field is only used by the UI_­
GRAPHICS_DISPLAY when calling the GFX graphics functions.

• _virtualCount is a count of the number of virtual screen operations that have taken
place. For example, when the VirtualGet() function is called, _virtualCount is
decremented. Additionally, when the VirtualPut() function is called, _virtualCount
is incremented.

• _virtualRegion is the region affected by either VirtualGet() or VirtualPut().

• _stopDevice is a variable used to disable updates of device images on the display.
If _stopDevice is TRUE, no drawing will be done to the screen. Otherwise, drawing
will be made directly to the screen display.

UI_GRAPHICS_DISPLAY::UI_GRAPHICS_DISPLAY

Syntax

#include <uLdsp.hpp>

UCGRAPHICS_DISPLAY(int mode = 4);

198 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

• DOS Graphics
o OSFlMotif

o Windows
o Curses

o OS/2
o NEXTSTEP

This constructor creates a new UI_GRAPHICS_DISPLAY object. When a new UC­
GRAPHICS_DISPLAY class is constructed, Zinc sets the screen display to the
background color and pattern specified by the inherited variable backgroundPalette.

• modein detennines the display mode initialized (e.g., CGA, EGA, VGA, SVGA, etc.).
There are several ways to initialize the UCGRAPHICS_DISPLAY class. The first
uses auto-selection. The following modes can be passed in to auto-select the display
mode based on the graphics hardware capability:

OxOl medium resolution (320x200)
Ox02 high resolution, monochrome (640x200)
Ox03 EGA enhanced resolution (640x350)
Ox04 VGA resolution (640x480)

Alternately, the resolution can be forced. To do this, mode must be FORCE_BIOS_­
MODE + mode, where mode can be one of the following:

Ox04
Ox05
Ox06
Ox08
Ox09
OxOD
OxOE
OxOF
OxlO
Ox 11
Ox12

320x200
320x200
640x200
640x400
720x348
320x200
640x200
640x350
640x350
640x480
640x480

4 colors
2 colors
2 colors
2 colors
2 colors
16 colors
16 colors
2 colors
16 colors
2 colors
16 colors

For example, if 640x480 16-color resolution is desired, mode should be set to
FORCE_BIOS_MODE + Ox12. FORCE_BIOS_MODE is a constant defined in
GFX.H.

Chapter 15 - ULGRAPHICS_DISPLAY 199

To initialize the UCGRAPHICS_DISPLAY to a SVGA mode, mode should be set
to one of the following:

Example

OxlOO
OxlOI
Oxl02
Oxl03
Oxl04
Oxl05
Oxl06
Oxl07

640x400
640x480
800x600
800x600
I024x768
1024x768
1280xl024
1280xl024

256 colors
256 colors
16 colors
256 colors
16 colors
256 colors
16 colors
256 colors

#include <ui_win.hpp>
main()
{

II Initialize Zinc Application Framework.
DI_DISPLAY *display = new UI_GRAPHICS_DISPLAYi

return (0) i

Syntax

#include <ui_dsp.hpp>

-UCGRAPHICS_DISPLAY(void);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

• DOS Graphics
o OSF/Motif

o Windows
o Curses

o OS/2
o NEXTSTEP

200

This virtual destructor destroys the class information associated with the UI_GRAPHICS_-

Zinc Application Framework-Programmer's Reference Volume 1

DISPLAY class. Care should be taken to only destroy a UCGRAPHICS_DISPLAY class
that is not attached to another associated object.

UI_GRAPHICS_DISPLAY::SetFont

Syntax

#include <uLdsp.hpp>

void SetFont(ZIL_LOGICAL_FONT logicaIFont);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

• DOS Graphics
o OSFlMotif

o Windows
o Curses

DOSI2
o NEXTSTEP

This function is used to set the font information used by the GFX graphics library. The
information contained in the logicalFont entry of the fontTable array is used to set the
font.

logicalFontin is the font to be used. logicalFont is an entry into the fontTable array.

UI_GRAPHICS_DISPLAY::SetPattern

Syntax

#include <ui_dsp.hpp>

void SetPattern(const UCPALETTE *palette, int _xor);

Chapter 15 - U'-GRAPHICS_DISPLA Y 201

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

• DOS Graphics
o OSFlMotif

o Windows
o Curses

o OS/2
o NEXTSTEP

This function is used to set the pattern information used by the GFX graphics library.
The information contained in palette is used to set the pattern.

• palettein contains the pattern style, foreground color, and background color to be used
when setting the pattern.

• _xorin indicates if the pattern should be drawn with the xor attribute on. If _xor is
TRUE, the pattern will be an xor pattern. Otherwise, the pattern will not be xor.

202 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 16 - UI HELP_STUB

The UCHELP_STUB class is the base class for the help system. The help system is used
to display help for the end-user. The UI_HELP_STUB class defines the functionality that
must exist in the help system. It is an abstract class, so only classes derived from UC­
HELP_STUB, such as UCHELP_SYSTEM, can be created.

The UCHELP_STUB class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UI_HELP_STUB public ZIL_INTERNATIONAL
{
public:

virtual -UI_HELP_STUB(void);
virtual void DisplayHelp(UI_WINDOW_MANAGER *windowManager,

UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT) = 0;
};

General Members

This section describes those members that are used for general purposes.

Syntax

#include <ui_win.hpp>

virtual -UCHELP_STUB(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the UCHELP_STUB

Chapter 16 - ULHELP_STUB 203

object.

UI_HELP_STUB::DisplayHelp

Syntax

#include <uLwin.h>

virtual void DisplayHelp(UCWINDOW_MANAGER *windowManager,
UCHELP_CONTEXT helpContext =NO_HELP_CONTEXT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This pure virtual function displays the help window. See "Chapter 17-UI_HELP_­
SYSTEM" for details on the help system's implementation of this function.

• windowManagerin is a pointer to the Window Manager.

• helpContextin is the help context to present. If this value is NO_HELP_CONTEXT,
the help window system will use the default help context provided in the UCHELP_­
SYSTEM constructor.

204 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 17 - UI_HELP_SYSTEM

The UCHELP_SYSTEM class is used to provide help information to the end-user at run­
time. The programmer can create both context-sensitive help information-so that the
end-user can get help relating to the current task-and general help to aid the end-user
with general aspects of the application.

The UCHELP_SYSTEM class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UI_HELP_SYSTEM public UI_HELP_STUB
{
public:

static ZIL_ICHAR _className[];
static int defaultInitialized;

UI_HELP_SYSTEM(ZIL_ICHAR *fileName,
UI_WINDOW_MANAGER *windowManager = ZIL_NULLP(UI_WINDOW_MANAGER),
UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT);

virtual -UI_HELP_SYSTEM(void);
virtual void DisplayHelp(UI_WINDOW_MANAGER *windowManager,

UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT) ;

void SetLanguage(const ZIL_ICHAR *languageName);

protected:
ZIL_STORAGE_READ_ONLY *storage;
UIW_WINDOW *helpWindow;
UIW_TITLE *titleField;
UIW_TEXT *messageField;
UI_HELP_CONTEXT defaultHelpContext;
const ZIL_LANGUAGE *myLanguage;

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UCHELP_SYSTEM class, _className is "UCHELP_SYSTEM."

• defaultlnitialized indicates if the default language strings for this object have been set
up. The default strings are located in the file LANG_DEF.CPP. If defaultlnitialized
is TRUE, the strings have been set up. Otherwise they have not been.
defaultlnitialized is set to TRUE when the strings are set up in the object's
constructor.

Chapter 17 - ULHELP_SYSTEM 205

• storage is a pointer to the ZIL_STORAGE_READ_ONLY that contains the help data.
The .DAT file must be created by the programmer using the Visual Designer.

• helpWindow is a pointer to the UIW_WINDOW used to display help messages. The
UCHELP_SYSTEM creates this window automatically.

• titleField is a pointer to the UIW_TITLE object on the help window. The UC­
HELP_SYSTEM creates this title automatically.

• messageField is a pointer to the UIW_TEXT field used to display the help text. The
UCHELP_SYSTEM creates this field automatically.

• defaultHelpContext contains the default help context to be used if no other help
context is specified. If the programmer wishes to use a particular help context as the
default help context, he must specify the context to use in the constructor for the UC­
HELP_SYSTEM.

• myLanguage is the ZIL_LANGUAGE object that contains the string translations for
this object.

Generating help files

The help context information is read from a help .DAT file when needed. This file is
created in the Visual Designer either directly or from a text file. For example, the text
file HELP.TXT below was first created using a text editor and then converted into a help
.DAT file.

--- HELP_GENERAL
General Help
This application demonstrates how to use the help system

--- HELP_SPECIFIC
Specific Help
The UI_HELP_SYSTEM can be used to present both context-sensitive help and
general help.

The help information can be created in a text file, which is then processed
using the Designer to produce a help file. Alternatively, the help
information can be created using the Help Context Editor in the Visual
Designer.

There are two help contexts in the example above. A help context consists of the context
identifier, the context title, and the context help text. The help context identifier is set off
by three dashes on the left side. The line below the help context name is the title that is
displayed in the help window at run-time. All lines between the title and the next help
context or file end are used as the help information presented for that context. The help

206 Zinc Application Framework-Programmer's Reference Volume 1

window will automatically do word-wrapping, so the programmer does not need to worry
about line length. This means that when the help file is generated the carriage return at
the end of each line in the text file is ignored. If a new line is required, place either a
blank line or a backslash in the text file.

The Designer generates two files for use with help: a .DAT file and a .HPP file. The
.HPP file should be included in each module of the program that calls the help system
directly, since it contains declarations for the constants used to reference the help context
information. The generated header file appears as follows:

#define HELP_GENERAL
#define HELP_SPECIFIC

OxOOOl II General Help
Ox0002 II Specific Help

The help context information in the text file can be modified and regenerated without
recompiling the program if the help context names do not change. This is very useful if
international versions of the application require different help files.

Syntax

#include <uLwin.h>
#include ''filename.hpp''

UCHELP_SYSTEM(ZIL_ICHAR *fileName,
UCWINDOW_MANAGER *windowManager =
ZIL_NULLP(UCWINDOW_MANAGER),
UCHELP_CONTEXT helpeontext =NO_HELP_CONTEXT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UI_HELP_SYSTEM class object.

Chapter 17 - ULHELP_SYSTEM 207

fileName in is a pointer to a string containing the name of the help .DAT file. This
file is generated in the Visual Designer .

windowManagerin is a pointer to the Window Manager. It is used by the help system
to display the help window.

• helpContextin is the help context to present when no specific help context is available.
The programmer may specify the help context identifier for the help he wants used
as the default.

Example

#include <ui_win.hpp>
#define USE_HELP_CONTEXTS
#include "demo.hpp"

main()
{

II Initialize Zinc Application Framework.
UI_DISPLAY *display = new UI_MSC_DISPLAYi
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(displaY)i
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSORi

UI_WINDOW_MANAGER *windowManager = new UI_WINDOW_MANAGER(display,
eventManager) i

UI_WINDOW_OBJECT::errorSystem = new UI_ERROR_SYSTEMi
UI_WINDOW_OBJECT: :helpSystem = new UI_HELP_SYSTEM("demo.dat",

windowManager, HELP_GENERAL)i

II Restore the system.
delete UI_WINDOW_OBJECT::helpSystemi
delete UI_WINDOW_OBJECT::errorSystemi
delete windowManageri
delete eventManageri
delete displaYi
return (0) i

Syntax

#include <uLwin.h>

virtual -UCHELP_SYSTEM(void);

208 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the UCHELP_­
SYSTEM object.

UI_HELP_SYSTEM::DisplayHelp

Syntax

#include <ui_win.h>
#include ''filename.hpp''

virtual void DisplayHelp(UCWINDOW_MANAGER *windowManager,
UCHELP_CONTEXT helpContext = NO_HELP_CONTEXT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function is used to display help information. The picture below shows a graphic
representation of the UCHELP_SYSTEM presentation window:

Chapter 17 - ULHELP_SYSTEM 209

The second -Hello World'- tutorial shows you how to
create two windows using Zinc Interface Library and how
to initialize the help and error systems.

Press <F3> to exit help.

• windowManagerin is a pointer to the Window Manager. The help system will attach
the help window to the Window Manager.

• helpContextin is the help context to present. If this value is NO_HELP_CONTEXT,
the help window system will use the default help context provided in the UCHELP_­
SYSTEM constructor.

Example

#include <ui_win.hpp>
#define USE_HELP_CONTEXTS
#include "demo.hpp "

main()
{

II Initialize Zinc Application Framework.
UI_DISPLAY *display = new UI_GRAPHICS_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display);
*eventManager

+ new UID_KEYBOARD
+ new UID_MS_MOUSE
+ new UID_CURSOR;

UI_WINDOW_MANAGER *windowManager = new UI_WINDOW_MANAGER(display,
eventManager);

UI_WINDOW_OBJECT::errorSystem = new UI_ERROR_SYSTEM;
UI_WINDOW_OBJECT::helpSystem = new UI_HELP_SYSTEM(ldemo.dat",

windowManager, HELP_GENERAL);

II Call the help system to display general help.
windowManager->helpSystem->DisplayHelp(windowManager, HELP_SPECIFIC);

210 Zinc Application Framework-Programmer's Reference Volume 1

UIW_HELP_SYSTEM::SetLanguage

Syntax

#inc1ude <uLwin.hpp>

void SetLanguage(const ZIL_ICHAR *languageName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

.OS/2
• NEXTSTEP

This function sets the language to be used by the object. The string translations for the
object will be loaded and the object's myLanguage member will be updated to point to
the new ZIL_LANGUAGE object. By default, the object uses the language identified in
the LANG_DEF.CPP file, which compiles into the library. (If a different default
language is desired, simply copy a LANG_<ISO>.CPP file from the ZINC\SOURCE\­
INTL directory to the \zINC\SOURCE directory, and rename it to LANG_DEF.CPP
before compiling the library.) The language translations are loaded from the USN.DAT
file, so it must be shipped with your application.

• languageNamein is the two-letter ISO language code identifying which language the
object should use.

Chapter 17 - ULHELP_SYSTEM 211

212 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 18 - UI_ITEM

The UCITEM structure is used to store different pieces of related information that,
together, can be used for any of several purposes. One common use is to create several
UCITEM structures in an array which is then passed to the constructor of a library object.
The library object constructor uses the information in each UCITEM structure of the array
to create an object which is added to the library object being constructed. For example,
when a UI_ITEM array is passed to a UIW_COMBO_BOX constructor, UIW_STRING
objects are created and attached to the combo box, thus saving the programmer from
having to create the strings. Zinc also uses UCITEM arrays as lookup tables for creating
persistent objects and to maintain library strings that have been translated to different
languages.

The UCITEM class is declared in UI_WIN.HPP. Its public and protected members are:

struct ZIL_EXPORT_CLASS UI_ITEM
{

EVENT_TYPE valuei
void *datai
ZIL_ICHAR *texti
UIF_FLAGS flagsi

}i

General Members

This section describes those members that are used for general purposes.

• value is a number associated with the item. Its use depends on the context in which
the UI_ITEM structure is used. value can be used to identify a particular item, or it
can be an event to be put on the event queue if the item created from the UI_ITEM
structure is selected. This is common if the UCITEM array is used to create
UIW_POP_UP_ITEMs attached to a UIW_PULL_DOWN_ITEM. For example, if
the following items are specified:

UI_ITEM _menuFlag[] =
{

}i

ONE,
TWO,
L_EXIT,
0,

NULL,
NULL,
NULL,
NULL,

" Item &one "
" Item &two "
II E&xit",
NULL,

MNIF_NO_FLAGS },
MNIF_NON_SELECTABLE },
MNIF_SEND_MESSAGE },
NULL}

and the "Exit" option is selected, an L_EXIT event is put on the event queue.

Chapter 18 - ULITEM 213

• data may contain any information to associate with the item. The most common use
for data by the library is to point to a user function associated with the object. When
the object is selected, the function pointed to by data will be called. For example,
the _menuFlag array defined above could be modified to contain a user function for
each menu item:

UI_ITEM _menuFlag[]
{

BTF_NO_TOGGLE,
BTF_DOWN_CLICK,
BTF_CHECK_MARK,
BTF_AUTO_SIZE,
0,

};

CheckFlag,
CheckFlag,
CheckFlag,
CheckFlag,
NULL,

" No toggle ",
" Down click ",
" Check mark ",
" Auto size "
NULL,

WOF_NO_FLAGS },
WOF_NO_FLAGS },
WOF_NO_FLAGS },
WOF_NO_FLAGS }.
NULL }

214

EVENT_TYPE CheckFlag(UI_WINDOW_OBJECT *data, const UI_EVENT &event,
EVENT_TYPE ccode)

II Typecast a pointer to the pop-up-item.
UIW_POP_UP_ITEM *item = (UIW_POP_UP_ITEM *)data;
switch (item->value)
{
case BTF_NO_TOGGLE:

break;

break;
}
return ccode;

• text is text associated with the item. When creating objects using the UCITEM
array, text is typically the text that is displayed on the screen. When used as a
lookup table to obtain translated library strings, text will contain the text to be
displayed.

• flags is flags associated with the item. These flags are used when constructing the
class object. If the item constructed is a UIW_POP_UP_ITEM, flags is interpreted
to be MNIF_FLAGS. If the item constructed is a UIW_STRING, then flags is
interpreted to be STF_FLAGS. The type of object constructed from the UCITEM
structure depends on what object the UCITEM array was passed to.

NOTE: An array of UCITEM structures should always end with an end-of-array entry
indicated by a UCITEM object that has 0 or NULL as the value, data, text and flags.
This field must be provided since no array size argument is provided:

Zinc Application Framework-Programmer's Reference Volume 1

UI_ITEM _buttonFlag[]
{

Portability

};
0, NULL, NULL, NULL} II End of array.

This structure is available on the following environments:

• DOS Text
• Macintosh

Example

#include <ui_win.hpp>

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

ExampleFunction(UI_WINDOW_MANAGER *windowManager)
{

UI_ITEM listItems[] =
{

11, NULL, "Item 1.1", STF_NO_FLAGS } ,
12, NULL, "Item 1.2", STF_NO_FLAGS },
21, NULL, "Item 2.1", STF_NO_FLAGS },
22, NULL, "Item 2.2", STF_NO_FLAGS } ,
0, NULL, NULL, NULL }

};

II Create the window.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_TITLE(" Sample List ")
+ new UIW_PROMPT(2, 1, "List:")
+ new UIW_VT_LIST(10, 1, 20, 6, NULL, 0, listItems);

*windowManager + window;

Chapter 18 - ULITEM 215

216 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 19 - UI_KEV

The UCKEY structure is used to store the keyboard state generated by a key event. This
structure maintains the keyboard's shift state and the key that was pressed.

The UI_KEY structure is declared in UI_EVT.HPP. Its public and protected members
are:

struct ZIL_EXPORT_CLASS DI_KEY
{

ZIL_RAW_CODE shiftState;
ZIL_RAW_CODE value;

} ;

General Members

This section describes those members that are used for general purposes.

• shiftState is a flag field that indicates the shift state of the keyboard. The shift state
may contain one or more of the following flags (declared in UI_EVT.HPP):

S_ALT-Indicates that the <Alt> key was pressed.

S_CAPS_LOCK-Indicates that the <Caps-Lock> key was on.

S_CTRL-Indicates that the <Ctr!> key was pressed.

S_INSERT-Indicates that the <Ins> key was on.

S_LEFT_SHIFT-Indicates that the <Left-Shift> key was pressed.

S_NUM_LOCK-Indicates that the <Num-Lock> key was on.

S_RIGHT_SHIFT-Indicates that the <Right-Shift> key was pressed.

S_SCROLL_LOCK-Indicates that the <Scroll-Lock> key was on.

Not every shift state listed above is available on every keyboard on every
environment. On some environments the keypress that generates the state is slightly
different, or, as may be the case with environments that allow key mapping (e.g.,
Unix environments), the keypress may be completely different, depending on the

Chapter 19 - ULKEY 217

user's configuration. This list is intended to be a comprehensive list of possible
states.

• value is the key's value. It is not the scan code.

Portability

This structure is available on the following environments:

• DOS Text
• Macintosh

Example
#include <ui_evt.hpp>

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

218

void DID_KEYBOARD: :Poll()
{

II See if a keystroke is already waiting.

II Get the key from the keyboard bios using INT 16H, 10H(or OOH if not
II enhanced).
DI_EVENT eventi
event. type = E_KEYi
inregs.h.ah = _enhancedBiosi
ZIL_INT86 (Ox16, &inregs, &outregs)i
event.rawCode = outregs.x.axi
event.key.value = outrege.h.al;

II Get the shift state using INT 16H, 12H(or 02H if not enhanced).
inregs.h.ah = Ox02 + _enhancedBiosi
ZIL_INT86 (Ox16, &inregs, &outregs)i
event.key.ehiftState = outrege.h.al;

II Place event on the queue.
if (state != D_OFF && eventManager)

eventManager->Put(event, Q_END)i

Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 20 - UI_LIST

The UCLIST class is a container class used to manage doubly-linked list elements derived
from the UCELEMENT base class. It serves as the base class to all Zinc Application
Framework management classes (e.g., UCEVENT_MANAGER, UCREGION_LIST) and
many control objects (e.g., UIW_WINDOW, UIW_VT_LIST). All elements in a list must
be derived from the UCELEMENT class since all UCLIST member functions act upon
UCELEMENT class objects. The figure below illustrates how elements are linked
together in a list:

Keyboard Mouse Cursor

The UCLIST class is declared in UI_GEN.HPP. Its public and protected members are:

class ZIL_EXPORT_CLASS UI_LIST
{
public:

ZIL_COMPARE_FUNCTION compareFunction;

UI_LIST(ZIL_COMPARE_FUNCTION compareFunction
ZIL_NULLF(ZIL_COMPARE_FUNCTION));

virtual ~UI_LIST(void);

UI_ELEMENT *Add(UI_ELEMENT *newElement);
UI_ELEMENT *Add(UI_ELEMENT *element, UI_ELEMENT *newElement);
int Count (void) ;
UI_ELEMENT *Current(void);
virtual void Destroy(void);
UI ELEMENT *First(void);
UI-ELEMENT *Get(int index);
UI=ELEMENT *Get(int (*findFunction) (void *elementl, void *matchData),

void *matchData);
int Index(UI_ELEMENT const *element);
UI_ELEMENT *Last(void);
void SetCurrent(UI_ELEMENT *element);
virtual void Sort (void) ;
UI_ELEMENT *Subtract(UI_ELEMENT *element);
UI_LIST &operator+(UI_ELEMENT *element);
UI_LIST &operator-(UI_ELEMENT *element);

Chapter 20 - ULUST 219

protected:
DI_ELEMENT *first, *last, *current;

};

General Members

This section describes those members that are used for general purposes.

• compareFunction is a programmer defined function that will be called by the library
when sorting the list of objects. compareFunction is called as each individual object
is added and if the list is sorted explicitly by calling the Sort() function. The objects
can be sorted based on any key unique to the object. Pointers to the objects being
compared are passed to the compareFunction, so any information required to do the
sorting needs to be associated with the object. Because the objects can be of any
type, even a derived type, the object pointers will need to be typecast in the compare­
Function.

The definition of the compareFunction is as follows:

int FunctionName(void *elementl, void *element2);

returnValueoul indicates the relative ordering of the two elements. returnValue
should be negative if elementl should be placed in front of element2, 0 if the two
elements are sorted the same or positive if elementl should come after element2.

elementl in is a pointer to the first element to be compared. This void pointer
must be typecast according to the type of object being sorted.

element2in is a pointer to the second element to be compared. This void pointer
must be typecast according to the type of object being sorted.

• first and last point to the first and last elements in the list, respectively.

• current points to the current element in the list.

220 Zinc Application Framework-Programmer's Reference Volume 1

Syntax

#include <uLgen.hpp>

UCLIST(ZIL_COMPARE_FUNCTION compareFunction =
ZIL_NULLF(ZIL_COMPARE_FUNCTION));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UCLIST object.

• compareFunctionin is a function that is used to determine the order of list elements.
See the description of the VI_LIST: :compareFunction member variable above for
more information about the compare function.

Example

#include <ui_gen.hpp>

int ButtonValueCompare(void *buttonl, void *button2)
{

return(((UIW_BUTTON *)buttonl)->value - ((UIW_BUTTON *)button2)->value);

ExampleFunction()
{

II Each declaration below calls the UI_LIST constructor.
UI_LIST listl;
UI_LIST *list2 = new UI_LIST;
UI_LIST list3(ButtonValueCompare);
UI_LIST *list4 = new UI_LIST(ButtonValueCompare);

II Call the destructor for lists 2 and 4. The listl and list3 destructors
II are automatically called when the scope of this function ends.
delete list2;
delete list4;

Chapter 20 - ULLIST 221

Syntax

#include <ui_gen.hpp>

virtual -UCLIST(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the UCLIST object.
It also destroys each element in the list.

Example

#include <ui_gen.hpp>

int ButtonValueCompare(void *buttonl, void *button2)
{

return(((UIW_BUTTON *)buttonl)->value - ((UIW_BUTTON *)button2)->value);

ExampleFunction()
{

II Each declaration below calls the UI_LIST constructor.
UI_LIST listl;
UI_LIST *list2 = new UI_LIST;
UI_LIST list3(ButtonValueCompare);
UI_LIST *list4 = new UI_LIST(ButtonValueCompare);

II Call the destructor for lists 2 and 4. The listl and list3 destructors
II are automatically called when the scope of this function ends.
delete list2;
delete list4;

222 Zinc Application Framework-Programmer's Reference Volume 1

UI_LIST::Add
UI_LIST::operator +

Syntax

#include <uLgen.hpp>

UCELEMENT *Add(UCELEMENT *newElement);
or

UCELEMENT *Add(UI_ELEMENT *element, UCELEMENT *newElement);
or

UCLIST &operator + (UCELEMENT *element);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions are used to add a new element to the UCLIST object.

The first overloaded function adds a new element to the UCLIST object into a position
specified by the list's compareFunction. If no compare function is specified when the list
is constructed, newElement is added to the end of the list.

• returnValueout is a pointer to newElement if the addition was successful. Otherwise,
returnValue is NULL.

• newElementin is a pointer to the element to be added to the list. This argument must
be a class object derived from the UI_ELEMENT base class.

The second overloaded function overrides the list's compareFunction by inserting
newElement directly before element. The UI_LIST::Sort() function may be called to
sort the list when this function is used.

returnValueout is a pointer to newElement if the addition was successful. Otherwise,
returnValue is NULL.

Chapter 20 - ULUST 223

• elementin is a pointer to an element before which the new element is to be placed.
If this variable is NULL, the function adds newElement to the end of the list.

• newElementin is a pointer to the element to be added to the list. This argument must
be a class object derived from the UCELEMENT base class.

The third operator overload adds an element to the UCLIST object. This operator
overload is equivalent to calling the VI_LIST: :Add() function except that it allows the
chaining of list element additions to the UCLIST object.

• returnValueout is a reference pointer to the UCLIST object. Returning the pointer to
the UCLIST object allows chaining of the VI_LIST::operator+ overload operator.

• elementin is a pointer to the new element that is to be added to the list.

NOTE: The Add() function and the + operator are also implemented in several classes
derived from UCLIST. Their argument types and return value types may be different
than those shown here. See the appropriate chapter for more information on the derived
implementation of these functions.

Example

#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager)
{

II Create a new window and attach it to the window manager.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE ("Window 1");

*windowManager + window;

UI_LIST::Count

Syntax

#include <ui~en.hpp>

int Count(void);

224 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a count of the number of elements in the list.

• returnValueout is the number of elements in the list.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

UI_LIST listli
listl.Add(ZIL_NULLF(ZIL_COMPARE_FUNCTION), new SAMPLE_UI_ELEMENT) i
listl.Add(ZIL_NULLF(ZIL_COMPARE_FUNCTION), new SAMPLE_UI_ELEMENT) i

II Count the number of elements in the list.
int count = listl.Count();

UI_LIST::Current

Syntax

#include <uLgen.hpp>

UCELEMENT *Current(void);

Chapter 20 - ULUST 225

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the current element, if one exists, in the list.

• returnValueout is a pointer to the current element in the list. If there is no current
element, returnValue is NULL.

NOTE: The Current() function is also implemented in several classes derived from
UI_LIST, such as UIW_COMBO_BOX and UIW_WINDOW. Their argument types and
return value types may be different than those shown here. See the appropriate chapter
for more information on the derived implementation of these functions.

UI_LIST::Destroy

Syntax

#include <uLgen.hpp>

virtual void Destroy(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

226

This function destroys each element in the UI_LIST object, then clears the first, last and
current members. The list's compareFunction remains unchanged.

Zinc Application Framework-Programmer's Reference Volume 1

Example 1
#include <ui_gen.hpp>

ExampleFunctionl(UI_ELEMENT *elementl)
{

UI_LIST listl;
listl.Add(elementl);

II Destroy all the elements of the list.
listl.Destroy();

Example 2
ExampleFunction2(UI_ELEMENT *elementl, UI_ELEMENT *element2)
{

UI_LIST *list2 = new LIST;
*list2 + elementl + element2;

II Destructively remove all items from the list. The
II element destructor is called for each item in the list.
II Notice we have to also call delete on the list, since it was
II dynamically constructed.
list2->Destroy();
delete list2;

UI LIST::First

Syntax

#inc1ude <uLgen.hpp>

UCELEMENT *First(void);

Chapter 20 - ULLIST 227

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the first element, if one exists, in the list.

• returnValueout is a pointer to the first element in the list. If there is no first element,
returnValue is NULL.

NOTE: The First() function is also implemented in several classes derived from
UI_LIST, such as UIW_COMBO_BOX and UIW_WINDOW. Their argument types and
return value types may be different than those shown here. See the appropriate chapter
for more information on the derived implementation of these functions.

Syntax

#include <ui~en.hpp>

UCELEMENT *Get(int index);
or

UCELEMENT *Get(int (*.findFunction)(void *element, void *matchData),
void *matchData);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2

• NEXTSTEP

228

These overloaded functions are used to get a specific list element.

Zinc Application Framework-Programmer's Reference Volume 1

The first overloaded function returns the list element specified by index. The first element
in the list has an index value of O. If the index value is invalid, NULL is returned.

• returnValueout is a pointer to the matching element of the list. This value is NULL
if no element matched the index value.

• indexin is the index of the list element to find. List element indexes are zero based
(i.e., the first element in a list has an index value of 0).

The second overloaded function searches the UCLIST object for a pattern matched by
findFunction.

• returnValueout is a pointer to the matching list element. This value is NULL if no
element matches matchData.

• findFunction in is a pointer to a programmer-supplied function that compares a
specified element with the typecast matchData. If an exact match is made this
function must return a O. Any non-zero value indicates that no match was made.

• matchDatain is a pointer to the data to be matched. This can point to any data the
programmer desires to match. The Get() function will call findFunction with this
argument as the matchData parameter.

Example 1
#include <ui_gen.hpp>

ExampleFunctionl()
{

DI_LIST list j

list + new ITEM("Iteml") + new ITEM("Item2") j

II Get the 2nd element in the list.
DI_ELEMENT *element = list.Get(l)j
II Get the element that matches the "Item2" pattern.
ITEM *item = (ITEM *)list.Get(ITEM::Find, IItem2")j

Chapter 20 - ULLIST 229

Example 2

FindElement(void *element1, void *element2)
{

return ((element1 == element2) ? 0 : -1);

ExampleFunction2()
{

UI_LIST list2;
ITEM *item;
*list2

+ new ITEM (" Item3")
+ (item = new ITEM("Item1"))
+ new ITEM("Item2");

II Get the first element in the list.
ITEM *item = (ITEM *)list.Get(O);

II See if item is still in the list.
if (list.Get(FindElement, item»)

cout « "Item1 was found in the list.";
else

cout « "Item1 was NOT found in the list.";

UI_LIST::Index

Syntax

#include <uLgen.hpp>

int Index(UCELEMENT const *element);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

230

This function returns the index value of the specified element. If no element matches the
specified element, -1 is returned.

Zinc Application Framework-Programmer's Reference Volume 1

• returnValueout gives the index of the element in the UCLIST object. List element
indexes are zero based (i.e., the first element in a list has an index value of 0). If
element is not found in the UCLIST object, -1 is returned.

• elementin is a pointer to the list element to find. element must be derived from
UCELEMENT.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

UI_LIST list;
ITEM *item3 = new ITEM("Item3");
ITEM *iteml = new ITEM("Iteml"l;
ITEM *item2 = new ITEM("nem2");
list + item3 + iteml + item2;

list.Sort();
II Get the index number of an element in a sorted list.
cout « "Iteml is item #" « list.lndex(iteml) + 1 « "in the list.";

UI_LIST::Last

Syntax

#include <ui~en.hpp>

UCELEMENT *Last(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the last element, if one exists, in the list.

Chapter 20 - ULUST 231

• returnValueout is a pointer to the last element in the list. If there is no last element,
returnValue is NULL.

NOTE: The Last() function is also implemented in several classes derived from
UCLIST, such as UIW_COMBO_BOX and UIW_WINDOW. Their argument types and
return value types may be different than those shown here. See the appropriate chapter
for more information on the derived implementation of these functions.

UI_LIST::SetCurrent

Syntax

#include <uLgen.hpp>

void SetCurrent(UCELEMENT *element);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function is used to set the current item in the list.

• elementin is a pointer to the element in the list that will become current. element must
be a member of the list (i.e., it must have been previously added to the list.)

Example

EVENT_TYPE COMPORT_SETUP::ResetDefaults(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode)

if (ccode != L_SELECT)
return ccode;

for (UI_WINDOW_OBJECT *window = object; window->parent;
window = window->parent)

COMPORT_SETUP *parentWindow = (COMPORT_SETUP *)window;

232 Zinc Application Framework-Programmer's Reference Volume 1

II Reset the combo box's default current items.
parentWindow->portField->list.SetCurrent(parentWindow->defaultPort);

return ccode;

UI_LIST: :Sort

Syntax

#include <uLgen.hpp>

void Sort(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sorts the UCLIST object using the compareFunction that was assigned in
the constructor. If the list has no compare function, no sort occurs.

Example

#include <ui_gen.hpp>
ExampleFunction()
{

UI_LIST list(ITEM: :Compare);
ITEM *item3 = new ITEM("Item3");
ITEM *iteml = new ITEM("Iteml");
ITEM *item2 = new ITEM("Item2");
list + item3 + iteml + item2;

II Sort a list of items.
list.Sort();

Chapter 20 - VCLIST 233

UI_LIST::Subtract
UI_LIST::operator -

Syntax

#include <uLgen.hpp>

UCELEMENT *Subtract(UI_ELEMENT *element);
or

UCLIST &operator - (UCELEMENT *element);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

These functions remove an element from the UCLIST object.

The first function removes an element from the UCLIST object but does not call the
destructor associated with the element. The programmer is responsible for deletion of
each object explicitly subtracted from a list.

• returnValueoul is a pointer to the next element in the list. This value is NULL if there
are no more elements after the subtracted element.

elementin is a pointer to the element to be subtracted from the list.

The second operator overload removes an element from the UCLIST object but does not
call the destructor associated with the element. This operator overload is equivalent to
calling the Subtract() function, except that it allows the chaining of list element removals
from the UCLIST object.

returnValueoul is a reference pointer to the UCLIST object. Returning the pointer to
the list allows chaining of the VI_LIST: :operator- overload operator.

• elementin is a pointer to the element that is to be removed from the list. element must
be derived from UI_ELEMENT.

234 Zinc Application Framework-Programmer's Reference Volume 1

NOTE: The Subtract() function and the . operator are also implemented in several
classes derived from UCLIST. Their argument types and return value types may be
different than those shown here. See the appropriate chapter for more information on the
derived implementation of these functions.

Example 1

#include <ui_gen.hpp>

ExampleFunctionl(UI_ELEMENT *elementl)
{

II Construct a list, then add elements to it.
UI_LIST listl;
listl.Add(elementl) ;

II Delete a particular element from a list.
listl.Subtract{elementl);
delete elementl;

Example 2

ExampleFunction2(UI_ELEMENT *elementl, UI_ELEMENT *element2)
{

II Construct a list, then add elements to it using the
II + operator overload.
UI_LIST *listl = new UI_LIST;
*listl + elementl + element2;

II Move elements from listl to list2.
VI_LIST *list2 = new VI_LIST;

while (listl->First())
{

UI_ELEMENT *element
*listl - element;
*list2 + element;

Chapter 20 - ULLIST

listl->First() ;

235

236 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 21 - UI_LIST_BLOCK

The UI_LIST_BLOCK class is used when a doubly-linked list is required but speed is
also a concern. The UCLIST_BLOCK is created as an array of list elements. When
adding elements to and subtracting elements from the list, memory is not allocated, but
instead pointers to existing elements are manipulated.

Since Zinc Application Framework uses lists and list elements exclusively, a UCLIST_­
BLOCK array is structured to behave like a list so that it can access Zinc Application
Framework objects and functions.

The UCLIST_BLOCK class uses two pointers, one for the entire list and another for the
list of elements that are not in use, called the free list. When a list block is initialized,
an array of items is created, with the free list comprising the entire list, since it is initially
empty. Each of the elements in the array is derived from the UCELEMENT base class;
therefore, each has a previous and a next pointer. The figure below illustrates this
arrangement:

event 1

event 2
~

rn
event N

For example, the Event Manager uses an array of event elements to store event
information. This array is essentially a block of UI_EVENT structures. In the case of
UCEVENT, however, which is not derived from UCELEMENT, a UCQUEUE_­
ELEMENT class is constructed that is derived from UCELEMENT:

class ZIL_EXPORT_CLASS UI_QUEUE_ELEMENT : public UI_ELEMENT
{
public:

UI_QUEUE_ELEMENT(void) ;
-UI_QUEUE_ELEMENT(void);
UI_EVENT event;

Chapter 21 - ULLIST_BLOCK 237

UI_QUEUE_ELEMENT *Next(void)i
UI_QUEUE_ELEMENT *Previous(void) i

} i

This class is actually only an event with a previous and a next pointer, which allows an
array to be set up that behaves like a list.

Every time a new element is added to a list, instead of having to allocate memory for
it-an expensive operation-the space is taken from the array. Originally the entire list
is in the free list, but if the array/list needs a new element, an element will be shifted out
of the free list. When elements are removed from the list, instead of memory being
deallocated-also an expensive operation-the element will be placed back in the free list.

Constructing arrays that act as lists allows for greater speed and efficiency within Zinc
Application Framework. For example, the Event Manager is continually feeding
information into the system. If space had to be allocated for each of these events, the
application would be extremely inefficient. Instead, a large block of memory is allocated
when the program is initializing, and no more allocations are made for that list block.
The downside, of course, is that some memory that may not be used is permanently
allocated for the list.

The UCLIST_BLOCK class is declared in UI_GEN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UI_LIST_BLOCK public UI_LIST
{
public:

virtual -UI_LIST_BLOCK(void)i
UI_ELEMENT *Add(void)i
UI_ELEMENT *Add(UI_ELEMENT *element) i
int Full (void) i
UI_ELEMENT *Subtract(UI_ELEMENT *element)i

protected:
int noOfElementsi
void *elementArraYi
UI_LIST freeListi

UI_LIST_BLOCK(int noOfElements,
ZIL_COMPARE_FUNCTION compareFunction

ZIL_NULLF(ZIL_COMPARE_FUNCTION)) i
}i

General Members

This section describes those members that are used for general purposes.

• noOjElements indicates how many elements should be allocated for the list.

238 Zinc Application Framework-Programmer's Reference Volume 1

• elementArray is a pointer to the allocated block. This array must be allocated by the
programmer through a derived class of UCLIST_BLOCK.

• freeList contains pointers to the elements not currently in use.

Syntax

#include <ui~en.hpp>

UCLIST_BLOCK(int noOfElements, ZIL_COMPARE_FUNCTION compareFunction =
ZIL_NULLF(ZIL_COMPARE_FUNCTION));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced constructor creates a new UCLIST_BLOCK object. The constructor is
protected because only derived classes should use the UCLIST_BLOCK functionality.

• noOfElementsin is the number of elements in the list.

• compareFunctionin is a function used by the list to determine the order of each
element in the list. compareFunction is called each time a new element is added and
when the list is sorted explicitly by calling its Sort() member function.
compareFunction can be provided by the programmer to allow sorting based on a key
unique to the elements being placed in the list.

The definition of the compareFunction is as follows:

int FunctionName(void *elementl, void *element2);

Chapter 21 - ULUST_BLOCK 239

returnValueout indicates the relative ordering of the two elements. returnValue
should be negative if elementI should be placed in front of element2, 0 if the two
elements are sorted the same, or positive if elementI should come after element2.

elementI in is a pointer to the first element to be compared. This void pointer
must be typecast according to the type of derived object being sorted.

element2in is a pointer to the second element to be compared. This void pointer
must be typecast according to the type of derived object being sorted.

Example

#include <ui_evt.hpp>

UI_QUEUE_BLOCK::UI_QUEUE_BLOCK(int _noOfElements)
UI_LIST_BLOCK(_noOfElements)

II Initialize the queue block.
UI_QUEUE_ELEMENT *queueBlock = new UI_QUEUE_ELEMENT[_noOfElements];
elementArray = queueBlock;
for (int i = 0; i < _noOfElements; i++)

freeList.Add(NULL, &queueBlock[ij);

Syntax

#include <uLgen.hpp>

virtual -UCLIST_BLOCK(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

240

This virtual destructor destroys the class information associated with the UCLIST_­
BLOCK object. It also destroys each element in the list.

Zinc Application Framework-Programmer's Reference Volume 1

Example

#include <ui_evt.hpp>

UI_QUEUE_BLOCK::-UI_QUEUE_BLOCK()
{

II Free the queue block.
UI_QUEUE_ELEMENT *queueBlock = (UI_QUEUE_ELEMENT *)elementArray;
delete [noOfElements]queueBlock;

UI LIST_BLOCK::Add

Syntax

#include <uLgen.hpp>

UCELEMENT *Add(void);
or

UCELEMENT *Add(UCELEMENT *element);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions are used to add a new element to the UCLIST_BLOCK
object.

The first overloaded function adds a new, empty element to the used list. The element's
position is specified by the list's compareFunction. If no compare function is specified
when the list is constructed, the element is added to the end of the list. The new element
is transferred from the free list.

The second overloaded function overrides the list's compareFunction by inserting the new
element directly before element.

• returnValueout is a pointer to the new element if the addition was successful.
Otherwise, returnValue is NULL.

Chapter 21 - ULLIST_BLOCK 241

• elementin is a pointer to an element before which the new element is to be placed.
If this argument is NULL, the function adds the new element to the end of the list.

Example
#include "ui_evt.hpp"

void UI_EVENT_MANAGER::Put(const UI_EVENT &event, Q_FLAGS flags)
{

II Place the event back in the event queue.
UI_QUEUE_ELEMENT *element =

(UI_QUEUE_ELEMENT *)queueBlock.Add{FlagSet{flags, Q_END) ? NULL
queueBlock.First(»;

if (element)
element->event = eventi

Syntax

#include <uLgen.hpp>

int Full(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function indicates if the UI_LIST_BLOCK is full.

• returnValueoul indicates if the UI_LIST_BLOCK is full. If the list block is full
returnValue is TRUE. Otherwise it is FALSE.

242 Zinc Application Framework-Programmer's Reference Volume 1

UI_LIST_BLOCK: :Subtract

Syntax

#include <uLgen.hpp>

UCELEMENT *Subtract(UCELEMENT *element);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function removes an element from the used list and puts it back into the free list.
This function does not call the destructor associated with the element.

• returnValueoul is a pointer to the next element in the list. This value is NULL if there
are no more elements after the removed element.

• elementin is a pointer to the element to be removed from the list.

Example

#include "ui_evt.hpp"

int UI_EVENT_MANAGER: :Get(UI_EVENT &event, Q_FLAGS flags)
{

UI_DEVICE *device;
UI_QUEUE_ELEMENT *element;
int error = -1;

II Stay in loop while no event conditions are met.
do
{

II Call all the polled devices.
if (lFlagSet(flags, Q_NO_POLL))
{

for (device = First(); device; device device->Next())
device->Poll () ;

Chapter 21 - ULUST_BLOCK 243

II Get the event.
element = FlagSet(flags, Q_END)

queueBlock.First();
if (element)
{

queueBlock.Last()

244

event = element->event;
if (lFlagSet(flags, Q_NO_DESTROY))

queueBlock.Subtract«UI_ELEMENT *)element);
error = 0;

}
else if (FlagSet(flags, Q_NO_BLOCK))

return (-2);
while (error);

II Return the error status.
return (error);

Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 22 - UI_MACINTOSH_DISPLAY

The UCMACINTOSH_DISPLAY class implements a graphics display that uses the Apple
Macintosh graphics package to draw to the screen. Since the UCMACINTOSH_­
DISPLAY class is derived from UCDISPLAY, only details specific to the UI_MACIN­
TOSH_DISPLAY class are given in this chapter. For descriptions and examples
regarding virtual or inherited display members, see "Chapter 7-UCDISPLAY."

The UCMACINTOSH_DISPLAY class is declared in UI_DSP.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS UI_MACINTOSH_DISPLAY : public UI_DISPLAY
{
public:

II Forward declaration of classes used by UI_MACINTOSH_DISPLAY.
friend class ZIL_EXPORT_CLASS UI_WINDOW_OBJECTi

struct MACFONT
{

short fOnti
Style facei
short modei
short sizei
FontRec **fReci

}i

static MAC FONT fontTable[ZIL_MAXFONTSJi
static ZIL_UINT8 patternTable[ZIL_MAXPATTERNSJ [8J i
static RGBColor *rgbColorMapi
static CTabHandle pixMapColorTablei

static Boolean usedMenuID[lastMenuID + IJi
static MenuHandle appleMenui
static UI_WINDOW_OBJECT *appleAbouti
static UI_WINDOW_OBJECT *menuBari

UI_MACINTOSH_DISPLAY(void)i
virtual -UI_MACINTOSH_DISPLAY(void)i
virtual void Bitmap(ZIL_SCREENID screenID, int column, int line,

int bitmapWidth, int bitmapHeight, canst ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette = ZIL_NULLP(UI_PALETTE),
canst UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_BITMAP_HANDLE *colorBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE),
ZIL_BITMAP_HANDLE *monoBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE))i

virtual void BitmapArrayToHandle(ZIL_SCREENID screenID, int bitmapWidth,
int bitmapHeight, const ZIL_UINT8 *bitmapArray,
canst UI_PALETTE *palette, ZIL_BITMAP_HANDLE *colorBitmap,
ZIL_BITMAP_HANDLE *monoBitmap)i

virtual void BitmapHandleToArray(ZIL_SCREENID screenID,
ZIL_BITMAP_HANDLE colorBitmap, ZIL_BITMAP_HANDLE monoBitmap,
int *bitmapWidth, int *bitmapHeight, ZIL_UINT8 **bitmapArraY)i

virtual void Ellipse(ZIL_SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE,
canst UI_REGION *clipRegion = ZIL_NULLP(UI_REGION)) i

virtual void IconArrayToHandle(ZIL_SCREENID screenID, int iconWidth,
int iconHeight, canst ZIL_UINT8 * iconArray ,
const UI_PALETTE *palette, ZIL_ICON_HANDLE *icon) i

virtual void IconHandleToArray(ZIL_SCREENID screenID,
ZIL_ICON_HANDLE icon, int *iconWidth, int *iconHeight,

Chapter 22 - ULMACINTOSH_DISPLAY 245

ZIL_UINT8 **iconArray);
virtual void Line(ZIL_SCREENID screenID, int columnl, int linel,

int column2, int line2, const UI_PALETTE *palette, int width = 1,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual ZIL_COLOR MapColor(const UI_PALETTE *palette, int isForeground);
virtual RGBColor MapRGBColor(ZIL_COLOR fromColor);
virtual void Polygon(ZIL_SCREENID screenID, int numPoints,

const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void Rectangle(ZIL_SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RectangleXORDiff(const UI_REGION &oldRegion,
const UI_REGION &newRegion, ZIL_SCREENID screenID = ID_SCREEN,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RegionMove(const UI_REGION &oldRegion, int newColumn,
int newLine, ZIL_SCREENID oldScreenID = ID_SCREEN,
ZIL_SCREENID newScreenID = ID_SCREEN);

virtual void Text (ZIL_SCREENID screenID, int left, int top,
const ZIL_ICHAR *text, const UI_PALETTE *palette, int length -1,
int fill = TRUE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextHeight(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextWidth(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int VirtualGet(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual int VirtualPut(ZIL_SCREENID screenID);

protected:
int maxColors;

} ;

General Members

This section describes those members that are used for general purposes.

• MACFONT is a structure that contains the following font information:

font is the font family that defines the typeface.

face is the style (e.g., bold, underline, etc.) used to display the text.

mode is the mode used to display the text. For example, the text might be
XOR'ed, or displayed in inverse colors.

size is the point size of the font.

246 Zinc Application Framework-Programmer's Reference Volume 1

fRee is a pointer to the Macintosh font resource that contains all the information
about the font.

• fontTable is an array of MACFONT. The default array contains space for 10
MACFONT entries. The following entries are pre-defined by Zinc:

FNT_SMALL_FONT-A small font similar in size to a font that might be used
to display an icon's text string.

FNT_DIALOG_FONT-A font that is used when text is displayed on window
objects (e.g., UIW_STRING, UIW_TEXT, etc.)

FNT_SYSTEM_FONT-The Macintosh system font.

See the description of the UI_WINDOW_OBJECT:.font member variable in "Chapter
43-UI_WINDOW_OBJECT" for information on specifying which font an object
uses.

patternTable is an array containing space for 15 pattern entries. The following
entries are pre-defined by Zinc:

PTN_SOLID_FILL-A solid fill pattern.

PTN_INTERLEAVE_FILL-An interleaving line fill pattern. Zinc does not
currently use this pattern on the Macintosh.

PTN_BACKGROUND_FILL-The background fill pattern. Zinc does not
currently use this pattern on the Macintosh.

PTN_SYSTEM_COLOR-The system color used for highlighting text or list
entries. The user can set this color in the Color Control Panel.

• rgbColorMap is an array of RGBColor values that define the colors available in Zinc.

• pixMapColorTable is the Macintosh color table used when drawing PixMaps.

• usedMenuID is an array that keeps track of which menuID's have been used. The
Macintosh limits an application to 256 pop-up menus. Each array entry corresponds
to a menuID. If the array entry is TRUE, that menuID has been used. Otherwise,
the menuID is available.

• appleMenu is a pointer to the Apple menu on the menu bar.

Chapter 22 - ULMACINTOSH_DISPLA Y 247

• appleAbout is a pointer to the About pop-up item in the Apple menu.

• menuBar is a pointer to the menu bar.

• maxColors is the maximum number of colors supported by the graphics mode in use
by the system. This member will be filled in according to information obtained from
the Macintosh. Zinc will support whatever mode is in use by the system.

Syntax

#include <uLdsp.hpp>

VCMACINTOSH_DISPLAY(void);

Portability

This function is available on the following envir~nments:

D DOS Text
• Macintosh

Remarks

D DOS Graphics
D OSF/Motif

D Windows
D Curses

DOSI2
D NEXTSTEP

This constructor creates a new VI_MACINTOSH_DISPLAY class object.

Example

#include <ui_win.hpp>

main()
{

II Initialize zinc Application Framework.
UI_DISPLAY *display = new UI_MACINTOSH_DISPLAY;

UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

UI_WINDOW_MANAGER *windowManager
new UI_WINDOW_MANAGER(display, eventManager);

248 Zinc Application Framework-Programmer's Reference Volume 1

II Restore the system.
delete windowManageri
delete eventManager;
delete display;
return (0);

Syntax

#include <uLdsp.hpp>

-UI_MACINTOSH_DISPLAY(void);

Portability

This function is available on the following environments:

D DOS Text
• Macintosh

Remarks

D DOS Graphics
D OSF/Motif

D Windows
D Curses

DOSI2
D NEXTSTEP

This virtual destructor destroys the class information associated with the UCMAC­
INTOSH_DISPLAY class. Care should be taken to only destroy a UCMACINTOSH_­
DISPLAY class that is not attached to another associated object.

UI_MACINTOSH_DISPLAV::MapRGBColor

Syntax

#include <ui_dsp.hpp>

static RGBColor MapRGBColor(ZIL_COLOR fromColor);

Chapter 22 - ULMACINTOSH_DISPLA Y 249

Portability

This function is available on the following environments:

D DOS Text
• Macintosh

Remarks

D DOS Graphics
D OSF/Motif

D Windows
D Curses

D OS/2
D NEXTSTEP

This function maps a logical color to an RGB color.

• returnValueout is the RGB color that was mapped to.

• fromeolorin is the logical color for which the RGB color is desired.

250 Zinc Application Framework-Programmer's Reference Volume 1

The UCMSC_DISPLAY class implements a graphics display that uses the Microsoft
MSC graphics library package to draw to the screen. Since the UCMSC_DISPLAY class
is derived from UCDISPLAY, only details specific to the UCMSC_DISPLAY class are
given in this chapter. For descriptions and examples regarding virtual or inherited display
members, see "Chapter 7-UCDISPLAY."

The UCMSC_DISPLAY class is declared in UI_DSP.HPP. Its public and protected
members are:

class ZIL_EXPORT CLASS UI MSC DISPLAY
public UI_REGION_LIST

{
public:

struct ZIL_EXPORT CLASS MSCFONT
{

char *typeFace;
char *options;

};
typedef unsigned char MSCPATTERN[8] ;

public UI_DISPLAY,

static UI_PATH *searchPath;
static MSCFONT fontTable[ZIL_MAXFONTS];
static MSCPATTERN patternTable[ZIL_MAXPATTERNS];

UI_MSC_DISPLAY(int mode = 0);
virtual ~UI_MSC_DISPLAY(void);

virtual void Bitmap(ZIL_SCREENID screenID, int column, int line,
int bitmapWidth, int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette = ZIL_NULLP(UI_PALETTE),
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_BITMAP_HANDLE *colorBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE),
ZIL_BITMAP_HANDLE *monoBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE));

virtual void BitmapArrayToHandle(ZIL_SCREENID screenID, int bitmapWidth,
int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette, ZIL_BITMAP_HANDLE *colorBitmap,
ZIL_BITMAP_HANDLE *monoBitmap);

virtual void BitmapHandleToArray(ZIL_SCREENID screenID,
ZIL_BITMAP_HANDLE colorBitmap, ZIL_BITMAP_HANDLE monoBitmap,
int *bitmapWidth, int *bitmapHeight, ZIL_UINT8 **bitmapArray);

virtual void Ellipse(ZIL_SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void IconArrayToHandle(ZIL_SCREENID screenID, int iconWidth,
int iconHeight, const ZIL_UINT8 * iconArray ,
const UI_PALETTE *palette, ZIL_ICON_HANDLE *icon);

virtual void IconHandleToArray(ZIL_SCREENID screenID,
ZIL_ICON_HANDLE icon, int *iconWidth, int *iconHeight,
ZIL_UINT8 **iconArray);

virtual void Line(ZIL SCREENID screenID, int column1, int line1,
int column2, int line2, const UI_PALETTE *palette, int width = 1,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual ZIL_COLOR MapColor(const UI_PALETTE *palette, int isForeground);
virtual void Polygon(ZIL_SCREENID screenID, int numPoints,

const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

Chapter 23 - ULMSC_DISPLA Y 251

virtual void Rectangle (ZIL_SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RectangleXORDiff(const UI_REGION &oldRegion,
const UI_REGION &newRegion, ZIL_SCREENID screenID = ID_SCREEN,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RegionDefine(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual void RegionMove(const UI_REGION &oldRegion, int newColumn,
int newLine, ZIL_SCREENID oldScreenID = ID_SCREEN,
ZIL_SCREENID newScreenID = ID_SCREEN);

virtual void Text (ZIL_SCREENID screenID, int left, int top,
const ZIL_ICHAR *text, const UI_PALETTE *palette, int length -1,
int fill = TRUE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextHeight(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextWidth(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int VirtualGet(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual int VirtualPut(ZIL_SCREENID screenID);

protected:
int maxColors;
signed char _virtualCount;
UI_REGION _virtualRegion;
char _stopDevice;
int _fillPattern;
int _backgroundColor;
int _foregroundColor;

void SetFont(ZIL_LOGICAL_FONT logicalFont);
void SetPattern(const UI_PALETTE *palette, int _xor);

};

General Members

This section describes those members that are used for general purposes.

• MSCFONT is a structure that contains the following font information:

typeFace contains the string name of the font. Zinc uses Microsoft's Helvetica
font, so for the three fonts defined by Zinc, typeFace is "Helv."

options contains the font characteristics. For more information see _setfont()
in the Microsoft Visual C++ Reference.

252

• MSCPATTERN is an array of 8 bytes that make up the 8x8 bitmap pattern. Each
byte (8 bits) corresponds to 8 pixels in the pattern. The patterns defined by Zinc are:

Zinc Application Framework-Programmer's Reference Volume 1

PTN_SOLID_FILL, PTN_INTERLEAVE_FILL and PTN_BACKGROUND_FILL.
For more information see setfillpattern() in the Microsoft Visual C++ Reference.

• searchPath contains the path to be searched for the font file. The MSC graphics
library needs to access font files at run-time so that it can draw characters in graphics
mode. Because Zinc uses Microsoft's Helvetica font, the UCMSC_DISPLAY class
needs to find the HELVB.FON file at run-time. If the display class cannot find this
file, graphics mode will not initialize.

• fontTable is an array of MSCFONT. The default array contains space for 10
MSCFONT entries. The following entries are pre-defined by Zinc:

FNT_SMALL_FONT-A font that is used to display an icon's text string.

FNT_DIALOG_FONT-A font that is used when text is displayed on window
objects (e.g., UIW_BUTTON, UIW_STRING, UIW_TEXT, etc.)

FNT_SYSTEM_FONT-A sans-serif style font that is used to display a window's
title.

NOTE: To use these fonts, or if other "stroked" fonts are added to this table, the
proper Microsoft font files must be in the current working directory or in the
environment's path at run-time.

See the description of the UI_WINDOW_OBJECT: .font member variable in "Chapter
43-UI_WINDOW_OBJECT" for information on specifying which font an object
uses.

• patternTable is an array of MSCPATTERN. The default array contains space for 15
MSCPATTERN entries. The following entries are pre-defined by Zinc:

PTN_SOLID_FILL-Solid fill.

PTN_INTERLEAVE_FILL-Interleaving line fill.

PTN_BACKGROUND_FILL-Background fill style.

maxColors is the maximum number of colors supported by the graphics mode that
was initialized. For example, an EGA display might support sixteen colors. This
member will be filled in according to information obtained from the MSC graphics
library after it has initialized. The MSC graphics library supports SVGA modes,

Chapter 23 - ULMSC_DISPLA Y 253

including 256 color mode. Zinc will support whatever mode is initialized by the
MSC graphics library.

• _virtualCount is a count of the number of virtual screen operations that have taken
place. For example, when the VirtualGet() function is called, _virtualCount is
decremented. Additionally, when the VirtualPut() function is called, _virtualCount
is incremented.

• _virtualRegion is the region affected by either VirtualGet() or VirtualPut().

• _stopDevice is a variable used to prevent recursive updates of device images on the
display. If _stopDevice is TRUE, no drawing will be done to the screen. Otherwise,
drawing will be made directly to the screen display.

• -fillPattern is an index into the patternTable specifying the current fill pattern.

• _backgroundColor is the current background drawing color.

• JoregroundColor is the current foreground drawing color.

Syntax

#include <uLdsp.hpp>

UCMSC_DISPLAY(int mode = 0);

Portability

This function is available on the following environments:

D DOS Text
D Macintosh

Remarks

• DOS Graphics
D OSF/Motif

D Windows
D Curses

D OS/2
D NEXTSTEP

254

This constructor creates a new UCMSC_DISPLAY object. When a new UCMSC_­
DISPLAY class is constructed, the screen display is set to the background color and
pattern specified by the inherited variable backgroundPalette.

Zinc Application Framework-Programmer's Reference Volume 1

• modein specifies the graphics mode that should be initialized. If mode is 0, which is
the default, the UI_MSC_DISPLAY class will initialize the highest resolution
graphics mode possible using the MSC _MAXRESMODE constant. For more
information on the possible values for mode, see _setvideomode() in the Microsoft
Visual C++ Reference.

Example

#include <ui_win.hpp>

main()
{

II Initialize Zinc Application Framework.
DI_DISPLAY *display = new UI_MSC_DISPLAY;

II Restore the system.
delete windowManager;
delete eventManager;
delete display;
return (0);

Syntax

#include <ui_dsp.hpp>

-UCMSC_DISPLAY(void);

Portability

This function is available on the following environments:

D DOS Text
D Macintosh

Remarks

• DOS Graphics
D OSF/Motif

D Windows
D Curses

D OS/2
D NEXTSTEP

This virtual destructor destroys the class information associated with the UCMSC_­
DISPLAY class. Care should be taken to only destroy a UCMSC_DISPLAY class that
is not attached to another associated object.

Chapter 23 - UCMSC_DISPLA Y 255

UI_MSC_DISPLAV::SetFont

Syntax

#include <ui_dsp.hpp>

void SetFont(ZIL_LOGICAL_FONT logicalFont);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

• DOS Graphics
o OSF/Motif

o Windows
o Curses

o OS/2
o NEXTSTEP

This function is used to set the font information used by the MSC graphics library. The
information contained in the logicalFont entry of the fontTable array is used to set the
font.

• logicalFontin is the font to be used. logicalFont is an entry into the fontTable array.

UI_MSC_DISPLAV::SetPattern

Syntax

#include <ui_dsp.hpp>

void SetPattem(const UCPALETTE *palette, int _xor);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

• DOS Graphics
o OSF/Motif

o Windows
o Curses

o OS/2
o NEXTSTEP

256 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function is used to set the pattern information used by the MSC graphics library.
The information contained in palette is used to set the pattern.

• palettein contains the pattern style, foreground color, and background color to be used
when setting the pattern.

• _xorin indicates if the pattern should be drawn with the xor attribute on. If _xor is
TRUE, the pattern will be an xor pattern. Otherwise, the pattern will not be xor.

Chapter 23 - ULMSC_DISPLA Y 257

258 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 24 - UI_MSWINDOWS_DISPLAY

The UCMSWINDOWS_DISPLAY class implements a graphics display that uses the
Microsoft Windows graphics package to draw to the screen. Since the UCMS­
WINDOWS_DISPLAY class is derived from UCDISPLAY, only details specific to the
UCMSWINDOWS_DISPLAY class are given in this chapter. For descriptions and
examples regarding virtual or inherited display members, see "Chapter 7-UC­
DISPLAY."

The UCMSWINDOWS_DISPLAY class is declared in UI_DSP.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS UI_MSWINDOWS_DISPLAY public UI_DISPLAY
{
public:

static HDC hDC;
static HFONT fontTable[ZIL_MAXFONTSJ;
static WORD patternTable[ZIL_MAXPATTERNSJ [8J;

UI_MSWINDOWS_DISPLAY(HANDLE hInstance, HANDLE hPrevInstance,
int nCmdShow);

virtual -UI_MSWINDOWS_DISPLAY(void);
virtual void Bitmap(ZIL_SCREENID screenID, int column, int line,

int bitmapWidth, int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette = ZIL_NULLP(UI_PALETTE),
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_BITMAP_HANDLE *colorBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE),
ZIL_BITMAP_HANDLE *monoBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE));

virtual void BitmapArrayToHandle(ZIL_SCREENID screenID, int bitmapWidth,
int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette, ZIL_BITMAP_HANDLE *colorBitmap,
ZIL_BITMAP_HANDLE *monoBitmap);

virtual void BitmapHandleToArray(ZIL_SCREENID screenID,
ZIL_BITMAP_HANDLE colorBitmap, ZIL_BITMAP_HANDLE monoBitmap,
int *bitmapWidth, int *bitmapHeight, ZIL_UINT8 **bitmapArray);

virtual void Ellipse(ZIL_SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void IconArrayToHandle(ZIL_SCREENID screenID, int iconWidth,
int iconHeight, const ZIL_UINT8 *iconArray,
const UI_PALETTE *palette, ZIL_ICON_HANDLE *icon);

virtual void IconHandleToArray(ZIL_SCREENID screenID,
ZIL_ICON_HANDLE icon, int *iconWidth, int *iconHeight,
ZIL_UINT8 **iconArray);

virtual void Line(ZIL_SCREENID screenID, int column1, int line1,
int column2, int line2, const UI_PALETTE *palette, int width = 1,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual ZIL_COLOR MapColor(const UI_PALETTE *palette, int isForeground);
virtual void Polygon(ZIL_SCREENID screenID, int numPoints,

const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion =' ZIL_NULLP(UI_REGION));

virtual void Rectangle(ZIL_SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RectangleXORDiff(const UI REGION &oldRegion,

Chapter 24 - ULMSWIND0 WS_DISPLA Y 259

const UI_REGION &newRegion, ZIL_SCREENID screenID = ID_SCREEN,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RegionMove(const UI_REGION &oldRegion, int newColumn,
int newLine, ZIL_SCREENID oldScreenID = ID_SCREEN,
ZIL SCREENID newScreenID = ID SCREEN);

virtual-void Text (ZIL_SCREENID sc~eenID, int left, int top,
const ZIL_ICHAR *text, const UI_PALETTE *palette, int length -1,
int fill = TRUE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextHeight(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextWidth(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int VirtualGet(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual int Virtual Put (ZIL_SCREENID screenID);

protected:
int maxColors;

};

General Members

This section describes those members that are used for general purposes.

• hDC is a handle to the current display context. hDC is created and destroyed in the
VirtualGet() and VirtualPut() functions, respectively.

• fontTable is an array of font handles for Microsoft Windows. The fonts used by Zinc
are obtained from the system. The following entries are pre-defined by Zinc:

FNT_SMALL_FONT-A small font similar in size to a font that might be used to
display an icon's text string. MS-Windows is responsible for displaying the text on
an icon, so this font is not typically used by Zinc.

FNT_DIALOG_FONT-A font that is used when text is displayed on window
objects (e.g., UIW_BUTTON, UIW_STRING, UIW_TEXT, etc.)

FNT_SYSTEM_FONT-A slightly larger font similar in size to a font that might
be used to display a window's title. MS-Windows is responsible for displaying the
title of a window, so this font is not typically used by Zinc.

See the description of the UI_WINDOW_OBJECT: .font member variable in "Chapter
43-UCWINDOW_OBJECT" for information on specifying which font an object
uses.

260 Zinc Application Framework-Programmer's Reference Volume 1

• patternTable is an array containing space for 15 pattern entries. The following
entries are pre-defined by Zinc:

PTN_SOLID_FILL-A solid fill pattern.

PTN_INTERLEAVE_FILL-An interleaving line fill pattern.

PTN_BACKGROUND_FILL-The background fill pattern.

• maxColors is the maximum number of colors supported by the graphics mode in use
by MS-Windows. For example, a VGA display might support sixteen colors. This
member will be filled in according to information obtained from Windows. Zinc will
support whatever mode is in use by Windows.

UI_MSWINDOWS_DISPLAV::UI_MSWINDOWS_DISPLAV

Syntax

#include <ui_dsp.hpp>

UCMSWINDOWS_DISPLAY(HANDLE hlnstance, HANDLE hPrevlnstance,
int nCmdShow);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

o DOS Graphics
D OSFlMotif

• Windows
D Curses

DOS/2
o NEXTSTEP

This constructor creates a new UCMSWINDOWS_DISPLAY class object.

• hlnstancein is the particular instance under which the application is running. For
example, if an application is run twice, there are two instances of that application.
This value is passed in automatically by WinMain().

Chapter 24 - ULMSWINDOWS_DISPLA Y 261

• hPrev[nstancein is the previous instance of the application. If a program is run for
the first time, hPrevlnstance is O. This value is passed in automatically by
WinMain().

• nCmdShowin is a string containing the command line parameters. This value is passed
in automatically by WinMain().

Example

#include <ui_win.hpp>

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance, LPSTR lpszCmdLine,
int nCmdShow)

II Initialize the display.
UI_DISPLAY *display = new UI_MSWINDOWS_DISPLAY(hlnstance, hPrevlnstance,

nCmdShow) ;

II Initialize the event manager.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD + new UID_MOUSE + new UID_CURSOR;

II Initialize the window manager.
UI_WINDOW_MANAGER *windowManager =

new UI_WINDOW_MANAGER(display, eventManager);

II Clean up.
delete windowManager;
delete eventManager;
delete display;
return (0);

UI_MSWINDOWS_DISPLAY::-UI_MSWINDOWS_DISPLAY

Syntax

#include <uLdsp.hpp>

-UCMSWINDOWS_DISPLAY(void);

262 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

D DOS Text
D Macintosh

Remarks

D DOS Graphics
D OSFlMotif

• Windows
D Curses

DOSI2
D NEXTSTEP

This virtual destructor destroys the class information associated with the UCMS­
WINDOWS_DISPLAY class. Care should be taken to only destroy a UI_MS­
WINDOWS_DISPLAY class that is not attached to another associated object.

Chapter 24 - ULMSWIND0 WS_DISPLA Y 263

264 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 25 - UI_NEXTSTEP_DISPLAY

The UCNEXTSTEP_DISPLAY class implements a drawing package for the NEXTSTEP
environment. The UCNEXTSTEP_DISPLAY uses Display PostScript to actually do the
drawing. Since the UCNEXTSTEP_DISPLAY class is derived from UCDISPLAY, only
details specific to the UCNEXTSTEP_DISPLAY class are given in this chapter. For
descriptions and examples regarding virtual or inherited display members, see "Chapter
7-UCDISPLAY."

The UI_NEXTSTEP_DISPLAY class is declared in UI_DSP.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS UI_NEXTSTEP_DISPLAY : public UI_DISPLAY
{
public:

II Forward declaration of classes used by UI_NEXTSTEP_DISPLAY.
friend class ZIL_EXPORT_CLASS UI_WINDOW_OBJECT;

struct NEXTFONT
{

id font;
};

static NEXTFONT fontTable[ZIL_MAXFONTS];
static UI_WINDOW_OBJECT *menuBar;
UI_NEXTSTEP_DISPLAY();
virtual -UI_NEXTSTEP_DISPLAY{void);
virtual void Bitmap{ZIL_SCREENID screenID, int column, int line,

int bitmapWidth, int bitmapHeight, canst ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette = ZIL_NULLP(UI_PALETTE),
canst UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_BITMAP_HANDLE *colorBitmap = ZIL_NULLP{ZIL_BITMAP_HANDLE),
ZIL_BITMAP_HANDLE *monoBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE));

virtual void BitmapArrayToHandle(ZIL_SCREENID screenID, int bitmapWidth,
int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette, ZIL_BITMAP_HANDLE *colorBitmap,
ZIL_BITMAP_HANDLE *monoBitmap);

virtual void BitmapHandleToArray{ZIL_SCREENID screenID,
ZIL_BITMAP_HANDLE colorBitmap, ZIL_BITMAP_HANDLE monoBitmap,
int *bitmapWidth, int *bitmapHeight, ZIL_UINT8 **bitmapArray);

virtual void Ellipse(ZIL_SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void IconArrayToHandle(ZIL_SCREENID screenID, int iconWidth,
int iconHeight, const ZIL_UINT8 *iconArray,
canst UI_PALETTE *palette, ZIL_ICON_HANDLE *icon);

virtual void IconHandleToArray(ZIL_SCREENID screenID,
ZIL_ICON_HANDLE icon, int *iconWidth, int *iconHeight,
ZIL_UINT8 **iconArray);

virtual void Line(ZIL_SCREENID screenID, int column1, int line1,
int column2, int line2, const UI_PALETTE *palette, int width = 1,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual ZIL_COLOR MapColor(const UI_PALETTE *palette, int isForeground);
virtual void MapNSColor(const UI_PALETTE *palette, int foreground,

NXColor *nextColor);
virtual void Polygon(ZIL_SCREENID screenID, int numPoints,

const int *polygonPoints, canst UI_PALETTE *palette,

Chapter 25 - U,-NEXTSTEP_DISPLA Y 265

int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void Rectangle (ZIL_SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RectangleXORDiff(const UI_REGION &oldRegion,
const UI_REGION &newRegion, ZIL_SCREENID screenID = ID_SCREEN,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RegionMove(const UI_REGION &oldRegion, int newColumn,
int newLine, ZIL_SCREENID oldScreenID = ID_SCREEN,
ZIL_SCREENID newScreenID = ID_SCREEN);

virtual void RegionDefine(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual void Text (ZIL_SCREENID screenID, int left, int top,
const ZIL_ICHAR *text, const UI_PALETTE *palette, int length = -1,
int fill = TRUE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL LOGICAL FONT font = FNT DIALOG FONT);

virtual-int TextHeight(const ZIL_ICHAR-*string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextWidth(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int VirtualGet(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual int VirtualPut(ZIL_SCREENID screenID);

protected:
int maxColors;

};

General Members

This section describes those members that are used for general purposes.

• NEXTFONT is a structure that contains the following font information:

font is a pointer to the font.

• fontTable is an array of fonts each of which contains the definition of a NEXTSTEP
system font. The fonts used by Zinc are obtained from the system. The following
entries are pre-defined by Zinc:

FNT_SMALL_FONT-A small font similar in size to a font that might be used
to display an icon's text string. NEXTSTEP is responsible for displaying the
text on an icon, so this font is not typically used by Zinc.

FNT_DIALOG_FONT-A font that is used when text is displayed on window
objects (e.g., UIW_BUTTON, UIW_STRING, UIW_TEXT, etc.)

266 Zinc Application Framework-Programmer's Reference Volume 1

FNT_SYSTEM_FONT-A slightly larger font similar in size to a font that
might be used to display a window's title. NEXTSTEP is responsible for
displaying the title of a window, so this font is not typically used by Zinc.

See the description of the UI_WINDOW_OBJECT: .font member variable in "Chapter
43-UCWINDOW_OBJECT" for information on specifying which font an object
uses.

• menuBar is a pointer to the application's pull-down menu, it one exists.

• maxColors is the maximum number of colors supported by the graphics mode in use
by the operating environment. This member will be filled in according to information
obtained from the environment. Zinc will support whatever mode is in use by the
environment.

NOTE: All member functions use the standard Zinc screen pixel coordinates with (0,0)
being the top-left comer of the display even though Display PostScript places the origin
at the lower-left comer of the display. This is done to remain consistent across platforms.

UI_NEXTSTEP_DISPLAY::UI_NEXTSTEP_DISPLAY

Syntax

#include <ui_dsp.hpp>

UCNEXTSTEP_DISPLAY(void);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

o DOS Graphics
o OSFlMotif

o Windows
o Curses

DOSI2
• NEXTSTEP

This constructor creates a new UCNEXTSTEP_DISPLAY class object.

Chapter 25 - ULNEXTSTEP_DISPLA Y 267

Example
#include <ui_win.hpp>

main()
{

II Initialize the display.
UI_DISPLAY *display = new UI_NEXTSTEP_DISPLAY;

II Initialize the event manager.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

II Initialize the window manager.
UI_WINDOW_MANAGER *windowManager =

new UI_WINDOW_MANAGER(display, eventManager);

II Clean up.
delete windowManager;
delete eventManager;
delete display;
return (0);

Syntax

#include <ui_dsp.hpp>

Portability

This function is available on the following environments:

o DOS Text
D Macintosh

Remarks

D DOS Graphics
D OSFlMotif

D Windows
D Curses

DOSI2
• NEXTSTEP

268

This virtual destructor destroys the class information associated with the UI_NEXT­
STEP_DISPLAY class. Care should be taken to only destroy a UCNEXTSTEP_DIS­
PLAY class that is not attached to another associated object.

Zinc Application Framework-Programmer's Reference Volume 1

UI_NEXTSTEP_DISPLAV::MapNSColor

Syntax

#include <uLdsp.hpp>

virtual void MapNSColor(const UCPALETTE *palette, intforeground,
NXCoior *nextColor);

Portability

This function is available on the following environments:

D DOS Text
D Macintosh

Remarks

D DOS Graphics
D OSF/Motif

D Windows
D Curses

DOSI2
• NEXTSTEP

This function is used to obtain a NEXTSTEP color from a UCPALETTE entry.

• palettein is the palette from which the NEXTSTEP color is to be obtained.

• foregroundin specifies if the palette's foreground color is to be obtained. If
foreground is TRUE, the palette's foreground color is mapped. Otherwise, the
palette's background color is mapped.

• nextColorout is the NEXTSTEP color mapped to from the palette entry.

Chapter 25 - ULNEXTSTEP_DISPLAY 269

270 Zinc Application Framework-Programmer's Reference Volume 1

The UCOS2_DISPLAY class implements a Presentation Manager display that uses the
OS/2 Presentation Manager API and the Graphics Programming Interface (GPI) to draw
to the screen. Since the UCOS2_DISPLAY class is derived from UCDISPLAY, only
details specific to the UCOS2_DISPLAY class are given in this chapter. For descriptions
and examples regarding virtual or inherited display members, see "Chapter
7-UI_DISPLAY."

The UCOS2_DISPLAY class is declared in UI_DSP.HPP. Its public and protected
members are:

class ZIL_EXPORT CLASS UI_OS2_DISPLAY public UI_DISPLAY
{
public:

static HPS hps;
static FONTMETRICS fontTable[ZIL_MAXFONTS];

UI_OS2_DISPLAY(void) ;
virtual -UI_OS2_DISPLAY(void);
virtual void Bitmap(ZIL_SCREENID screenID, int column, int line,

int bitmapWidth, int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette = ZIL_NULLP(UI_PALETTE),
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_BITMAP_HANDLE *colorBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE),
ZIL_BITMAP_HANDLE *monoBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE));

virtual void BitmapArrayToHandle(ZIL_SCREENID screenID, int bitmapWidth,
int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const DI_PALETTE *palette, ZIL_BITMAP_HANDLE *colorBitmap,
ZIL_BITMAP_HANDLE *monoBitmap);

virtual void BitmapHandleToArray(ZIL_SCREENID screenID,
ZIL_BITMAP_HANDLE colorBitmap, ZIL_BITMAP_HANDLE monoBitmap,
int *bitmapWidth, int *bitmapHeight, ZIL_UINT8 **bitmapArray);

virtual void Ellipse(ZIL_SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void IconArrayToHandle(ZIL_SCREENID screenID, int iconWidth,
int iconHeight, const ZIL_UINT8 *iconArray,
const UI_PALETTE *palette, ZIL_ICON_HANDLE *icon);

virtual void IconHandleToArray(ZIL_SCREENID screenID,
ZIL_ICON_HANDLE icon, int *iconWidth, int *iconHeight,
ZIL_UINT8 **iconArray);

virtual void Line(ZIL_SCREENID screenID, int columnl, int linel,
int column2, int line2, const UI_PALETTE *palette, int width = 1,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual ZIL_COLOR MapColor(const UI_PALETTE *palette, int isForeground);
virtual void Polygon(ZIL_SCREENID screenID, int numPoints,

const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void Rectangle(ZIL_SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int _xor = FALSE,
const DI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RectangleXORDiff(const DI_REGION &oldRegion,
const UI_REGION &newRegion, ZIL_SCREENID screenID = ID_SCREEN,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

Chapter 26 - ULOS2_DISPLAY 271

virtual void RegionMove(const UI_REGION &oldRegion, int newColumn,
int newLine, ZIL_SCREENID oldScreenID = ID_SCREEN,
ZIL SCREENID newScreenID = ID SCREEN);

virtual-void Text (ZIL_SCREENID screenID, int left, int top,
const ZIL_ICHAR *text, const UI_PALETTE *palette, int length -1,
int fill = TRUE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL LOGICAL FONT font = FNT DIALOG FONT);

virtual-int TextHeight(const ZIL_ICHAR-*string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL LOGICAL FONT font = FNT DIALOG FONT);

virtual-int TextWidth(const ZIL=ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int VirtualGet(ZIL_SCREENID screenID, int left, int top,
int right, int bottom) ;

virtual int VirtualPut(ZIL_SCREENID screenID);

protected:
int maxColors;

void SetFont(ZIL_LOGICAL_FONT logicalFont);
};

General Members

This section describes those members that are used for general purposes.

• hps is a handle to the current OS/2 presentation space. hps is created and destroyed
in the VirtualGet() and VirtualPut() functions, respectively.

• fontTable is an array of OS/2 FONTMETRICS each of which contains the definition
of an OS/2 system font. The fonts used by Zinc are obtained from the system. The
following entries are pre-defined by Zinc:

FNT_SMALL_FONT-A small font similar in size to a font that might be used
to display an icon's text string. OS/2 is responsible for displaying the text on an
icon, so this font is not typically used by Zinc.

FNT_DIALOG_FONT-A font that is used when text is displayed on window
objects (e.g., UIW_BUTTON, UIW_STRING, UIW_TEXT, etc.)

FNT_SYSTEM_FONT-A slightly larger font similar in size to a font that
might be used to display a window's title. OS/2 is responsible for displaying the
title of a window, so this font is not typically used by Zinc.

See the description of the UI_WINDOW_OBJECT:.font member variable in "Chapter
43-UCWINDOW_OBJECT" for information on specifying which font an object
uses.

272 Zinc Application Framework-Programmer's Reference Volume 1

• maxColors is the maximum number of colors supported by the graphics mode in use
by the Presentation Manager. For example, a VGA display might support sixteen
colors. This member will be filled in according to information obtained from the
GPI. Zinc will support whatever mode is in use by the Presentation Manager.

NOTE: All member functions use the standard Zinc screen pixel coordinates with (0,0)
being the top-left corner of the display even though OS/2 places the origin at the lower­
left corner of the display. This is done to remain consistent across platforms.

Syntax

#include <uLdsp.hpp>

UCOS2_DISPLAY(void);

Portability

This function is available on the following environments:

D DOS Text
D Macintosh

Remarks

D DOS Graphics
D OSF/Motif

D Windows
D Curses

• OS/2
D NEXTSTEP

This constructor creates a new UCOS2_DISPLAY class object.

Example

#include <ui_win.hpp>

main()
{

II Initialize the display.
UI_DISPLAY *display = new UI_OS2_DISPLAY;

II Initialize the event manager.
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

II Initialize the window manager.

Chapter 26 - U,-OS2_DISPLA Y 273

UI_WINDOW_MANAGER *windowManager =
new UI_WINDOW_MANAGER(display, eventManager);

II Clean up.
delete windowManager;
delete eventManager;
delete display;
return (0);

Syntax

#include <ui_dsp.hpp>

lJCOS2_DISPLAY(void);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

o DOS Graphics
o OSF/Motif

o Windows
o Curses

• OS/2
o NEXTSTEP

This virtual destructor destroys the class information associated with the UCOS2_­
DISPLAY class. Care should be taken to only destroy a UCOS2_DISPLAY class that
is not attached to another associated object.

UI_OS2_DISPLAV::SetFont

Syntax

#include <uLdsp.hpp>

void SetFont(ZIL_LOGICAL_FONT logicaIFont);

274 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

o DOS Graphics
o OSFlMotif

o Windows
o Curses

• OS/2
o NEXTSTEP

This function is used to set the font information used by the GPI graphics library. The
information contained in the logicalFont entry of the fontTable array is used to set the
font.

• logicalFontin is the font to be used. logicalFont is an entry into the fontTable array.

Chapter 26 - U,-OS2_DISPLA Y 275

276 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 27 - UI_PALETTE

The UCPALETTE structure is used by Zinc Application Framework to provide color
information for different display types. A palette contains entries for monochrome text
mode, color text mode, color graphics mode, black-and-white graphics mode and
monochrome graphics mode. Because one palette contains information for each display
type, a high level object does not need to know the display type when assigning a color.
The appropriate palette field will be used by the low-level display function.

The UCPALETTE structure is declared in UI_DSP.HPP. Its public and protected
members are:

II --- Text mode --­
ZIL_ICHAR fillCharacter;
ZIL_COLOR colorAttribute;
ZIL_COLOR monoAttribute;

II --- Graphics mode --­
LOGICAL_PATTERN fillPattern;
ZIL_COLOR colorForeground;
ZIL_COLOR colorBackground;
ZIL_COLOR bwForeground;
ZIL_COLOR bwBackground;
ZIL_COLOR grayScaleForeground;
ZIL_COLOR grayScaleBackground;

};

General Members

II Fill character.
II Color attribute.
II Mono attribute.

I I Fill pattern.
II EGA/VGA colors.

II Black & White colors (2 color).

II Monochrome colors (3+ color).

This section describes those members that are used for general purposes.

• jiliCharacter is the text mode fill character. It is the character that will be used to
fill in blank areas if the drawing function calls for the area to be filled. This field
is used by text mode displays only.

• colorAttribute contains the foreground and background color definitions for the
palette. The attrib() macro is used to combine the color values for this field. This
field is used by text mode displays only.

• monoAttribute contains the foreground and background monochrome definitions for
the palette. The attrib() macro is used to combine the color values for this field.
This field is used by text mode displays only.

Chapter 27 - ULPALETTE 277

• jillPattern is the graphics fill pattern. It is the pattern that will be used to fill in areas
if the drawing function calls for the area to be filled. This field is used by graphics
mode displays only. The following patterns (declared in UI_DSP.HPP) can be used:

PTN_SOLID_FILL-The pattern is a solid, single-color pattern.

PTN_INTERLEAVE_FILL-The pattern will interleave two colors.

PTN_BACKGROUND_FILL-The pattern is a special pattern used for the
background of the display.

PTN_SYSTEM_COLOR-The colors specified in the palette are system color
identifiers for the graphical operating system. If this pattern is specified Zinc
will query the operating system to obtain the color defined for the color
identifier.

PTN_RGB_COLOR-The colors specified in the palette are RGB color values.
The RGB constants are defined in UI_DSP.HPP.

• colorForeground and colorBackground are the color foreground and background
values to use in color graphics mode.

bwForeground and bwBackground are the black-and-white foreground and
background values to use in black-and-white graphics mode, including Hercules
displays.

• grayScaleForeground and grayScaleBackground are gray scale foreground and
background values to use in monochrome graphics mode.

Example

#include <ui_dsp.hpp>

static UI_PALETTE backgroundPalette = {
'\260', attrib(BLUE, BLACK), attrib(MONO_DIM, MONO_BLACK),
PTN_INTERLEAVE_FILL, BLUE, BLUE, BW_WHITE, BW_WHITE, GS_GRAY, GS_GRAY }i

main()
{

display->backgroundPalette = &backgroundPalette;

278 Zinc Application Framework-Programmer's Reference Volume 1

The UCPALETTE_MAP structure is used by Zinc Application Framework class objects
for color map information. The structure associates an object identifier and a logical
palette identifier with a palette. By constructing a table of UCPALETTE_MAP objects
it is possible to determine which palette to use for a specific object in a specific scenario.
For example, a button that is non-selectable may draw differently than a button that is
current. Each combination of button and specific scenario should be represented in the
table of palette maps.

The UCPALETTE_MAP structure is declared in UI_WIN.HPP. Its public and protected
members are:

struct ZIL_EXPORT_CLASS UI PALETTE_MAP
{

ZIL_OBJECTID objectID;
ZIL_LOGICAL_PALETTE logicalPalette;
UI_PALETTE palette;

static UI_PALETTE *MapPalette(UI_PALETTE_MAP *mapTable,
ZIL_LOGICAL_PALETTE logicalPalette,
ZIL_OBJECTID idl ID_WINDOW_OBJECT,
ZIL_OBJECTID id2 ID_WINDOW_OBJECT,
ZIL_OBJECTID id3 ID_WINDOW_OBJECT,
ZIL_OBJECTID id4 ID_WINDOW_OBJECT,
ZIL_OBJECTID idS ID_WINDOW_OBJECT);

};

General Members

This section describes those members that are used for general purposes.

• objectID is a value that identifies the type of object for which the palette map entry
applies. For example, all palette maps that pertain to the UIW_BUTTON class have
an objectID if ID_BUTTON. A full list of object identifications is given in
UI_WIN.HPP. Some example object identifications are:

ID_WINDOW_OBJECT-Associated with all class objects derived from the
UCWINDOW_OBJECT base class.

ID_BORDER-Associated with the UIW_BORDER class object.

ID_STRING-Associated with the UIW_STRING object or with any class
object derived from the UIW_STRING base class (e.g., UIW_DATE, UIW_­
TIME).

Chapter 28 - ULPALETTE_MAP 279

• logicalPalette is a value that identifies the scenario for the object. For example, a
button may be non-selectable, may be current or may not have any special look. The
following logical palette identifications (defined in UI_WIN.HPP) are recognized:

PM_ACTIVE-Indicates that the object is active.

PM_CURRENT-Indicates that the object is current.

PM_HOT_KEY-Indicates that the object has a hotkey character.

PM_INACTIVE-Indicates that the object is not active.

PM_NON_SELECTABLE-Indicates that the object is non-selectable.

PM_SELECTED-Indicates that the object is selected.

PM_ANY-Indicates that the object has no special look.

PM_SPECIAL-Indicates that the palette is a special palette.

The following algorithm is used to determine which palette map identification is used:

I-If the object is not selectable (i.e., the object's woFlags variable has the
WaF_NaN_SELECTABLE flag set), the PM_NON_SELECTABLE palette
map is used.

2-If the object is in an inactive state (i.e., its parent window is not the current
window) the PM_INACTIVE color map is used.

3-If the object has been selected (i.e., the object's woStatus variable has the
WaS_SELECTED status set), the PM_SELECTED color map is used.

4-If the object is not current but its parent window is the current window, the
PM_ACTIVE color map is used.

5-If the object is current and its parent window is the current window, the
PM_CURRENT color map is used.

6-If no match is found in the previous cases, PM_ANY is used.

palette is the palette associated with the object type and scenario.

280 Zinc Application Framework-Programmer's Reference Volume 1

Syntax

#include <uLmap.hpp>

static UCPALETTE *MapPalette(UI_PALETTE_MAP *mapTable,
ZIL_LOGICAL_PALETTE logicalPalette,
ZIL_OBJECTID idl = ID_WINDOW_OBJECT,
ZIL_OBJECTID id2 = ID_WINDOW_OBJECT,
ZIL_OBJECTID id3 = ID_WINDOW_OBJECT,
ZIL_OBJECTID id4 = ID_WINDOW_OBJECT,
ZIL_OBJECTID id5 =ID_WINDOW_OBJECT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function searches a palette map table for a match on the object type and
the scenario for the object. It returns the palette mapped to, if a match is found.

NOTE: Not all environments use the palette map tables to draw the objects. In those
graphical operating systems that already handle drawing the objects, Zinc typically lets
the operating system do the drawing. However, if an object is an ownerdraw object (i.e.,
it has the WOS_OWNERDRAW status set, so it draws from the Drawltem() function),
however, it will usually bypass the operating system and use the palette map table to
draw.

returnValueOUI is the palette that was mapped from the object identifier and the
scenario.

• mapTablein is a pointer to the palette map table to be searched. Zinc uses several by
default:

_normalPaletteMapTable contains the normal mappings for all objects.

Chapter 28 - ULPALETTE_MAP 281

_errorPaletteMapTable contains the mappings for the error window.

_helpPaletteMapTable contains the mappings for the help window.

VI_DISPLAY::xorPalette contains the mapping for XOR drawing.

VI_DISPLAY: :backgroundPalette contains the mappings for the background of
the screen.

• logicalPalettein is a value that identifies the scenario for the object.

• idl in , id2in , id3in , id4in and id5in are object identifiers. The five values are used to
identify the object's inheritance hierarchy. Typically, the object's windowID array
supplies these values. If MapPalette cannot find a match on idl it will attempt to
find a match on id2, and so on until it either has a match or can't find a match. It
is generally a good idea to provide a catch-all palette map for ID_WINDOW_­
OBJECT and PM_ANY that would be used if no other palette maps match.

Example
#include <ui_win.hpp>
EVENT_TYPE UIW_BORDER::DrawItem(const UI_EVENT &event, EVENT_TYPE ccode)
{

II Draw the border.
int size = display->cellHeight;
UI_REGION region = parent->true;
UI_PALETTE *outline = LogicalPalette(ccode, ID_OUTLINE);
display->Rectangle(screenID, region, outline, 1, FALSE, FALSE, &clip);
display->Rectangle(screenID, true, outline, 1, FALSE, FALSE, &clip);
--region;
if (ccode == S_DISPLAY_ACTIVE && FlagSet(parent->woAdvancedFlags,

WOAF_DIALOG_OBJECT))
lastPalette = UI_PALETTE_MAP::MapPalette(paletteMapTable, PM_SELECTED,

ID_BORDER) ;

return (ccode)i

282 Zinc Application Framework-Programmer's Reference Volume 1

The UCPATH class is used to maintain a list of path elements. A path element, which
is a UCPATH_ELEMENT class object, contains a path to a specific directory. An object
can use a UCPATH object to keep a list of directories that may contain data the object
depends on. For example, a graphics display class may need run-time access to some
graphics font definition files. The class could use a UI_PATH object to search for the
font files initially or, once they've been located, to keep track of their directory.

The UCPATH class is declared in UI_GEN.HPP. Its public and protected members are:

class ZIL_EXPORT_CLASS UI_PATH : public UI_LIST, public ZIL_INTERNATIONAL
{
public:

UI_PATH(ZIL_ICHAR *programPath = ZIL_NULLP(ZIL_ICHAR),
int rememberCWD = TRUE);

-UI_PATH (void) ;
const ZIL_ICHAR *PirstPathName(void);
const ZIL_ICHAR *NextPathName(void);

II List members
UI_PATH_ELEMENT *Current(void);
UI_PATH_ELEMENT *Pirst(void);
UI_PATH_ELEMENT *Last(void);

public:
static ZIL_ICHAR *-pathString;
static ZIL_ICHAR *_zincPathString;

} ;

General Members

This section describes those members that are used for general purposes.

-pathString is a string used to get the path from the appropriate operating system
environment variable. By default, yathString is "PATH" thus allowing the PATH
environment variable to be obtained.

_zincPathString is a string used to get the Zinc data file path from the appropriate
operating system environment variable. By default, _zincPathString is "ZINC_­
PATH" thus allowing the Zinc data file path to be obtained from the ZINC_PATH
environment variable. The use of the ZINC_PATH environment variable is optional.

Chapter 29 - ULPATH 283

Syntax

#include <ui~en.hpp>

UCPATH(ZIL_ICHAR *programPath = ZIL_NULLP(ZIL_ICHAR),
int rememberCWD =TRUE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UCPATH class object.

• programPath in is a string containing the program's origination directory.

• rememberCWDin indicates if a path element containing the current working directory
should be placed in the list of path elements. If rememberCWD is TRUE, the current
working directory is placed in the list. Otherwise it is not.

Example
#include <ui_gen.hpp>

rnain(int argc, char *argv[])
{

II Initialize the path.
UI_PATH *path = new UI_PATH(argv[O], TRUE);
UI_DISPLAY *display = new UI_MSC_DISPLAY(O, 0, path);

delete display;
delete path;

284 Zinc Application Framework-Programmer's Reference Volume 1

Syntax

#include <ui~en.hpp>

-UCPATH(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This destructor destroys the class information associated with the UCPATH object. Al
path elements attached to the object will also be destroyed.

Example

#include <ui_gen.hpp>

main(int argc, char *argv[J)
{

II Initialize the path.
UI_PATH *path = new UI_PATH(argv[O], TRUE);

delete path;

Syntax

#include <uLgen.hpp>

Chapter 29 - ULPATH 285

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the current path element, if one exists, in the list.

• returnValueout is a pointer to the current path element in the list. If there is no
current element, returnValue is NULL.

UI PATH::First

Syntax

#include <ui_gen.hpp>

UCPATH_ELEMENT *First(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the first path element, if one exists, in the list.

returnValueout is a pointer to the first path element in the list. If there is no first
element, returnValue is NULL.

286 Zinc Application Framework-Programmer's Reference Volume 1

UI PATH::FirstPathName

Syntax

#include <ui_gen.hpp>

const ZIL_ICHAR *FirstPathName(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the path or directory of the first path element.

• returnValueout is a pointer to a string containing the path or directory of the first path
element. If there is no first element, it returns NULL.

Example

#include <stdlib.h>
#include <stdio.h>
#include <ui_gen.hpp>

int ExampleFunction(const ZIL_ICHAR *file, unsigned int mode)
{

ZIL_ICHAR *pathName;
pathName = path->FirstPathName();
if (pathName == NULL)

return (-1);

else
{

while ((pathName = path->NextPathName()) != 0)

if ((handle = open (pathName, mode)) >= 0)
return (handle);

}
return (-1);

Chapter 29 - ULPATH 287

Syntax

#include <ui~en.hpp>

UCPATH_ELEMENT *Last(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the last path element, if one exists, in the list.

• returnValue
OUI

is a pointer to the last path element in the list. If there is no last
element, returnValue is NULL.

UI_PATH::NextPathName

Syntax

#include <ui~en.hpp>

const ZIL_ICHAR *NextPathName(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

288 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function returns the path or directory of the path element after the current path
element.

• returnValueout is a pointer to a string containing the path or directory of the next path
element. If there is no next element, it returns NULL.

Example

#include <stdlib.h>
#include <stdio.h>
#include <ui_gen.hpp>

int ExampleFunction(const ZIL_ICHAR *file, unsigned int mode)
{

int handle;
OI_PATH *path = new OI_PATH;

SetFileName(file) ;
ZIL_ICHAR *pathName;
pathName = path->FirstPathName()
while ((pathName = path->NextPathName(») != 0)

if ((handle = open (pathName, mode)) >= 0)
return (handle);

return (-1);

Chapter 29 - UCPATH 289

290 Zinc Application Framework-Programmer's Reference Volume 1

The UCPATH_ELEMENT class is used to store a directory path. Some classes in Zinc
need to keep track of the location of files on disk. By placing a path element in a linked
list maintained by the UCPATH class, an object can maintain a path to any number of
directory locations.

The UCPATH_ELEMENT class is declared in UI_GEN.HPP. Its public and protected
members are:

class ZIL EXPORT CLASS UI PATH ELEMENT public UI_ELEMENT,
public ZIL_INTERNATIONAL -

{
public:

ZIL_ICHAR *pathNamej

UI_PATH_ELEMENT(ZIL_ICHAR *pathName, int length = -l)j
-UI_PATH_ELEMENT(void)j

II List members.
UI PATH ELEMENT *Next(void)j
UI=PATH=ELEMENT *Previous(void)j

}j

General Members

This section describes those members that are used for general purposes.

• pathName is a string containing the directory to be searched. pathName may contain
drive specifiers.

UI PATH ELEMENT::UI PATH ELEMENT

Syntax

#include <ui_gen.hpp>

UCPATH_ELEMENT(ZIL_ICHAR *pathName, int length = -1);

Chapter 30 - ULPATH_ELEMENT 291

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UCPATH_ELEMENT object. The UCPATH_ELEMENT
is used to store a path name and is used in conjunction with the UCPATH class.

• pathNamein contains the path or directory name.

• lengthin is the length of pathName. If no value is entered for length, the length of
pathName is used.

Example

#include <ui_gen.hpp>

UI_PATH::UI_PATH(ZIL_ICHAR *programPath, int rememberCWD)
{

II Get the path names.
for (int i = Oi i < 3i i++)
{

II Determine which path to look for.
ZIL_ICHAR path[256Ji
if (i == 0 && rememberCWD)

getcwd(path, 256)i
else if (i == 1 && programPath)

strcpy(path, programPath)i
else if (i == 2 && getenv("PATH"))

strcpy(path, getenv("PATH"))i
else

strcpy (path, "") i

II Parse the directory tree.
for (int j = Oi path[jJi)
{

for (int k = ji path[kJ && path[k] != ';';)
k++i

Add (NULL, new UI_PATH_ELEMENT(&path[j], k - j»)i
j = path[kJ ? k + 1 : ki

292 Zinc Application Framework-Programmer's Reference Volume 1

Syntax

#include <uLgen.hpp>

-UCPATH_ELEMENT(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This destructor destroys the class information associated with the UCPATH_ELEMENT
object.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

path - pathElement;
delete pathElement;

Syntax

#include <ui_gen.hpp>

UCPATH_ELEMENT *Next(void);

Chapter 30 - ULPATH_ELEMENT 293

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the next path element, if one exists, in the list of path
elements.

Syntax

#inc1ude <ui_gen.hpp>

UCPATH_ELEMENT *Previous(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

294

This function returns a pointer to the previous path element, if one exists, in the list of
path elements.

Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 31 - UI_POSITION

The VCPOSITION structure is used to store and manipulate screen positional information
(e.g., mouse screen positions).

The VI_POSITION structure is declared in UI_DSP.HPP. Its public and protected
members are:

int column, line;

#if defined (ZIL_MSWINDOWS)
void Assign(const POINT &point);

#elif defined (ZIL_OS2)
void Assign(const POINTL &point);

#elif defined (ZIL_MACINTOSH)
void Assign(const Point &point);

#elif defined (ZIL_NEXTSTEP)
void Assign(const NXPoint &point);

#endif
int operator==(const UI_POSITION &position) const;
int operatorl=(const UI_POSITION &position) const;
int operator«const UI_POSITION &position) const;
int operator>(const UI_POSITION &position) const;
int operator>=(const UI_POSITION &position) const;
int operator<=(const UI_POSITION &position) const;
UI_POSITION &operator++(void);
UI_POSITION &operator--(void);
UI_POSITION &operator+=(int offset);
UI_POSITION &operator-=(int offset);

};

General Members

This section describes those members that are used for general purposes.

• column is the horizontal position value. This value may be in cells, minicells or
pixels depending on the context of the VCREGION being used.

• line is the vertical position value. This value may be in cells, minicells or pixels
depending on the context of the VI_REGION being used.

Example

#include <ui_evt.hpp>

EVENT_TYPE UID_CURSOR: : Event (const UI_EVENT &event)
{

Chapter 31 - ULPOSITION 295

switch (event.rawCode)
{

case D_SHOW:
if (state != D_OFF)
{

DI_REGION region;
region. left = position.column;
region. top = position. line;
region. right = region. left + display->cellWidth - 1;
region.bottom = region. top + display->cellHeight - 1;
if (region.Overlap(event.region))

tState = (event.rawCode == D_HIDE) ? D_HIDE : D_ON;
}
break;

UI_POSITION::Assign

Syntax

#include <ui_dsp.hpp>

void Assign(const POINT &point);
or

void Assign(const POINTL &point);
or

void Assign(const Point &point);
or

void Assign(const NXPoint &point);

Portability

This function is available on the following environments:

o DOS Text
• Macintosh

o DOS Graphics
o OSFlMotif

• Windows
o Curses

• OS/2
• NEXTSTEP

296 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function copies the position information from the operating system-specific structure
into the UCPOSITION structure.

• pointin is the operating system-specific position structure whose value is to be copied
into the UCPOSITION structure.

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

position.Assign(tPosition)i

UI_POSITION::operator ==

Syntax

#include <uLdsp.hpp>

int operator == (const UI_POSITION &position)~

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines if the position maintained by the UCPOSITION
structure is the same as position.

returnValueoul is TRUE if the UCPOSITION is the same as position. Otherwise,
returnValue is FALSE.

Chapter 31 - ULPOSITION 297

• positionin is the position to be compared.

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

if (position == tPosition)
{

UI_POSITION::operator !=

Syntax

#include <ui_dsp.hpp>

int operator != (const DCPOSITION &position);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines if the DLPOSITION structure is not equal to the DC­
POSITION structure specified by position.

• returnValueout is TRDE if the DLPOSITION structure is not the same as position.
Otherwise, returnValue is FALSE.

• positionin is the position to be compared.

298 Zinc Application Framework-Programmer's Reference Volume 1

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

if (position != tPosition)
{

UI_POSITION::operator <

Syntax

#include <uLdsp.hpp>

int operator < (const UCPOSITION &position);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

.OS/2
• NEXTSTEP

This operator overload determines whether the DCPOSITION structure is less than the
DCPOSITION structure specified by position. The UCPOSITION structure is less than
position if the column value of the UCPOSITION structure is less than the column value
of position or if the line value of the UI_POSITION structure is less than the line value
of position.

returnValueout is TRUE if the UCPOSITION structure is less than position. Other­
wise, returnValue is FALSE.

positionin is the position to be compared.

Chapter 31 - ULPOSITION 299

Example
#include <ui_dsp.hpp>

ExampleFunction ()
{

if (position < tPosition)
{

UI_POSITION::operator>

Syntax

#include <uLdsp.hpp>

int operator> (const DCPOSITION &position);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the DCPOSITION structure is greater than the
DI_POSITION structure specified by position. The DI_POSITION structure is greater
than position if the column value of the DCPOSITION structure is greater than the
column value of position or if the line value of the DCPOSITION structure is greater than
the line value of position.

• returnValueOUI is TRDE if the DI POSITION structure is greater than position.
Otherwise, returnValue is FALSE.

• positionin is the position to be compared.

300 Zinc Application Framework-Programmer's Reference Volume 1

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

if (position > tPosition)
{

UI_POSITION::operator >=

Syntax

#include <uLdsp.hpp>

int operator >= (const DCPOSITION &position);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the DCPOSITION structure is greater than or
equal to the DCPOSITION structure specified by position. The DI_POSITION structure
is greater than or equal to position if the column value of the DI_POSITION structure is
greater than or equal to the column value of position or if the line value of the DCPOSI­
TION structure is greater than or equal to the line value of position.

• returnValueout is TRDE if the DCPOSITION structure is greater than or equal to
position. Otherwise, returnValue is FALSE.

• positionin is the position to be compared.

Chapter 31 - ULPOSITION 301

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

if (position >= tposition)
{

UI_POSITION::operator <=

Syntax

#include <uLdsp.hpp>

int operator <= (const UI_POSITION &position);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the UCPOSITION structure is less than or
equal to the UI_POSITION structure specified by position. The UCPOSITION structure
is less than or equal to position if the column value of the UCPOSITION structure is less
than or equal to the column value of position or if the line value of the UCPOSITION
structure is less than or equal to the line value of position.

• returnValueout is TRUE if the UCPOSITION structure is less than or equal to
position. Otherwise, returnValue is FALSE.

• positionin is the position to be compared.

302 Zinc Application Framework-Programmer's Reference Volume 1

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

if (position <= tposition)
{

UI_POSITION::operator ++

Syntax

#include <uLdsp.hpp>

VepOSITION &operator ++ (void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload increments the line and column values of the VI_POSITION
structure by one.

• returnValueoul is a pointer to the VI_POSITION structure after the value has been
incremented. This pointer is returned so that the operator may be used in a statement
containing other operations.

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

Chapter 31 - ULPOSITION 303

position++;

UI_POSITION::operator ••

Syntax

#include <uLdsp.hpp>

DCPOSITION &operator -- (void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload decrements the line and column values of the DCPOSITION
structure by one.

• returnValueout is a pointer to the DCPOSITION structure after the position has been
decremented. This pointer is returned so that the operator may be used in a statement
containing other operations.

Example

#include <ui_dsp.hpp>
ExarnpleFunction ()
{

position--;

304 Zinc Application Framework-Programmer's Reference Volume 1

UI_POSITION::operator +=

Syntax

#include <uLdsp.hpp>

DCPOSITION &operator += (int offset);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload increments the line and column values of the DCPOSITION
structure by offset.

• returnValueout is a pointer to the DCPOSITION structure. This pointer is returned
so that the operator may be used in a statement containing other operations.

• offsetin is the value to be added to the position values.

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

position += 5;

Chapter 31 - ULPOSITION 305

UI_POSITION::operator -=

Syntax

#include <ui_dsp.hpp>

DCPOSITION &operator -= (int offset);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload decrements the line and column values of the DCPOSITION
structure by offset.

• returnValueout is a pointer to the DCPOSITION structure. This pointer is returned
so that the operator may be used in a statement containing other operations.

• offsetin is the value to be subtracted from the position values.

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

position -= 5;

306 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 32 - UI_PRINTER

The VI_PRINTER class object is used to send output to a printer. In those environments
that support printers directly (e.g., MS-Windows, OS/2, Macintosh, and NEXTSTEP) this
class uses the operating system's API. So any printer supported by that environment is
supported by Zinc Application Framework. In DOS, Epson®-compatible dot-matrix
printers, Hewlett Packard PCL printers, and PostScript® printers are supported. In Motif
PostSript printers are supported.

The printer class can be used either to draw custom images using display primitives or
to simply dump a portion of the screen to the printer.

The display primitives are documented in "Chapter 7-VCDISPLAY" of this manual.
Only those functions unique to the VCPRINTER class are documented here.

The VI_PRINTER class is declared in UI_DSP.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS DI_PRINTER public DI_DISPLAY
{
public:

ZIL_PRINTER_MODE printerModei
DI_DISPLAY *displaYi

struct ZIL_EXPORT_CLASS POSTSCRIPTFONT
{

char *typeFacei
short pointSize;

} ;
static POSTSCRIPTFONT psFontTable[ZIL_MAXFONTS];

#if defined (ZIL_MSDOS)
int lPort;

#elif defined (ZIL_MSWINDOWS)
HDC hdc;
static HFONT fontTable[ZIL_MAXFONTS];

#elif defined (ZIL_OS2)
HDC hdc;
static FONTMETRICS fontTable[ZIL_MAXFONTS];

#elif defined (ZIL_MACINTOSH)
GrafPtr displayPort;
TPPrPort printerPort;
THPrint printJob;
struct PRINTERFONT
{

short font;
Style face;
short mode;
short size;
FontRec **fRec;

};
static PRINTERFONT fontTable[ZIL_MAXFONTS];

#elif defined (ZIL_NEXTSTEP)
struct NEXTFONT
{

id font;

Chapter 32 - ULPRINTER 307

};
static NEXTFONT fontTable[ZIL_MAXFONTS];

#endif

UI_PRINTER(UI_DISPLAY *_display = ZIL_NULLP(UI_DISPLAY));
virtual -UI_PRINTER(void);
virtual void Bitmap(ZIL_SCREENID screenID, int column, int line,

int bitmapWidth, int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette = ZIL_NULLP(UI_PALETTE),
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_BITMAP_HANDLE *colorBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE),
ZIL_BITMAP_HANDLE *monoBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE));

virtual void Ellipse(ZIL_SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void Line(ZIL_SCREENID screenID, int columnl, int linel,
int column2, int line2, const UI_PALETTE *palette, int width = I,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual ZIL_COLOR MapColor(const UI_PALETTE *palette, int isForeground);
virtual void Polygon(ZIL_SCREENID screenID, int numPoints,

const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

void Rectangle (ZIL_SCREENID screenID, const UI_REGION ®ion,
const UI_PALETTE *palette, int width = I, int fill = FALSE,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void Rectangle (ZIL_SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width I,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void Text (ZIL_SCREENID screenID, int left, int top,
const ZIL_ICHAR *text, const UI_PALETTE *palette, int length -I,
int fill = TRUE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL LOGICAL FONT font = FNT DIALOG FONT);

virtual-int TextHeight(const ZIL_ICHAR-*string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextWidth(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL LOGICAL FONT font = FNT DIALOG FONT) ;

int VirtualGet(ZIL_SCREENID scr~enID, const UI_REGION ®ion);
virtual int VirtualGet(ZIL_SCREENID screenID, int left, int top,

int right, int bottom);
virtual int VirtualPut(ZIL_SCREENID screenID);

II New routines for Printer.
virtual int BeginPrintJob(ZIL_PRINTER_MODE pMode PRM_DEFAULT,

char *_fileName = ZIL_NULLP(char));
virtual void EndPrintJob(void);
virtual void BeginPage(void);
virtual void EndPage(void);
virtual void ScreenDump(ZIL_SCREENID screenID, UI_REGION ®ion,

ZIL_PRINTER_MODE = PRM_DEFAULT, char *_fileName = ZIL_NULLP(char));
} ;

General Members

This section describes those members that are used for general purposes.

308 Zinc Application Framework-Programmer's Reference Volume 1

• printerMode indicates what printer mode the device is in. printerMode can have one
of the following values:

PRM_DEFAULT-Causes the device to attempt to connect directly to the
default printer.

PRM_DOTMATRIX9-Causes the device to print to a 9-pin Epson-compatible
dot matrix printer. This mode is specific to DOS.

PRM_DOTMATRIX24-Causes the device to print to a 24-pin Epson­
compatible dot matrix printer. This mode is specific to DOS.

PRM_LASER-Causes the device to print to a Hewlett Packard PCL printer.
This mode is specific to DOS.

PRM_POSTSCRIPT-Causes the device to print to a PostScript file.

• display is a pointer to the display. A valid pointer for the display used by the
application must be supplied if screen dumps are to be used.

• POSTSCRIPTFONT identifies PostScript fonts.

typeFace is the name of the font.

pointSize is the point size of the font.

• psFontTable is a table of PostScript fonts used by the printer. Initially, this table has
ten common PostScript fonts in it.

• IPort is the line port being printed to. This member is available in DOS only.

• hdc is the device context handle for the printer. This member is available in
Windows and OS/2 only.

• fontTable corresponds to the font table used by the display class.

• displayPort is the current display port. It is saved so that it can be properly restored
when printing is completed. This member is available in Macintosh only.

• printerPort is the printer port being printed to. This member is available in
Macintosh only.

Chapter 32 - ULPRINTER 309

• printJob is information about the print job that was set up by the end-user.

• PRINTERFONT is a structure that identifies Macintosh fonts. It corresponds to the
display class font structure.

• NEXTFONT is a structure that identifies NEXTSTEP fonts. It corresponds to the
display class font structure.

Syntax

static #include <uLdsp.hpp>

UCPRINTER(UCDISPLAY *display = ZIL_NULLP(UCDISPLAY));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UCPRINTER class object.

• displaYin is a pointer to the display. A valid display pointer must be provided if
screen dumps are required.

Syntax

static #include <uLdsp.hpp>

-UCPRINTER(void);

310 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This destructor destroys the UCPRINTER class information.

UI_PRINTER::BeginPage

Syntax

#include <uLdsp.hpp>

virtual void BeginPage(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function initializes the device to begin accepting commands for a new page
in the print job. Any calls to the printer primitives made after a call to this function will
be buffered until a call to EndPage() is made. When EndPage() is called, the page will
be printed. BeginPage() must be called before any printer primitives commands are
generated.

Chapter 32 - ULPRINTER 311

UI_PRINTER::BeginPrintJob

Syntax

#include <uLdsp.hpp>

virtual int BeginPrintJob(ZIL_PRINTER_MODE pMode = PRM_DEFAULT,
char *-fileName = ZIL_NULLP(char));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

312

This virtual function begins the printing process by initializing any required information
and setting up the printer. Printing can be sent to a file on disk if desired. This function
must be called at the beginning of the entire print job.

• returnValueout indicates the success of the function call. returnValue is FALSE if the
function was unsuccessful. Otherwise, it is TRUE.

• pModein indicates the printer mode desired. See the description of printerMode,
above, for the possible modes.

• -fileNamein is the name of the file to print to if PostScript output should go to a file.
If no filename is provided, output will go directly to the printer.

In Motif, if pMode is PRM_DEFAULT, thus causing the device to output to the
printer directly, then -fileName is used to specify commands for the print job. If
-fileName is NULL, the print job will be piped to "lpr" by default. If other options
are desired, such as specifying the name of the printer and how many copies should
be printed, this string should be set accordingly. For example, if the printer name is
PostScriptPrinter and 3 copies are desired, -fileName should be "lpr -PPostScript­
Printer -#3."

Zinc Application Framework-Programmer's Reference Volume 1

UI_PRINTER::EndPage

Syntax

#include <ui_dsp.hpp>

virtual void EndPage(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function prints the current page. After calling BeginPage(), all printer
primitive functions will be buffered. When an image is completed, EndPage() should
be called to send the page to the printer. EndPage() clears the page, so subsequent calls
to printer primitives will appear on a new page.

UI_PRINTER::EndPrintJob

Syntax

#include <uLdsp.hpp>

virtual void EndPrintJob(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Chapter 32 - UCPRINTER

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

313

Remarks

This virtual function ends the printing process by sending any necessary escape sequences
to the printer. This function must be called at the end of the entire print job.

UI_PRINTER::ScreenDump

Syntax

#include <uLdsp.hpp>

virtual void ScreenDump(ZIL_SCREENID screen/D, UCREGION ®ion,
ZIL_PRINTER_MODE pMode =PRM_DEFAULT,
char *-fileName = ZIL_NULLP(char));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function dumps a portion of the screen to the printer. This function calls
BeginPrintJob(), BeginPage(), EndPage(), and EndPrintJob().

screen/Din is the screenID of the window being printed.

regionin is the region of the screen that is to be printed. region is relative to the
upper-left comer of the window identified by screen/D and is in screen coordinates.
Thus, if the display is a text mode display, region is in cell coordinates. Otherwise,
it is in pixel coordinates.

pModein indicates the printer mode desired. See the description of printerMode,
above, for the possible modes.

• -fileNamein is the name of the file to print to if PostScript output should go to a file.
If no filename is provided, output will go directly to the printer.

314 Zinc Application Framework-Programmer's Reference Volume 1

In Motif, if pMode is PRM_DEFAULT, thus causing the device to output to the
printer directly, then -fileName is used to specify commands for the print job. If
-fileName is NULL, the print job will be piped to "lpr" by default. If other options
are desired, such as specifying the name of the printer and how many copies should
be printed, this string should be set accordingly. For example, if the printer name is
PostScriptPrinter and 3 copies are desired, -fileName should be "lpr -PPostScript­
Printer -#3."

Chapter 32 - ULPRINTER 315

316 Zinc Application Framework-Programmer's Reference Volume 1

The UCQUEUE_BLOCK is an advanced class that is only used by the Event Manager.
In general, programmers should not be concerned with it. The UI_QUEUE_BLOCK class
is an array of UCQUEUE_ELEMENT objects that acts like a doubly-linked list. Because
it is an array that is created at the beginning of the program, manipulating the list is much
faster than if memory is allocated and deallocated each time an element is added or
subtracted in the list. See "Chapter 21-UCLIST_BLOCK" for more details about the
operation of a list block.

The UCQUEUE_BLOCK class is declared in UI_EVT.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UI_QUEUE_BLOCK public UI_LIST_BLOCK
{
public:

UI_QUEUE_BLOCK(int noOfElements);
-UI_QUEUE_BLOCK(void) ;

UI_QUEUE_ELEMENT *Current(void);
UI_QUEUE_ELEMENT *First(void);
UI_QUEUE_ELEMENT *Last(void);

} ;

General Members

This section describes those members that are used for general purposes.

Syntax

#include <uLevt.hpp>

UI_QUEUE_BLOCK(int noOjElements);

Chapter 33 - U,-QUEUE_BLOCK 317

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor allocates an array ofUCQUEUE_ELEMENT classes and initializes them
to behave like a list. This is done so that the programmer can have access to all of the
list functions without having to create new array functions.

• noOjElementsin designates the number of elements to be assigned space in memory.

Example

#include <ui_evt.hpp>

UI_QUEUE_BLOCK::UI_QUEUE_BLOCK(int _noOfElements)
UI_LIST_BLOCK(_noOfElements)

II Initialize the queue block.
UI_QUEUE_ELEMENT *queueBlock = new UI_QUEUE_ELEMENT[_noOfElements];
elementArray = queueBlock;
for (int i = 0; i < _noOfElements; i++)

freeList.Add(NULL, &queueBlock[ij);

UI_EVENT_MANAGER: :UI_EVENT_MANAGER(UI_DISPLAY *_display, int _noOfElements)
UI_LIST(UI_DEVICE: :CompareDevices), queueBlock(_noOfElements) , level(l)

display = _display;
UI_DEVICE::display = display;
UI_DEVICE::eventManager = this;

Syntax

#include <ui_evt.hpp>

-UCQUEUE_BLOCK(void);

318 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This destructor destroys the class information associated with the UI_QUEUE_BLOCK
class. It also destroys each element in the queue block.

Example

#include <ui_evt.hpp>

UI_QUEUE_BLOCK::-UI_QUEUE_BLOCK(void)
{

II Free the queue block.
UI_QUEUE_ELEMENT *queueBlock = (UI_QUEUE_ELEMENT *)elementArray;
delete [noOfElementsJqueueBlock;

UI_QUEUE_BLOCK::Current

Syntax

#include <uLgen.hpp>

UeQUEUE_ELEMENT *Current(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows

• Curses
• OS/2
• NEXTSTEP

This function returns a pointer to the current element, if one exists, in the list.

Chapter 33 - ULQUEUE_BLOCK 319

• returnValueout is a pointer to the current element in the list. If there is no current
element, returnValue is NULL.

Syntax

#include <uLgen.hpp>

UCQUEUE_ELEMENT *First(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the first element, if one exists, in the list.

• returnValueou ! is a pointer to the first element in the list. If there is no first element,
returnValue is NULL.

UI_QUEUE_BLOCK::Last

Syntax

#include <uLgen.hpp>

UCQUEUE_ELEMENT *Last(void);

320 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the last element, if one exists, in the list.

• returnValueoul is a pointer to the last element in the list. If there is no last element,
returnValue is NULL.

Chapter 33 - ULQUEUE_BLOCK 321

322 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 34 - UI_QUEUE_ELEMENT

The UCQUEUE_ELEMENT class is an advanced class that is only used by the UC­
QUEUE_BLOCK class within the Event Manager. It contains the UCEVENT structure,
which contains an event to be processed by the system. In general, programmers should
not be concerned with it.

The UI_QUEUE_ELEMENT class is declared in UI_EVT.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UI_QUEUE_ELEMENT public UI_ELEMENT
{
public:

UI_QUEUE_ELEMENT(void) ;
-UI_QUEUE_ELEMENT(void) ;
UI_EVENT event;

UI_QUEUE_ELEMENT *Next(void);
UI_QUEUE_ELEMENT *Previous(void);

} ;

General Members

This section describes those members that are used for general purposes.

• event is the UCEVENT information associated with the queue element.

Syntax

#include <ui_evt.hpp>

UCQUEUE_ELEMENT(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 34 - UCQUEUE_ELEMENT 323

Remarks

This constructor creates a UCQUEUE_ELEMENT object.

Example

#include <ui_evt.hpp>

UI_QUEUE_BLOCK::UI_QUEUE_BLOCK(int _noOfElements)
UI_LIST_BLOCK(_noOfElements)

II Initialize the queue block.
UI_QUEUE_ELEMENT *queueBlock = new UI_QUEUE_ELEMENT[_noOfElements];
elementArray = queueBlock;
for (int i = 0; i < _noOfElements; i++)

freeList.Add(NULL, &queueBlock[i]);

Syntax

#include <ui_evt.hpp>

virtual LJI_QUEUE_ELEMENT(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

324

This virtual destructor destroys the class information associated with the UI_QUEUE_­
ELEMENT object. Care should be taken to only destroy a UCQUEUE_ELEMENT class
that is not attached to another associated object.

Zinc Application Framework-Programmer's Reference Volume 1

UI_QUEUE_ELEMENT::Next

Syntax

#include <uLevt.hpp>

UCQUEUE_ELEMENT *Next(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the next UI_QUEUE_ELEMENT in the list.

• returnValueout is a pointer to the next UI_QUEUE_ELEMENT in the list, if one
exists. If one does not exist, returnValue will be NULL.

UI_QUEUE_ELEMENT::Previous

Syntax

#include <uLevt.hpp>

UCQUEUE_ELEMENT *Previous(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 34 - ULQUEUE_ELEMENT 325

Remarks

This function returns a pointer to the previous UCQUEUE_ELEMENT in the list.

• returnValueout is a pointer to the previous UCQUEUE_ELEMENT in the list, if one
exists. If one does not exist, returnValue will be NULL.

326 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 35 - UI_REGION

The UCREGION structure is used to store and manipulate region information. A region
is a rectangular area defined by its four comers. The UCREGION structure is typically
used to define an object's screen location.

The UI_REGION structure is declared in UI_DSP.HPP. Its public and protected
members are:

struct ZIL_EXPORT_CLASS DI_REGION
{
public:

int left, top, right, bottom;

#if defined (ZIL_MSWINDOWS)
void Assign(const RECT &rect);

#elif defined (ZIL_OS2)
void Assign(const RECTL &rect);

#elif defined(ZIL MACINTOSH)
void ASsign(const Rect &rect);

#elif defined (ZIL_NEXTSTEP)
void Assign(const NXRect &rect);

#endif
int Encompassed(const DI_REGION ®ion) canst;
int Height (void) canst;
int Overlap(const DI_REGION ®ion) canst;
int Overlap(const DI_POSITION &position) canst;
int Touching(const DI_POSITION &position) canst;
int Overlap(const DI_REGION ®ion, DI_REGION &result) canst;
int width (void) canst;

int operator==(const DI_REGION ®ion) canst;
int operatorl=(const DI_REGION ®ion) canst;
DI_REGION &operator++(void);
DI_REGION &operator--(void);
DI_REGION &operator+=(int offset);
DI_REGION &operator-=(int offset);

};

General Members

This section describes those members that are used for general purposes.

• left and top define the top-left comer of the region. These values may be in cells,
minicells or pixels depending on the context of the UCREGION being used.

• right and bottom define the bottom-right comer of the region. These values may be
in cells, minicells or pixels depending on the context of the UCREGION being used.

Chapter 35 - ULREGJON 327

UI_REGION::Assign

Syntax

#include <ui_dsp.hpp>

void Assign(const RECT &rect);
or

void Assign(const RECTL &rect);
or

void Assign(const Rect &rect);
or

void Assign(const NXRect &rect);

Portability

This function is available on the following environments:

o DOS Text
• Macintosh

Remarks

o DOS Graphics
o OSF/Motif

• Windows
o Curses

• OS/2
• NEXTSTEP

This function copies the region information from the operating system-specific structure
into the UCREGION structure.

• rectin is the operating system-specific region structure whose value is to be copied
into the UCREGION structure.

Example

#include <ui_dsp.hpp>

ExampleFunction()
{

region.Assign(tRegion);

328 Zinc Application Framework-Programmer's Reference Volume 1

UI_REGION::Encompassed

Syntax

#include <ui_dsp.hpp>

int Encompassed(const ULREGION ®ion);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

.OS/2
• NEXTSTEP

This function determines if the ULREGION object is completely encompassed by the
ULREGION structure specified by region.

• returnValueout is TRUE if the UI_REGION object is encompassed by region. Other­
wise, returnValue is FALSE.

• regionin is the region to be compared.

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

if (regionl.Encompassed(region2»)
{

Chapter 35 - ULREGION 329

UI_REGION::Height

Syntax

#include <uLdsp.hpp>

int Height(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the height of the region.

• returnValueout is the height of the region.

UI_REGION::Overlap

Syntax

#include <uLdsp.hpp>

int Overlap(const UCREGION ®ion);
or

int Overlap(const UCPOSITION &position);
or

int Overlap(const UI_REGION ®ion, UCREGION &result);

Portability

These functions are available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

330 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

These overloaded functions determine if the UCREGION object overlaps another region
or position.

The first overloaded function determines if the UCREGION object is overlapped by
another UCREGION structure specified by region.

• returnValueoul is TRUE if the UCREGION object is overlapped by region. Other­
wise, returnValue is FALSE.

regionin is the region to be compared.

The second overloaded function determines if the UI_REGION object is overlapped by
a UCPOSITION structure specified by position.

• returnValueoul is TRUE if the UCREGION object is overlapped by position. Other­
wise, returnValue is FALSE.

• positionin is the position to be compared.

The third overloaded function tests to see if the UCREGION object is overlapped by the
UCREGION structure specified by region. The overlapping portion of the regions is
copied into result.

• returnValueoul is TRUE if the UCREGION object is overlapped by region. Other­
wise, returnValue is FALSE.

• region in is the region to be compared.

• resultoul is the region overlapped by both the UI_REGION object and region.

Example 1

#include <ui_dsp.hpp>

EVENT_TYPE UID_CURSOR: : Event (const UI_EVENT &event)
{

switch (event.type)
{

Chapter 35 - ULREG/ON 331

case D_SHOW:
if (state != D_OFF)
{

UI_REGION region;
region. left = position. column;
region. top = position. line;
region.right = region. left + display->cellWidth - 1;
region.bottom = region. top + display->cellHeight - 1;
if (region.Overlap(event.region»)

tState = (event.rawCode == D_HIDE) ? D_HIDE : D_ON;
}
break;

Example 2

#include <ui_win.hpp>

EVENT_TYPE UIW_VT_LIST::Event(const UI_EVENT &event)
{

if (object && (ccode == L_SELECT I I true.Overlap(event.position»))
object->Event(UI_EVENT(L_SELECT));

break;

II Return the control code.
return (ccode);

UI_REGION::Touching

Syntax

#include <uLdsp.hpp>

int Touching(const DepOSITION &position);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

332 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function determines whether the point specified by position is touching the edge of
the UCREGION object. position is considered to be touching the region if the point
defined by position is exactly on an edge defined by the UCREGION structure.

• returnValueout is TRUE if position is touching the edge of the UCREGION object.
Otherwise, returnValue is FALSE.

• positionin is the position to be compared.

UI REGION::Width

Syntax

#include <uLdsp.hpp>

int Width(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
.NEXTSTEP

This function returns the width of the region.

• returnValueout is the width of the region.

UI_REGION::operator ==

Syntax

#include <uLdsp.hpp>

int operator == (const UI_REGION ®ion);

Chapter 35 - ULREG/ON 333

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines if the UCREGION object has the same region as the
UCREGION specified by region.

• returnValueout is TRUE if the UI_REGION is the same as region. Otherwise,
returnValue is FALSE.

• regionin is the region to be compared.

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

if (regionl == region2)
{

UI_REGION::operator !=

Syntax

#include <uLdsp.hpp>

int operator != (const UCREGION ®ion);

334 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines if the UCREGION object does not have the same
region as the UI_REGION object specified by region.

• returnValueoul is TRUE if UCREGION is not the same as region. Otherwise,
returnValue is FALSE.

• regionin is the region to be compared.

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

if (regionl != region2)
{

UI_REGION::operator ++

Syntax

#include <uLdsp.hpp>

UCREGION &operator ++ (void);

Chapter 35 - UCREGION 335

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload increases the size of the region on each side by one. It does this
by decrementing the left and top values of the region by one and incrementing the right
and bottom values of the region by one.

• returnValueout is a pointer to the UCREGION object after its size has been modified.
This pointer is returned so that the operator may be used in a statement containing
other operations.

Example

#include <ui_dsp.hpp>
ExampleFunction ()
{

++region;

UI_REGION::operator --

Syntax

#include <ui_dsp.hpp>

UCREGION &operator -- (void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

336 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This operator overload decreases the size of the region on each side by one. It does this
by incrementing the left and top values of the region by one and decrementing the right
and bottom values of the region by one.

returnValueout is the address of the VI_REGION object after its size has been
modified. This pointer is returned so that the operator may be used in a statement
containing other operations.

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

--region;

UI_REGION::operator +=

Syntax

#include <uLdsp.hpp>

VCREGION &operator += (int offset);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload increases the size of the region on each side by offset. It does this
by subtracting offset from the left and top values of the region and adding offset to the
right and bottom values of the region.

Chapter 35 - ULREGION 337

• returnValueout is a pointer to the UCREGION object after its size has been modified.
This pointer is returned so that the operator may be used in a statement containing
other operations.

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

region += 5;

UI_REGION::operator -=

Syntax

#include <ui_dsp.hpp>

UCREGION &operator -= (int offset);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload decreases the size of the region on each side by offset. It does this
by adding offset to the left and top values of the region and subtracting offset from the
right and bottom values of the region.

• returnValueout is a pointer to the UCREGION object after its size has been modified.
This pointer is returned so that the operator may be used in a statement containing
other operations.

338 Zinc Application Framework-Programmer's Reference Volume 1

Example

#include <ui_dsp.hpp>

ExampleFunction ()
{

region -= 5;

Chapter 35 - ULREGION 339

340 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 36 - UI_REGION_ELEMENT

The UCREGION_ELEMENT class works with the UCREGION_LIST class to maintain
a list of rectangular screen regions. The screen regions are used to calculate a window's
available region and to perform clipping more efficiently when updating the display.
When an object with the WOF_NON_FIELD_REGION flag set is added to a window, the
window's available region is updated to prevent allocating that space in the future. The
window's available region is maintained by a UCREGION_LIST. Also, whenever a
window is placed on the screen or an existing window's position or size is changed, the
affected areas of the display must be updated. The screen's regions are maintained in a
UCREGION_LIST that allows Zinc to efficiently update the display. The picture below
shows how a screen may be split up (where 0 is the screen background and 1 and 2 are
overlapping windows):

o

o 0

o 2 o
-------------------'----------r--------'---------------------------------------

o 2 o

---------------------------------------'-----------'------------------

o

In general, the programmer does not need to use this class.

The UCREGION_ELEMENT class is declared in UI_DSP.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UI_REGION_ELEMENT public UI_ELEMENT
{
public:

ZIL_SCREENID screenID;
UI_REGION region;

UI_REGION_ELEMENT(ZIL_SCREENID screenID, const UI_REGION &_region);
UI_REGION_ELEMENT(ZIL_SCREENID screenID, int left, int top, int right,

int bottom);
-UI_REGION_ELEMENT(void);

Chapter 36 - ULREG/ON_ELEMENT 341

II Element members.
UI_REGION_ELEMENT *Next(void);
UI_REGION_ELEMENT *Previous(void);

};

General Members

This section describes those members that are used for general purposes.

• screen/D identifies which object "owns" the region. screen/D is an identifier
associated with a window object. See the screen/D section of "Chapter 43-UI_­
WINDOW_OBJECT" of this manual and "Appendix A-Support Definitions" of
Programmer s Reference Volume 2 for more information.

• region is the rectangular region that is reserved.

Syntax

#include <ui_dsp.hpp>

UI_REGION_ELEMENT(ZIL_SCREENID _screen/D, const ULREGION &_region);
or

ULREGION_ELEMENT(ZIL_SCREENID _screen/D, int _left, int _top, int _right,
int _bottom);

Portability

These functions are available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded constructors create a new ULREGION_ELEMENT object.

• _screen/Din is the identification to associate with the region.

342 Zinc Application Framework-Programmer's Reference Volume 1

• _regionin is the region to define.

• _leftin' _toPin' _rightin and _bottomin is the region to define.

Example

#include <ui_dsp.hpp>

void UI_DISPLAY: : RegionDefine (ZIL_SCREENID screenID, int left, int top,
int right, int bottom)

UI_REGION region;
region. left = left;
region. top = top;
region. right = right;
region. bottom = bottom;
II See if it is a full screen definition.
if (region. left <= ° && region. top <= ° &&

region. right >= columns - 1 && region.bottom >= lines - 1)

UI_REGION_LIST::Destroy() ;
Add(O, new UI_REGION_ELEMENT(screenID, 0, 0, columns - 1, lines - 1»);
return;

Syntax

#include <uLdsp.hpp>

-UCREGION_ELEMENT(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 36 - UCREGION_ELEMENT 343

Remarks

This destructor destroys the class information associated with the UI_REGION_­
ELEMENT object.

Example

#include <ui_dsp.hpp>

void UI_REGION_LIST: :Split(int screenID, const UI_REGION ®ion)
{

UI_REGION tRegion, sRegioni
UI_REGION_ELEMENT *dRegion, *t_dRegioni
II split any overlapping regions.
for (dRegion = First()i dRegioni dRegion t_dRegion)
{

II Region 3 is the object's region.
UI_LIST::Subtract(dRegion) i
delete dRegioni

Syntax

#include <ui_dsp.hpp>

UCREGION_ELEMENT *Next(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the next UCREGION_ELEMENT in the list.

• returnValueout is a pointer to the next UCREGION_ELEMENT in the list, if one
exists. If one does not exist, returnValue will be NULL.

344 Zinc Application Framework-Programmer's Reference Volume 1

UI_REGION_ELEMENT::Previous

Syntax

#inc1ude <uLdsp.hpp>

UCREGION_ELEMENT *Previous(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the previous UCREGION_ELEMENT in the list.

• returnValueoul is a pointer to the previous UI_REGION_ELEMENT in the list, if one
exists. If one does not exist, returnValue will be NULL.

Chapter 36 - ULREG/ON_ELEMENT 345

346 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 37 - UI REGION LIST

The UCREGION_LIST class works with the UCREGION_ELEMENT class to maintain
a list of rectangular screen regions. The screen regions are used to calculate a window's
available region and to perform clipping more efficiently when updating the display.
When an object with the WOF_NON_FIELD_REGION flag set is added to a window, the
window's available region is updated to prevent allocating that space in the future. The
window's available region is maintained by a UCREGION_LIST. Also, whenever a
window is placed on the screen or an existing window's position or size is changed, the
affected areas of the display must be updated. The screen's regions are maintained in a
UCREGION_LIST that allows Zinc to efficiently update the display. The picture below
shows how a screen may be split up (where 0 is the screen background and I and 2 are
overlapping windows):

o

o 0

o 2 o
-------------------'---------r---------'---------------------------------------

o 2 o
---------------------------------------'-----------'------------------

o

The UCREGION_LIST class is declared in UI_DSP.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UI REGION_LIST public UI_LIST
{
public:

UI_REGION_LIST(void);
-UI_REGION_LIST(void) ;
void Split (ZIL_SCREENID screenID, const UI_REGION ®ion,

int allocateBelow = FALSE);

II List members.
UI_REGION_ELEMENT *Current(void);
UI_REGION_ELEMENT *First(void);

Chapter 37 - ULREGION_LlST 347

UI_REGION_ELEMENT *Last(void);
};

General Members

This section describes those members that are used for general purposes.

Syntax

#include <uLdsp.hpp>

UI_REGION_ELEMENT *Current(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the current element, if one exists, in the list.

• returnValueout is a pointer to the current element in the list. If there is no current
element, returnValue is NULL.

UI REGION_LIST::First

Syntax

#include <uLdsp.hpp>

UCREGION_ELEMENT *First(void);

348 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the first element, if one exists, in the list.

• returnValueoul is a pointer to the first element in the list. If there is no first element,
returnValue is NULL.

Syntax

#include <uLdsp.hpp>

UI_REGION_ELEMENT *Last(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the last element, if one exists, in the list.

• returnValueoul is a pointer to the last element in the list. If there is no last element,
returnValue is NULL.

Chapter 37 - ULREG/ON_LIST 349

Syntax

#include <uLdsp.hpp>

void Split(ZIL_SCREENID screen/D, const UCREGION ®ion,
int allocateBelow = FALSE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function splits the regions in the region list and adds the new region to the list.

• screen/Din is the identification to associate with the new region.

• regionin is the new region to define.

• allocateBelowin specifies whether a new region should be created if there are no
regions in the list.

Example

#include <ui_dsp.hpp>

void oI_DISPLAY: : RegionDefine (ZIL_SCREENID screenID, int left, int top, int
right,

int bottom)

oI_REGION region;
region. left = left;
region. top = top;
region. right = right;
region.bottom = bottom;

II Clip regions partially off the screen to fit on the screen.
if (reg on. left < 0)

reg on. left = 0;
if (reg on. right >= columns)

350 Zinc Application Framework-Programmer's Reference Volume 1

region. right = columns - 1;
if (region. top < 0)

region. top = 0;

if (region.bottom >= lines)
region.bottom = lines - 1;

II Split any overlapping regions.
Split (screenID, region);

II Define the new display region.
Add(O, new UI_REGION_ELEMENT(screenID, ®ion));

Chapter 37 - UCREGION_LlST 351

352 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 38 - UI_RELATIVE_CONSTRAINT

The UCRELATIVE_CONSTRAINT class object is used for geometry management.
Specifically, this class allows a managed object to be tied to an edge of its parent at a
distance relative to the size of the parent. For example, a button can be positioned so that
its left edge is always twenty-five percent of the way across its parent, even if the parent
is sized. The UCRELATIVE_CONSTRAINT is added to the parent object's geometry
manager. See "Chapter 14-UCGEOMETRY_MANAGER" for more details on using
the geometry manager.

The UCRELATIVE_CONSTRAINT class is declared in UI_WIN.HPP. Its public and
protected members are:

class UI_RELATIVE_CONSTRAINT : public UI_CONSTRAINT
{
public:

UI_RELATIVE_CONSTRAINT(UI_WINDOW_OBJECT *_object,
RLCF_FLAGS _rlcFlags = RLCF_NO_FLAGS,
int _numerator = 50, int _denominator = 100, int _offset = 0);

virtual -UI_RELATIVE_CONSTRAINT(void);

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

virtual void Modify (void) ;

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UI_RELATIVE_CONSTRAINT(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
int numerator;
int denominator;
RLCF_FLAGS rlcFlags;
int offset;

};

Chapter 38 - ULRELA TlVE_CONSTRAINT 353

General Members

This section describes those members that are used for general purposes.

• numerator is used in conjunction with denominator to determine the relative
positioning of the managed object. numerator is divided by denominator to obtain
a percentage. The managed object will be positioned according to this percentage of
the parent window's size.

• denominator is used in conjunction with numerator to determine the relative
positioning of the managed object. numerator is divided by denominator to obtain
a percentage. The managed object will be positioned according to this percentage of
the parent window's size.

• rlcFlags are flags that define the operation of the VI_RELATIVE_CONSTRAINT
class. A full description of the relative constraint flags is given in the VCRELA­
TIVE_CONSTRAINT constructor.

• offset is how far, in addition to the percentage determined using numerator and
denominator, the managed object should be positioned from the object to which it is
tied. offset number of cells are added to the position determined by the percentage.
This value is specified in cell dimensions.

UI RELATIVE_CONSTRAINT::UI RELATIVE_CONSTRAINT

Syntax

#include <ui_win.hpp>

UCRELATIVE_CONSTRAINT(VCWINDOW_OBJECT *_object,
RLCF_FLAGS _rlcFlags = RLCF_NO_FLAGS, int _numerator = 50,
int _denominator = 100, int _offset =0);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

354 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This constructor creates a new UI_RELATIVE_CONSTRAINT object.

• _objectin is the object to be managed.

• _rlcFlagsin are flags that define the operation of the UCRELATIVE_CONSTRAINT
class. The following flags (declared in UI_WIN.HPP) control the general operation
of a UCRELATIVE_CONSTRAINT class object:

RLCF_BOTTOM-Maintains the bottom edge of the managed object at the
specified relative distance from the object to which it is tied.

RLCF_LEFT-Maintains the left edge of the managed object at the specified
relative distance from the object to which it is tied.

RLCF_HORIZONTAL_CENTER-Causes the object to be centered
horizontally within its parent.

RLCF_OPPOSITE-Causes the managed object to be tied to the opposite edge
of the object to which it is tied. For example, if the RLCF_TOP flag is set, the
top edge of the managed object will be tied to the bottom edge of the object to
which it is tied.

RLCF_NO_FLAGS-Does not associate any special flags with the UCREL­
ATIVE_CONSTRAINT class. This flag should not be used in conjunction with
any other RLCF flags.

RLCF_RIGHT-Maintains the right edge of the managed object at the specified
relative distance from the object to which it is tied.

RLCF_STRETCH-Causes the managed object to be stretched, if necessary,
to maintain its constraints. For example, if the left and right edges of the object
are tied to the parent window and the window is sized, the managed object must
stretch or shrink to maintain its distance from the edges.

RLCF_TOP-Maintains the top edge of the managed object at the specified
relative distance from the object to which it is tied.

RLCF_VERTICAL_CENTER-Causes the object to be centered vertically
within its parent.

• _numeratorin is divided by denominator to obtain the relative positioning constraint.

Chapter 38 - ULRELA TlVE_CONSTRAINT 355

• _denominatorin is divided into numerator to obtain the relative positioning constraint.

• _offsetin is an additional fixed distance at which the managed object will be
maintained.

UI_RELATIVE_CONSTRAINT::-UI_RELATIVE_CONSTRAINT

Syntax

#include <ui_win.hpp>

virtual LJI_RELATIVE_CONSTRAINT(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the
UCRELATIVE_CONSTRAINT object.

UI_RELATIVE_CONSTRAINT: :Information

Syntax

#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

356 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function allows Zinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueoul is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the relative
constraint object:

I_CLEAR_FLAGS-Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type RLCF_FLAGS that
contains the flags to be cleared. This request only clears those flags that are
passed in; it does not simply clear the entire field.

I_GET_FLAGS-Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type RLCF_FLAGS.
If data is NULL, a pointer to rlcFlags will be returned.

I_GET_DENOMINATOR-Returns the denominator value. If this message is
sent, data must be a pointer to a variable of type int where the constraint's
denominator will be copied.

I_GET_NUMERATOR-Returns the numerator value. If this message is sent,
data must be a pointer to a variable of type int where the constraint's numerator
will be copied.

I_SET_FLAGS-Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type RLCF_FLAGS that contains
the flags to be set. This request only sets those flags that are passed in; it does
not clear any flags that are already set.

Chapter 38 - ULRELATlVE_CONSTRAINT 357

I_SET_DENOMINATOR-Sets the denominator value. If this message is sent,
data must be a pointer to a variable of type int that contains the constraint's new
denominator.

I_SET_NUMERATOR-Sets the numerator size allowed by the constraint. If
this message is sent, data must be a pointer to a variable of type int that contains
the constraint's new numerator.

All other requests are passed to UI_CONSTRAINT: :Information() for processing.

• datainJout is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• object/Din is not used.

UI_RELATIVE_CONSTRAINT::Modify

Syntax

#inc1ude <uLwin.hpp>

virtual void Modify(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function updates the managed object's position and, if necessary, size
according to the constraints specified. The geometry manager calls each constraint's
Modify() function whenever the parent object's position or size is changed.

358 Zinc Application Framework-Programmer's Reference Volume 1

Storage Members

This section describes those class members that are used for storage purposes.

UI_RELATIVE_CONSTRAINT::UI_RELATIVE_CONSTRAINT

Syntax

#include <uLwin.hpp>

UCRELATIVE_CONSTRAINT(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UCITEM *objectTable =ZIL_NULLP(UCITEM),
UCITEM *userTable = ZIL_NULLP(UCITEM»;

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced constructor creates a new UCRELATIVE_CONSTRAINT by loading the
object from a data file. Typically, the programmer does not need to use this constructor.
If a constraint is stored in a data file it is usually stored as part of a geometry manager
and will be loaded when the geometry manager is loaded.

• namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the

Chapter 38 - ULRELA TlVE_CONSTRAINT 359

programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table. .

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UI_WINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI_RELATIVE_CONSTRAINT::Load

Syntax

#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UCITEM *objectTable ,
UCITEM *userTable);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

360

This advanced function is used to load a UCRELATIVE_CONSTRAINT from a
persistent object data file. It is called by the persistent constructor and is typically not
used by the programmer.

Zinc Application Framework-Programmer's Reference Volume 1

• namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT: :userTable in "Chapter 43-UI_WINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

UI RELATIVE_CONSTRAINT::New

Syntax

#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UCITEM *objectTable =ZIL_NULLP(UI_ITEM),
UCITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 38 - ULRELATlVE_CONSTRAINT 361

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to load a persistent object from a data file. Thisl function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
7o-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UCWIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT: :userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

362 Zinc Application Framework-Programmer's Reference Volume 1

UI_RELATIVE_CONSTRAINT::NewFunction

Syntax

#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function returns a pointer to the object's New() function.

returnValueout is a pointer to the object's New() function.

UI_RELATIVE_CONSTRAINT::Store

Syntax

#include <uLwin.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UCITEM *objectTable,
UCITEM *userTable);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 38 - ULRELATlVE_CONSTRAINT 363

Remarks

This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• file in is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66-ZIL_STORAGE."

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68-ZIL_STORAGE_­
OBJECT."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43-UI_WIN­
DOW_OBJECT" in this manual. If objectTable is NULL, the library will use the
object table created by the Designer, if one was linked into the program, or, if no
Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43-UCWINDOW_­
OBJECT" in this manual. If userTable is NULL, the library will use the user table
created by the Designer, if one was linked into the program, or, if no Designer­
created table exists, it will use a default empty table.

364 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 39 - UI_SCROLL_INFORMATION

The UCSCROLL_INFORMATION structure is used to maintain scroll information. It
is used to send scrolling events to objects as well as to maintain current scroll settings.

The UCSCROLL_INFORMATION structure is declared in UI_EVT.HPP. Its public and
protected members are:

struct ZIL_EXPORT_CLASS DI SCROLL_INFORMATION
{

ZIL_INT16 current;
ZIL_INT16 minimum;
ZIL_INT16 maximum;
ZIL_INT16 showing;
ZIL_INT16 delta;

} ;

General Members

This section describes those members that are used for general purposes.

• current indicates the current scroll position within the range designated by minimum
and maximum. If the values are settings for a UIW_SCROLL_BAR, current affects
the relative position of the thumb button between the two end buttons of the scroll
bar.

• minimum is the minimum value of the scroll range. The actual value used is
insignificant. minimum is used in relation to maximum and current, so their relative
values must make sense. The object using UCSCROLL_INFORMATION is
responsible for setting the values and interpreting their meaning.

• maximum is the maximum value of the scroll range. The actual value used is
insignificant. maximum is used in relation to minimum and current, so their relative
values must make sense. The object using UCSCROLL_INFORMATION is
responsible for setting the values and interpreting their meaning.

• showing indicates how much of the scroll range is "visible." showing controls how
far current is moved when a full page scroll is performed. For example, if a text
object has 100 lines of text, and 10 lines are visible, the scroll bar that controls it
might have a range of 1 to 90 and a showing value of 10 (if 10 lines are visible then
only 90 lines need to be scrolled for the entire field to be viewed). If the end-user
selects a full page scroll on the scroll bar the text object will scroll by 10 lines. The

Chapter 39 - ULSCROLL_INFORMATlON 365

scroll bar's thumb button will also be adjusted, as will its current value, by 1I9th of
the range (i.e., it moves by 10, the value of showing, within the range of 90 values).

• delta indicates how far to adjust the current value when the smallest scroll movement
is made. For example, on the text object in the example above, delta will be I,
indicating that selecting an end button on the scroll bar will scroll the text 1 line.

Portability

This structure is available on the following environments:

• DOS Text
• Macintosh

Example

#include <ui_win.hpp>

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

366

EVENT_TYPE SCROLL_OBJECT: : Event (const DI_EVENT &event)
{

II Switch on the event type.
switch (ccode)
{
case S_HSCROLL:
case S_VSCROLL:

{
object = Current();
int hDelta = 0, vDelta 0;

if (ccode == S_HSCROLL && hScroll)
{

hScroll->Event(event)i
hDelta = -event.scroll.delta * (object->true.right ­

object->true.left + 1);
}
else if (ccode == S_VSCROLL && vScroll)
{

vScroll->Event(event);
vDelta = -event.scroll.delta * (object->true.bottom ­

object->true.top + 1);

break;

Zinc Application Framework-Programmer's Reference Volume 1

II Return the control code.
return (ccode);

Chapter 39 - ULSCROLL_INFORMATION 367

368 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 40 - UI_TEXT_DISPLAY

The UCTEXT_DISPLAY class implements a text display that writes directly to screen
memory. The UI_TEXT_DISPLAY is used for both DOS text mode applications and for
Curses applications. Since the UCTEXT_DISPLAY class is derived from the display
class UCDISPLAY, only details specific to the UCTEXT_DISPLAY class are given in
this chapter. For descriptions and examples regarding virtual or inherited display
members, see "Chapter 7-UCDISPLAY."

The UCTEXT_DISPLAY class is declared in UI_DSP.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UI TEXT DISPLAY public UI_DISPLAY,
public UI_REGION_LIST

{
public:

TDM_MODE mode;

UI_TEXT_DISPLAY(TDM_MODE _mode = TDM_AUTO);
virtual -UI_TEXT_DISPLAY(void);
virtual void Line(ZIL_SCREENID screenID, int column1, int line1,

int column2, int line2, const UI_PALETTE *palette, int width 1,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual ZIL_COLOR MapColor(const UI_PALETTE *palette,
int isForeground = 1);

virtual void Rectangle(ZIL~SCREENIDscreenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RectangleXORDiff(const UI_REGION &oldRegion,
const UI_REGION &newRegion, ZIL_SCREENID screenID = ID_SCREEN,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RegionDefine(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual void RegionMove(const UI_REGION &oldRegion, int newColumn,
int newLine, ZIL_SCREENID oldScreenID = ID_SCREEN,
ZIL_SCREENID newScreenID = ID_SCREEN);

virtual void Text (ZIL_SCREENID screenID, int left, int top,
const ZIL_ICHAR *text, const UI_PALETTE *palette, int length -1,
int fill = TRUE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextHeight(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL FONT font = FNT_DIALOG_FONT);

virtual int TextWidth(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int VirtualGet(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual int VirtualPut(ZIL_SCREENID screenID);

protected:
ZIL_SCREEN_CELL *_screen;
int _virtualCount;
UI_REGION _virtualRegion;
char _stopDevice;

Chapter 40 - ULTEXT_DISPLA Y 369

II 118N member variables and functions.
public:

static ZIL_ICHAR _tCornerUL[]i
static ZIL_ICHAR _tCornerUR[]i
static ZIL_ICHAR _tCornerLL[]i
static ZIL_ICHAR _tCornerLR[] i
static ZIL_ICHAR _tHorizontal[] i

static ZIL_ICHAR _tVertical[] i
}i

General Members

This section describes those members that are used for general purposes.

• mode is the text mode that is initialized.

• _screen is a pointer to the BIOS screen buffer.

• _moveBuffer is a pointer to screen memory. This extra memory facilitates faster
screen moves.

• _virtualCount is a count of the number of virtual screen operations that have taken
place. For example, when the VirtualGet() function is called, _virtualCount is
decremented. Additionally, when the VirtualPut() function is called, _virtualCount
is incremented.

• _virtualRegion is the region affected by either VirtualGet() or VirtualPut().

• _stopDevice is a variable used to prevent recursive updates of device images on the
display. If _stopDevice is TRUE, no drawing will be done to the screen. Otherwise,
drawing will be made directly to the screen display.

Syntax

#include <uLdsp.hpp>

370 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
D Macintosh

Remarks

D DOS Graphics
D OSFlMotif

D Windows
• Curses

DOSI2
D NEXTSTEP

This constructor creates a new UI_TEXT_DISPLAY object. When a new UCTEXT_­
DISPLAY class is constructed, the system clears the screen to the background color and
pattern specified by the inherited palette variable backgroundPalette. See "Chapter
27-UCPALETTE" of this manual for more information about palettes. Also, the blink
attribute is disabled to allow the use of high-intensity colors.

• _modein specifies the type of text display to create. The available display modes
(defined in UI_DSP.HPP) are:

TDM_AUTO-Creates a text display using the current text mode.

TDM_25x40 and TDM_BW_25x40-Create a text display with 25 lines and 40
columns.

TDM_25x80, TDM_BW_25x80 and TDM_MONO_25x80-Create a text
display with 25 lines and 80 columns.

TDM_43x80-Creates a text display with 43 lines and 80 columns on an EGA
display or 50 lines and 80 columns on a VGA display.

Example

#include <ui_win.hpp>

main()
{

II Initialize Zinc Application Framework.
UI_DISPLAY *display = new UI_GRAPHICS_DISPLAY;
if (!display->installed)
{

delete display;
display = new UI_TEXT_DISPLAY;

UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

Chapter 40 - ULTEXT_DISPLA Y 371

UI_WINDOW_MANAGER *windowManager =
new UI_WINDOW_MANAGER(display, eventManager)i

II Restore the system.
delete windowManageri
delete eventManageri
delete displaYi
return (O)i

Syntax

#include <ui_dsp.hpp>

LJCTEXT_DISPLAY(void);

Portability

This function is available on the following environments:

• DOS Text
D Macintosh

Remarks

D DOS Graphics
D OSF/Motif

D Windows
• Curses

D OS/2
D NEXTSTEP

This virtual destructor destroys the class information associated with the UCTEXT_­
DISPLAY class. Care should be taken to only destroy a UI_TEXT_DISPLAY class that
is not attached to another associated object.

Internationalization Members

This section describes those members used for internationalization purposes.

• _tCornerUL is an array that contains the characters used to represent the upper left
corner of a window in text mode. By default these characters are ' I' and' IF'.

• _tCornerUR is an array that contains the characters used to represent the upper right
corner of a window in text mode. By default these characters are 'l ' and 'll'.

372 Zinc Application Framework-Programmer's Reference Volume 1

• _tCornerLL is an array that contains the characters used to represent the lower left
comer of a window in text mode. By default these characters are ' L' and '[1'.

• _tCornerLR is an array that contains the characters used to represent the lower right
comer of a window in text mode. By default these characters are <J , and 'dj'.

• _tHorizontal is an array that contains the characters used to represent the horizontal
(i.e., top and bottom) edges of a window in text mode. By default these characters
are '-' and '='.

• _tVertical is an array that contains the characters used to represent the vertical (i.e.,
left and right) edges of a window in text mode. By default these characters are ' I'
and 'II'.

Chapter 40 - ULTEXT_DISPLA Y 373

374 Zinc Application Framework-Programmer's Reference Volume 1

The DCWCC_DISPLAY class object is a graphics display class that uses the graphics
library packaged with the Watcom compiler. Since the DCWCC_DISPLAY class is
derived from DCDISPLAY, only details specific to the DCWCC_DISPLAY class are
given in this chapter. For descriptions and examples regarding virtual or inherited display
members, see "Chapter 7-DI_DISPLAY."

The DCWCC_DISPLAY class is declared in UI_DSP.HPP. Its public and protected
members are:

class ZIL_EXPORT CLASS UI WCC DISPLAY
public UI_REGION_LIST

{
public:

struct ZIL_EXPORT_CLASS WCCFONT
{

char *typeFace;
char *options;

} i
typedef unsigned char WCCPATTERN[8] i

public UI_DISPLAY,

static UI_PATH *searchPathi
static WCCFONT fontTable[ZIL_MAXFONTS]i
static WCCPATTERN patternTable[ZIL_MAXPATTERNS];

UI_WCC_DISPLAY(int mode = 0);
virtual -UI_WCC_DISPLAY(void)i
virtual void Bitmap(ZIL_SCREENID screenID, int column, int line,

int bitmapWidth, int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette = ZIL_NULLP(UI_PALETTE),
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_BITMAP_HANDLE *colorBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE),
ZIL_BITMAP_HANDLE *monoBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE));

virtual void BitmapArrayToHandle(ZIL_SCREENID screenID, int bitmapWidth,
int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette, ZIL_BITMAP_HANDLE *colorBitmap,
ZIL_BITMAP_HANDLE *monoBitmap);

virtual void BitmapHandleToArray(ZIL_SCREENID screenID,
ZIL_BITMAP_HANDLE colorBitmap, ZIL_BITMAP_HANDLE monoBitmap,
int *bitmapWidth, int *bitmapHeight, ZIL_UINT8 **bitmapArray);

virtual void Ellipse(ZIL_SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void IconArrayToHandle(ZIL_SCREENID screenID, int iconWidth,
int iconHeight, const ZIL_UINT8 *iconArray,
const UI_PALETTE *palette, ZIL_ICON_HANDLE *icon);

virtual void IconHandleToArray(ZIL_SCREENID screenID,
ZIL_ICON_HANDLE icon, int *iconWidth, int *iconHeight,
ZIL_UINT8 **iconArraY)i

virtual void Line(ZIL_SCREENID screenID, int column1, int line1,
int column2, int line2, const UI_PALETTE *palette, int width = 1,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual ZIL_COLOR MapColor(const UI_PALETTE *palette, int isForeground);
virtual void Polygon(ZIL_SCREENID screenID, int numPoints,

const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

Chapter 41 - UCWCC_DISPLAY 375

virtual void Rectangle(ZIL_SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RectangleXORDiff(const UI_REGION &oldRegion,
const UI_REGION &newRegion, ZIL_SCREENID screenID = ID_SCREEN,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RegionDefine(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual void RegionMove(const UI_REGION &oldRegion, int newColumn,
int newLine, ZIL_SCREENID oldScreenID = ID_SCREEN,
ZIL_SCREENID newScreenID = ID_SCREEN);

virtual void Text (ZIL_SCREENID screenID, int left, int top,
const ZIL_ICHAR *text, const UI_PALETTE *palette, int length -1,
int fill = TRUE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextHeight(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextWidth(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int VirtualGet(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual int VirtualPut(ZIL_SCREENID screenID);

protected:
int maxColors;
signed char _virtualCount;
UI_REGION _virtualRegion;
char _stopDevice;
int _fillPattern;
int _backgroundColor;
int _foregroundColor;

void SetFont(ZIL_LOGICAL_FONT logicalFont);
void SetPattern(const UI PALETTE *palette, int _xor);

} ;

General Members

This section describes those members that are used for general purposes.

WCCFONT is a structure that contains the following font information:

typeFace contains the string name of the font. Zinc uses Watcom's Helvetica
font, so for the three fonts defined by Zinc, typeFace is "Helv."

options contains the font characteristics. For more information see _setfont()
in the Watcom C Graphics Library Reference.

376

• WCCPAITERN is an array of 8 bytes that make up the 8x8 bitmap pattern. Each
byte (8 bits) corresponds to 8 pixels in the pattern. The patterns defined by Zinc are:
PTN_SOLID_FILL, PTN_INTERLEAVE_FILL and PTN_BACKGROUND_FILL.

Zinc Application Framework-Programmer's Reference Volume 1

For more information see setfillpattern() in the Watcom C Graphics Library
Reference.

• searchPath contains the path to be searched for the font file. The WCC graphics
library needs to access font files at run-time so that it can draw characters in graphics
mode. Because Zinc uses Watcom's Helvetica font, the UCWCC_DISPLAY class
needs to find the HELVB.FON file at run-time. If the display class cannot find this
file, graphics mode will not initialize.

fontTable is an array of WCCFONT. The default array contains space for 10
WCCFONT entries. The following entries are pre-defined by Zinc:

FNT_SMALL_FONT-A font that is used to display an icon's text string.

FNT_DIALOG_FONT-A font that is used when text is displayed on window
objects (e.g., UIW_BUTTON, UIW_STRING, UIW_TEXT, etc.)

FNT_SYSTEM_FONT-A sans-serif style font that is used to display a
window's title.

NOTE: To use these fonts, or if other "stroked" fonts are added to this table, the
proper Watcom font files must be in the current working directory or in the
environment's path at run-time.

See the description of the UI_WINDOW_OBJECT:.iont member variable in "Chapter
43-UCWINDOW_OBJECT" for information on specifying which font an object
uses.

• patternTable is an array of WCCPATTERN. The default array contains space for 15
WCCPATTERN entries. The following entries are pre-defined by Zinc:

PTN_SOLID_FILL-Solid fill.

PTN_INTERLEAVE_FILL-Interleaving line fill.

PTN_BACKGROUND_FILL-Background fill style.

• maxColors is the maximum number of colors supported by the graphics mode that
was initialized. For example, an EGA display might support sixteen colors. This
member will be filled in according to information obtained from the WCC graphics
library after it has initialized. The WCC graphics library supports SVGA modes,

Chapter 41 - ULWCC_DISPLA Y 377

including 256 color mode. Zinc will support whatever mode is initialized by the
WCC graphics library.

• _virtualCount is a count of the number of virtual screen operations that have taken
place. For example, when the VirtualGet() function is called, _virtualCount is
decremented. Additionally, when the VirtualPut() function is called, _virtualCount
is incremented.

• _virtualRegion is the region affected by either VirtualGet() or VirtualPut().

• _stopDevice is a variable used to prevent recursive updates of device images on the
display. If _stopDevice is TRUE, no drawing will be done to the screen. Otherwise,
drawing will be made directly to the screen display.

• -fillPattern is an index into the patternTable specifying the current fill pattern.

• _backgroundColor is the current background drawing color.

• JoregroundColor is the current foreground drawing color.

Syntax

#include <uLdsp.hpp>

UCWCC_DISPLAY(int mode = 0);

Portability

This function is available on the following environments:

D DOS Text
D Macintosh

Remarks

• DOS Graphics
D OSF/Motif

D Windows
D Curses

D OS/2
D NEXTSTEP

378

This constructor creates a new UCWCC_DISPLAY object. When a new UCWCC_­
DISPLAY class is constructed, the screen display is set to the background color and
pattern specified by the inherited variable backgroundPalette.

Zinc Application Framework-Programmer's Reference Volume 1

modein specifies the graphics mode that should be initialized. If mode is 0, which is
the default, the UI_WCC_DISPLAY class will initialize the highest resolution
graphics mode possible using the WCC _MAXRESMODE constant. For more
information on the possible values for mode, see _setvideomode() in the Watcom C
Graphics Library Reference.

Example

#include <ui_win.hpp>

main()
{

II Initialize Zinc Application Framework.
DI DISPLAY *display = new UI_WCC_DISPLAY;

II Restore the system.
delete windowManager;
delete eventManager;
delete display;
return (0);

Syntax

#include <uLdsp.hpp>

-UCWCC_DISPLAY(void);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

• DOS Graphics
o OSF/Motif

o Windows
o Curses

o OS/2
o NEXTSTEP

This virtual destructor destroys the class information associated with the UCWCC_­
DISPLAY class. Care should be taken to only destroy a UCWCC_DISPLAY class that
is not attached to another associated object.

Chapter 41 - ULWCC_DISPLAY 379

Syntax

#include <uLdsp.hpp>

void SetFont(ZIL_LOGICAL_FONT logicalFont);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

• DOS Graphics
o OSF/Motif

o Windows
o Curses

o OS/2
o NEXTSTEP

This function is used to set the font information used by the wee graphics library. The
information contained in the logicalFont entry of the fontTable array is used to set the
font.

• logicalFontin is the font to be used. logicalFont is an entry into the fontTable array.

UI_WCC_DISPLAY::SetPattern

Syntax

#include <ui_dsp.hpp>

void SetPattem(const UCPALETTE *palette, int _xor);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

• DOS Graphics
o OSF/Motif

o Windows
o Curses

o OS/2
o NEXTSTEP

380 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function is used to set the pattern information used by the wee graphics library.
The information contained in palette is used to set the pattern.

• palettein contains the pattern style, foreground color, and background color to be used
when setting the pattern.

• _xorin indicates if the pattern should be drawn with the xor attribute on. If ~or is
TRUE, the pattern will be an xor pattern. Otherwise, the pattern will not be xor.

Chapter 41 - ULWCC_DISPLA Y 381

382 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 42 - UI_WINDOW_MANAGER

The DCWINDOW_MANAGER class is used to maintain the list of windows displayed
by the application and to dispatch events. The Window Manager also handles some
events that are generic to the entire application. For example, the user may select an
option that causes the application to close. The Window Manager can detect this event
and begin the process to close the application. The graphic illustration below shows the
conceptual operation of the Window Manager within the library:

ULEVENT_MANAGER

MAIN PROGRAM CONTROL

WINDOW 1

WINDOW 2

The DCWINDOW_MANAGER class is declared in UI_WIN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS UI_WINDOW_MANAGER public UIW_WINDOW
{
public:

ZIL_EXIT_FUNCTION exitFunction;
UI_WINDOW_OBJECT *dragObject;

UI_WINDOW_MANAGER(UI_DISPLAY *display, UI_EVENT_MANAGER *eventManager,
ZIL_EXIT_FUNCTION exitFunction = ZIL_NULLF(ZIL_EXIT_FUNCTION));

virtual -UI_WINDOW_MANAGER(void);
void Center(UI_WINDOW_OBJECT *object);
virtual EVENT_TYPE Event (const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

II List members.
UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);
UI_WINDOW_MANAGER &operator+(UI_WINDOW_OBJECT *object);
UI_WINDOW_MANAGER &operator-(UI_WINDOW_OBJECT *object);

};

Chapter 42 - UL WINDOW_MANAGER 383

General Members

This section describes those members that are used for general purposes.

• exitFunction is a programmer defined function that is called whenever the Window
Manager receives the L_EXIT_FUNCTION message. For example, the programmer
may want to confirm whether the end-user really wants to exit the program. The
programmer can use the exitFunction to add a window to the Window Manager
confirming the end-user's desire to exit. If exitFunction is NULL, the L_EXIT_­
FUNCTION message is changed to an L_EXIT message by the Window Manager.
The definition of the exitFunction is as follows:

EVENT_TYPE FunctionName(UCDISPLAY *display,
UCEVENT_MANAGER &eventManager,
UCWINDOW_MANAGER *windowManager);

returnValueout indicates what the program should do. returnValue is returned to
the main event loop, so if the program should terminate immediately, the
function should return an L_EXIT, which will cause the main event loop to exit
and the program to end. If some other action is desired, the function may place
one or more events on the queue. In this case, returnValue should be
S_CONTINUE or something similar.

displaYin is a pointer to the display.

eventManagerin is a pointer to the Event Manager.

windowManagerin is a pointer to the Window Manager.

It is also possible to have the exitFunction called when a particular window is closed.
To accomplish this, the Window Manager's screen/D must be set equal to the
window's screen/D. The following piece of code demonstrates this:

*windowManager
+ window;

windowManager->screenID = window->screenID;

dragObject is a pointer to the object that is being dragged if a drag and drop
operation is in progress.

384 Zinc Application Framework-Programmer's Reference Volume 1

UI_WINDOW_MANAGER::UI_WINDOW_MANAGER

Syntax

#include <uLwin.hpp>

UCWINDOW_MANAGER(UCDISPLAY *display ,
UCEVENT_MANAGER *eventManager,
ZIL_EXIT_FUNCTION exitFunction = ZIL_NULLF(ZIL_EXIT_FUNCTION));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UCWINDOW_MANAGER object. It should be called
after the display and Event Manager classes have been called.

• displaYin is a pointer to the display. This pointer is used by window objects when
they draw.

• eventManagerin is a pointer to the Event Manager. This pointer is used by window
objects to place events on the queue or to send messages to devices.

• exitFunctionin is a programmer defined function that is called whenever the Window
Manager receives the L_EXIT_FUNCTION message. See the description of the
exitFunction member above for more details.

Example

#include <ui_win.hpp>

main()
{

II Initialize the system.
UI_DISPLAY *display ~ new UI_TEXT_DISPLAY()i
UI_EVENT_MANAGER *eventManager ~ new UI_EVENT_MANAGER(display) i

UI_WINDOW_MANAGER *windowManager = new UI_WINDOW_MANAGER(display,
eventManager) i

Chapter 42 - ULWINDOW_MANAGER 385

II Restore the system.
delete windowManager;
delete eventManager;
delete display;
return (0);

Syntax

#include <uLwin.hpp>

virtual -UCWINDOW_MANAGER(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the UCWINDOW_­
MANAGER object. Destroying the Window Manager will also delete all windows still
attached to the Window Manager unless they have the WOAF_NO_DESTROY flag set.
If this flag is set on a window, the programmer is responsible for deleting the window.

Example

#include <ui_win.hpp>

main()
{

II Initialize the system.
UI_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display);
UI_WINDOW_MANAGER *windowManager = new UI_WINDOW_MANAGER(display,

eventManager);

II Restore the system.
delete windowManager;

386 Zinc Application Framework-Programmer's Reference Volume 1

delete eventManager;
delete display;
return (0);

UI_WINDOW_MANAGER: :Add
UI_WINDOW_MANAGER::operator +

Syntax

#include <ui_win.hpp>

UCWINDOW_OBJECT *Add(UCWINDOW_OBJECT *object);
or

UCWINDOW_MANAGER &operator + (UCWINDOW_OBJECT *object);

PortabiIity

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions are used to add a new window to the UCWINDOW_­
MANAGER object.

The first overloaded function adds a window to the UCWINDOW_MANAGER object.
The window will be the current window. This function can be used to add a new window
to the Window Manager or to make an already displayed window current.

• returnValueout is a pointer to object if the addition was successful. Otherwise,
returnValue is NULL.

• objectin is a pointer to the window to be added to the Window Manager.

The second operator overload adds a window to the UCWINDOW_MANAGER object.
This operator overload is equivalent to calling the UI_WINDOW_MANAGER::Add()
function except that it allows the chaining of window additions to the UCWINDOW_­
MANAGER object.

Chapter 42 - ULWINDOW_MANAGER 387

• returnValueou1 is a pointer to the UCWINDOW_MANAGER object. This pointer is
returned so that the operator may be used in a statement containing other operations.

• objectin is a pointer to the new window that is to be added to the Window Manager.

Example

#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager)
{

II Create a new window and attach it to the window manager.
UIW_WINDOW *window = new UIW_WINDOW(O, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE ("Window 1");

*windowManager + window;

Syntax

#include <uLwin.hpp>

void Center(UCWINDOW_OBJECT *object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function centers an object on the screen. Only objects that are attached directly to
the Window Manager should be centered using this function (i.e., a button attached to a
window cannot be centered using this function).

• objectin is a pointer to the object that is to be centered on the screen. object must be
attached directly to the Window Manager.

388 Zinc Application Framework-Programmer's Reference Volume 1

UI_WINDOW_MANAGER::Event

Syntax

#include <uLwin.hpp>

virtual EVENT_TYPE Event(const UCEVENT &event);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function processes events sent to the Window Manager and dispatches events
destined for other objects. In the main event loop, events that are waiting to be processed
are removed from the Event Manager's event queue and sent to this function. If the event
is meant for the Window Manager, it is processed by this function. If the event is
intended for another object the Event() function dispatches it. How the Event() function
dispatches events depends on the event and the environment. If the event is a Zinc
event- meaning it was not generated by the operating system-the event is routed to the
appropriate window. The event will be processed in a top-down fashion, with the top­
level objects (e.g., a window attached to the Window Manager) getting the event before
the sub-objects (e.g., a button attached to a window) will. If the environment is a
graphical operating system that already has an event-driven messaging system, such as
Windows or Motif, and the event came from the operating system, the event will be
passed to the operating system so that it may dispatch it as it normally would. Thus, it
is possible to place events on the queue that are specific to your application but still
interact with the operating system's API if desired.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. The event may have been processed by the UI_WINDOW_MANAGER::­
Event() function directly or it may have been dispatched by the Window Manager
and handled by another object's Event() function. See "Appendix B-System
Events" of Programmer's Reference Volume 2 for a complete listing of system
events and "Appendix C-Logical Events" of Programmer s Reference Volume 2
for a complete listing of logical events. The following event types (declared in

Chapter 42 - ULWINDOW_MANAGER 389

390

UI_EVT.HPP) may need to be handled specially when returned from this function
to the main event loop:

L_EXIT-The Window Manager received an event that either mapped to the
L_EXIT event, or an action was performed that caused the Window Manager to
generate the L_EXIT event. If this event is returned, program execution should
be discontinued.

S_NO_OBJECT-There are no objects in the Window Manager's list. This
message is returned whenever the message is object-specific but no object is
attached to the Window Manager. Typically, the application should end if this
message is received.

S_UNKNOWN-The event could not be processed. This may be the result of
an invalid operation or because the event was not recognized by any objects.

• eventin contains a run-time message. The type of operation performed depends on the
interpretation of the event. The following logical events are processed by Event():

L_BEGIN_COPY_DRAG-Indicates that the end-user is beginning a drag
operation to copy an object.

L_BEGIN_MOVE_DRAG-Indicates that the end-user is beginning a drag
operation to move an object.

L_BEGIN_SELECT-Indicates that the end-user pressed the mouse button
down. This begins the selection process of an object. This event is interpreted
from an event generated by the mouse device.

L_CONTINUE_COPY_DRAG-Indicates that the end-user is continuing a drag
operation to copy an object.

L_CONTINUE_MOVE_DRAG-Indicates that the end-user is continuing a
drag operation to move an object.

L_END_COPY_DRAG-Indicates that the end-user has completed a drag
operation to copy an object.

L_END_MOVE_DRAG-Indicates that the end-user has completed a drag
operation to move an object.

Zinc Application Framework-Programmer's Reference Volume 1

L_EXIT-Indicates that the end-user performed some action that should result
in the termination of the program. The Window Manager does not actually
process this event, but instead returns it to the main event loop which should
process it. This event may be placed directly on the event queue by the
programmer or it may be interpreted from an event that resulted from the end­
user's actions.

L_EXIT_FUNCTION-Causes the Window Manager to call the programmer­
defined exit function, if one exists. The most common use for the exit function
is to confirm that the user wants to exit the program. If no exit function was
provided by the programmer this message will result in an L_EXIT being
processed. See the description of the exitFunction member above for more
details.

L_HELP-If the message is interpreted by the Window Manager, it requests
general help associated with the application. If this message is interpreted by a
particular window object, it requests the context-sensitive help associated with
the object.

L_MAXIMIZE-Maximizes the current window. Typically, this event is the
result of the end-user selecting a key combination to maximize the current
window. This event may be placed directly on the event queue by the
programmer or it may be interpreted from an event that resulted from the end­
user's actions.

L_MINIMIZE-Minimizes the current window. Typically, this event is the
result of the end-user selecting a key combination to minimize the current
window. This event may be placed directly on the event queue by the
programmer or it may be interpreted from an event that resulted from the end­
user's actions.

L_MOVE-Allows the end-user to move the window from keyboard control.
Typically, this event is the result of the end-user selecting a key combination to
move the current window. This event may be placed directly on the event queue
by the programmer or it may be interpreted from an event that resulted from the
end-user's actions.

L_NEXT_WINDOW-Causes the next window to be made current. This event
may be placed directly on the event queue by the programmer or it may be
interpreted from an event that resulted from the end-user's actions.

Chapter 42 - U,- WINDOW_MANAGER 391

392

L_RESTORE-Restores the current window from its minimized or maximized
state. Typically, this event is the result of the end-user selecting a key
combination to restore the current window. This event may be placed directly
on the event queue by the programmer or it may be interpreted from an event
that resulted from the end-user's actions.

L_SIZE-Allows the end-user to size the window from keyboard control.
Typically, this event is the result of the end-user selecting a key combination to
size the current window. This event may be placed directly on the event queue
by the programmer or it may be interpreted from an event that resulted from the
end-user's actions.

L_VIEW-A general event that indicates the mouse was moved while no
buttons were pressed. An object can use this message to change the appearance
of the mouse pointer. This event is interpreted from an event generated by the
mouse device.

S_ADD_OBJECT-Is used to add an object to the Window Manager. A
pointer to the object to be added must be in event.data. This message is
interpreted only by those objects that contain a list (e.g., windows, horizontal and
vertical lists, combo boxes, etc.).

S_CASCADE-Causes the Window Manager to size and arrange the windows
in a cascaded fashion.

S_CLOSE-Causes the Window Manager to close the current window, if
possible. The current window will not be closed if the window has the WOAF_­
LOCKED flag set. In addition to closing the window, the Window Manager will
also delete the window, freeing the memory. It will not delete the window,
however, if the window has the WOAF_NO_DESTROY flag set. In this case
the programmer is responsible for deleting the window. If there are any
temporary windows attached to the Window Manager (i.e., windows that have
the WOAF_TEMPORARY flag set) they will also be closed and deleted in
addition to the first non-temporary window. This event may be placed directly
on the event queue by the programmer or it may be interpreted from an event
that resulted from the end-user's actions. This event is not sent to the window.
The window will receive an S_DEINITIALIZE message when it is being closed.

S_CLOSE_TEMPORARY-Closes the current window if it is temporary. For
example, a UIW_POP_UP_MENU is a temporary window. A temporary
window is a window that has the WOAF_TEMPORARY flag set. If the current
window is not a temporary window, no action will occur. This event may be

Zinc Application Framework-Programmer's Reference Volume 1

placed directly on the event queue by the programmer or it may be interpreted
from an event that resulted from the end-user's actions.

S_REDISPLAY-Causes a refresh of the display. All windows attached to the
Window Manager will be redrawn. In some operating systems (e.g., DOS,
Curses) the background may be redrawn as well.

S_RESET_DISPLAY-Changes the display to a different resolution. event.data
should point to the new display class to be used. If event.data is NULL, a text
mode display will be created. This event is specific to DOS and must be placed
on the event queue by the programmer. The library will never generate this
event.

S_SUBTRACT_OBJECT-Is used to subtract an object from the Window
Manager. A pointer to the object to be subtracted must be in event.data. This
message is interpreted only by those objects that contain a list (e.g., windows,
horizontal and vertical lists, combo boxes, etc.).

NOTE: Because most graphical operating systems already process their own events
related to this object, or because some of the events listed above may not make sense
for some of these operating systems, the messages listed above may not be handled
in every environment. Wherever possible, Zinc allows the operating system to
process its own messages so that memory use and speed will be as efficient as
possible.

Example

#include <ui_win.hpp>

main()
{

II Get events until the L_EXIT event occurs.
EVENT_TYPE ccode;
do
{

DI_EVENT event;
eventManager->Get(event, Q_NORMAL);
ccode = windowManager->Event(event);

while (ccode != L_EXIT && ccode != S_NO_OBJECT);

Chapter 42 - U,- WINDOW_MANAGER 393

UI_WINDOW_MANAGER::Information

Syntax

#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectlD = ID_DEFAULT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

394

This function allows Zinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the Window
Manager:

1_COPY_TEXT-Copies the text associated with the object. If this request is
sent, data should be a pointer to a buffer of ZIL_ICHAR. The text is used to
identify the task in the Program Manager's task list. This request is specific to
MS Windows.

I_GET_NUMBERID_OBJECT-Returns a pointer to an object whose
number/D matches the value in data, if one exists. This object does a depth-first
search of the objects attached to it looking for a match of the number/D. If no
object has a number/D that matches data, NULL is returned. If this message is
sent, data must be a pointer to a programmer defined NUMBERID.

Zinc Application Framework-Programmer's Reference Volume 1

I_GET_STRINGID_OBJECT-Returns a pointer to an object whose string/D
matches the character string in data, if one exists. This object does a depth-first
search of the objects attached to it looking for a match of the string/D. If no
object has a string/D that matches data, NULL is returned. If this message is
sent, data must be a pointer to a programmer defined string.

I_GET_TEXT-Returns a pointer to the text associated with the object. If this
request is sent, data should be a doubly-indirected pointer to ZIL_ICHAR. This
request does not copy the text into a new buffer. The text is used to identify the
task in the Program Manager's task list. This request is specific to MS
Windows.

I_SET_TEXT-Sets the text associated with the object. This request will also
redisplay the object with the new text. data should be a pointer to the new text.
The text is used to identify the task in the Program Manager's task list. This
request is specific to MS Windows.

• datain/OUI is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• object/Din is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. object/D removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for object/D, the object
will attempt to interpret the request with the objectlD of the most derived class.

Example

#include <ui_win.hpp>

UI_WINDOW_OBJECT *GetObject(char *name, UI_WINDOW_MANAGER *windowManager)
{

II Find the window object given a name and return a pointer to it.
return (windowManager->Information(I_GET_STRINGID_OBJECT, name,

ID_WINDOW_MANAGER»;

Chapter 42 - ULWINDOW_MANAGER 395

UI_WINDOW_MANAGER::Subtract
UI_WINDOW_MANAGER::operator -

Syntax

#include <ui_win.hpp>

DCWINDOW_OBJECT *Subtract(DI_WINDOW_OBJECT *object);

or
DCWINDOW_MANAGER &operator - (UI_WINDOW_OBJECT *object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These functions remove a window from the DCWINDOW_MANAGER object. They
only remove the window from the Window Manager list-they do not delete the object.

The first function subtracts a window from the UCWINDOW_MANAGER object. The
window will not be deleted. The programmer is responsible for deletion of each object
explicitly subtracted from a list.

returnValueoul is a pointer to the next window in the list. This value is NULL if there
are no more windows after the subtracted window.

• elementin is a pointer to the window to be subtracted from the list.

The second operator overload removes a window from the UCWINDOW_MANAGER
object. The window will not be deleted. The programmer is responsible for deletion of
each object explicitly subtracted from a list. This operator overload is equivalent to
calling the Subtract() function, except that it allows the chaining of list element removals
from the DCWINDOW_MANAGER object.

• returnValueOUI is a pointer to the DI_WINDOW_MANAGER object. This pointer is
returned so that the operator may be used in a statement containing other operations.

396 Zinc Application Framework-Programmer's Reference Volume 1

• objectin is a pointer to the window that is to be removed from the list.

Example

#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager, UIW_WINDOW *window)
{

*windowManager - window;

Chapter 42 - ULWINDOW_MANAGER 397

398 Zinc Application Framework-Programmer's Reference Volume 1

The UCWINDOW_OBJECT class is the base class to all window objects. It provides
the basic functionality required for objects to be displayed. It should not be used as a
constructed class. Rather, derived classes, such as UIW_BORDER, UIW_BUTTON or
UIW_WINDOW must be used. The figure below shows the window object hierarchy:

IWINDOW OBJECT HIERARCHVI

IW_MAXIMIZE_BunON

IW_MINIMIZE_BunON

IW_POP_UP_ITEM

IW_PULL_DOWN_ITEM

IW_SYSTEM_BunON

IW_TITLE

(other programmer
defined window
objects)

'_WINDOW_MANAGER

IW_COMBO_BOX

IW_GROUP

IW_HZ_L1ST

IW_POP_UP_MENU

IW_PULL_DOWN_MENU

IW_SCROLL_BAR

IW_TEXT

IW_TOOL_BAR

IW_VT_L1ST

Windows and window objects are attached to the Window Manager or a window at run­
time by the programmer. Once a window or window object is attached, it receives event
information from the Window Manager.

The UCWINDOW_OBJECT class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UI_WINDOW_OBJECT public UI_ELEMENT,
public ZIL_INTERNATIONAL

{
public:

II Forward declaration of classes used by UI_WINDOW_OBJECT.
friend class ZIL_EXPORT_CLASS UI_WINDOW_MANAGER;
friend class ZIL_EXPORT_CLASS UI_ERROR_STUB;
friend class ZIL_EXPORT_CLASS UI_ERROR_SYSTEM;
friend class ZIL_EXPORT_CLASS UI_HELP_STUB;
friend class ZIL_EXPORT_CLASS UI_HELP_SYSTEM;

static int repeatRate;
static int doubleClickRate;
static WOS_STATUS defaultStatus;

Chapter 43 - U,- WINDOW_OBJECT 399

static UI_DISPLAY *display;
static UI_EVENT_MANAGER *eventManager;
static UI_WINDOW_MANAGER *windowManager;
static UI_ERROR_STUB *errorSystem;
static UI_HELP_STUB *helpSystem;
static ZIL_STORAGE_READ_ONLY *defaultStorage;
static UI_ITEM *objectTable;
static UI_ITEM *userTable;
static ZIL_ICHAR _className[];

UI_EVENT_MAP *eventMapTable;
UI_EVENT_MAP *hotKeyMapTable;
UI_PALETTE_MAP *paletteMapTable;

#if defined (ZIL_MACINTOSH)
union
{

ZIL SCREENID
ControlHandle
ListHandle
MenuHandle
TEHandle
Windowptr

screenID;
controlScreenID;
listScreenID;
menuScreenID;
textScreenID;
windowScreenID;

};
#else

ZIL_SCREENID screenID;
#endif

WOF_FLAGS woFlags;
WOAF_FLAGS woAdvancedFlags;

#if defined (ZIL_EDIT)
WOAF_FLAGS designerAdvancedFlags;

#endif
WOS_STATUS woStatus;
UI_REGION true;
UI_REGION relative;
UI_WINDOW_OBJECT *parent;
UI_HELP_CONTEXT helpContext;

UIF_FLAGS userFlags;
UIS_STATUS userStatus;
void *userObject;
EVENT_TYPE (*userFunction) (UI_WINDOW_OBJECT *object, UI_EVENT &event,

EVENT_TYPE ccode);
EVENT_TYPE UserFunction(const UI_EVENT &event, EVENT_TYPE ccode);

virtual -UI_WINDOW_OBJECT(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
ZIL_LOGICAL_FONT Font (ZIL_LOGICAL_FONT font = FNT_NONE);
UI_WINDOW_OBJECT *Get(const ZIL_ICHAR *name);
UI_WINDOW_OBJECT *Get(ZIL_NUMBERID _numberID);
unsigned HotKey(unsigned hotKey = 0);
unsigned HotKey(ZIL_ICHAR *text);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);
int Inherited(ZIL_OBJECTID matchID);
EVENT_TYPE LogicalEvent(const UI_EVENT &event,

ZIL_OBJECTID currentID = 0, int nativeType = TRUE);
UI_PALETTE *LogicalPalette(LOGICAL_EVENT logicalEvent,

ZIL_OBJECTID currentID = 0);
NUMBERID NumberID(NUMBERID numberID = 0);
EVENT_TYPE RedisplayType(void);
void RegionConvert(UI_REGION ®ion, int absolute);
UI_WINDOW_OBJECT *Root(int mdiChild FALSE);
ZIL_OBJECTID SearchID(void);
ZIL_ICHAR *StringID(const ZIL_ICHAR *stringID ZIL_NULLP(ZIL_ICHAR));

#if defined (ZIL_MOTIF)
static XmString CreateMotifString(ZIL_ICHAR *

400 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_ICHAR ** = ZIL_NULLP(ZIL_ICHAR *), int
static void StripHotKeyMark(ZIL_ICHAR *text);
virtual ZIL_SCREENID TopWidget(void);
Widget shell;

#endif
virtual int Validate(int processError = TRUE);

TRUE) ;

II Used for storage purposes only.
II Used for storage purposes only.

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void) ;
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UI_WINDOW_OBJECT(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI ITEM *userTable ZIL_NULLP(UI_ITEM));

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name,
ZIL_STORAGE *file = ZIL_NULLP(ZIL_STORAGE),
ZIL_STORAGE_OBJECT *object = ZIL_NULLP(ZIL_STORAGE_OBJECT),
UI ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

#endif

II List members.
UI_WINDOW_OBJECT *Next(void);
UI_WINDOW_OBJECT *Previous(void);

protected:
ZIL_OBJECTID searchID;
ZIL_NUMBERID numberID;
ZIL_ICHAR stringID[32];
ZIL_OBJECTID windowID[5];

unsigned hotKey;
ZIL_LOGICAL_FONT font;
UI_PALETTE *lastPalette;
ZIL_ICHAR *userObjectName;
ZIL_ICHAR *userFunctionName;
UI_REGION clip;

#if defined (ZIL_MSDOS) I I defined (ZIL_CURSES)
static ZIL_ICHAR *pasteBuffer; II There is only one global paste buffer.
static int pasteLength;

#elif defined (ZIL_WINNT)
DWORD dwStyle;
WNDPROC defaultCallback;
void RegisterObject(char *className, char *winClassName,

WNDPROC *defProcInstance, ZIL ICHAR *title = ZIL_NULLP(ZIL_ICHAR),
HMENU menu = 0);

#elif defined (ZIL_MSWINDOWS)
DWORD dwStyle;
FARPROC defaultCallback;

void RegisterObject(char *className, char *winClassName, int *offset,
FARPROC *procInstance, FARPROC *defProcInstance,
ZIL_ICHAR *title = ZIL_NULLP(ZIL_ICHAR), HMENU menu = 0);

#elif defined(ZIL_OS2)
ZIL_UINT32 flStyle;
ZIL_UINT32 flFlag;
PFNWP defaultCallback;

Chapter 43 - ULWINDOW_OBJECT 401

ZIL_SCREENID RegisterObject(char *className, int *registeredClass,
PFNWP *baseCallback, ZIL_ICHAR *title,
void *controlData = ZIL_NULLP(void));

#elif defined (ZIL_MOTIF)
static Arg args[50];
static int nargs;
void RegisterObject(WidgetClass widgetClass,

ZIL_MOTIF_CONVENIENCE_FUNCTION convenienceFunction,
EVENT_TYPE ccode, int useArgs = FALSE, int manage = TRUE,
ZIL_SCREENID parent = 0);

#endif

UI_WINDOW_OBJECT(int left, int top, int width, int height,
WOF_FLAGS woFlags, WOAF_FLAGS woAdvancedFlags) ;

EVENT_TYPE DrawBorder(ZIL_SCREENID screenID, UI_REGION ®ion,
int fillRegion, EVENT_TYPE ccode);

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);
EVENT_TYPE DrawShadow(ZIL_SCREENID screenID, UI_REGION ®ion,

int depth, int fillRegion, EVENT_TYPE ccode);
EVENT_TYPE DrawText(ZIL_SCREENID screenID, UI_REGION ®ion,

const ZIL_ICHAR *text, UI_PALETTE *palette, int fillRegion,
EVENT_TYPE ccode);

void Modify(const UI_EVENT &event);
int NeedsUpdate(const UI_EVENT &event, EVENT_TYPE ccode);
void RegisterObject(char *name);
virtual void RegionMax(UI_WINDOW_OBJECT *object);

};

General Members

This section describes those members that are used for general purposes.

repeatRate is the time, in hundredths of seconds, that must elapse before an event is
repeated. For example, when the down arrow on a UIW_SCROLL_BAR is
depressed and held, scrolling events will occur at the rate specified by repeatRate.

• doubleClickRate is the time, in hundredths of seconds, that is used to determine if
two consecutive mouse clicks are to be interpreted as a double click. If two mouse
clicks occur within the time specified by doubleClickRate, then a double-clicked event
is processed.

defaultStatus is the status assigned to a window object when it is first constructed.
If this value is changed to a valid status, all window objects will be created with this
status (e.g., setting WaS_GRAPHICS would cause all window objects to be created
with pixel boundaries and sizes).

• display is a pointer to the display class.

• eventManager is a pointer to the Event Manager.

• windowManager is a pointer to the Window Manager.

402 Zinc Application Framework-Programmer's Reference Volume 1

• errorSystem is a pointer to the error system. errorSystem should be initialized by the
programmer at the beginning of the program if an error system is used.

• helpSystem is a pointer to the help system. helpSystem should be initialized by the
programmer at the beginning of the program if a help system is used.

• defaultStorage is a pointer to the default storage system that is used for resource
storage and/or retrieval. defaultStorage is used when loading icon and bitmap button
images. It can also be used to load resources (i.e., UIW_WINDOW). defaultStorage
should be initialized by the programmer at the beginning of the program if it will be
needed.

• objectTable is a table used to create objects from a persistent object file. The table
contains entries for each type of object in the file. An entry consists of an object
identifier and a pointer to the object's static New() function. When an object is
being loaded from the file, its searchID is loaded which is then used to obtain the
address of the appropriate New() function from objectTable. The New() function
loads all the associated data for that object from the file. Each object that can be
persistent must have a static New() member function. This is necessary because
C++ does not allow the passing of non-static member functions and a constructor
cannot be made static. The Designer creates an object table in the .CPP file it
generates. When this file is compiled and linked into the application, it will be used
to set the objectTable member. Alternately, a table can be created by hand and used
to initialize objectTable.

static UI_ITEM _objectTable[]
{

ID_BIGNUM, VOIDF(UIW_BIGNUM: :New) , UIW_BIGNUM::_className, a },
ID_BORDER, VOIDF(UIW_BORDER: :New) , UIW_BORDER::_className, a },
ID_BUTTON, VOIDF(UIW_BUTTON::New), UIW_BUTTON::_className, a },
ID_DATE, VOIDF(UIW_DATE: :New) , UIW_DATE: :_className, a },
ID_GROUP, VOIDF(UIW_GROUP: :New) , UIW_GROUP::_className, a },
ID_HZ_LIST, VOIDF(UIW_HZ_LIST: :New) , UIW_HZ_LIST::_className, a },
ID_ICON, VOIDF(UIW_ICON::New), UIW_ICON: :_className, a },
ID_PROMPT, VOIDF(UIW_PROMPT: :New) , UIW_PROMPT: :_className, a },
ID_STRING, VOIDF(UIW_STRING: :New) , UIW_STRING::_className, a },
ID_TEXT, VOIDF(UIW_TEXT: :New) , UIW_TEXT: :_className, a },
ID_TIME, VOIDF(UIW_TIME: :New) , UIW_TIME::_className, a },
ID_TITLE, VOIDF(UIW_TITLE: :New) , UIW_TITLE: :_className, a },
ID_VT_LIST, VOIDF(UIW_VT_LIST::New), UIW_VT_LIST: :_className, a },
I D_WINDOW , VOIDF(UIW_WINDOW: :New) , UIW_WINDOW: :_className, a },
ID_END, ZIL_NULLP(void) , ZIL_NULLP(ZIL_ICHAR), a }

}j
UI_ITEM *UI_WINDOW_OBJECT::objectTable = _objectTable;

NOTE: Initially, objectTable points to a default table (contained in G_JUMP.CPP).
The default table has all of the entries commented out to prevent unnecessary
modules from linking into the application. If this table is needed, simply uncomment
the required lines or copy and rename the table and uncomment the required lines.

Chapter 43 - ULWINDOW_OBJECT 403

• userTable is a table used to associate user functions and compare functions with the
persistent objects that use them. The table contains entries for each function that
appears in the persistent object file. An entry consists of a string used to identify the
function and the address of the function. When an object is being loaded from the
file, its userFunctionName or compareFunctionName is loaded which is then used to
obtain the address of the appropriate user function or compare function address from
userTable. If an object has a user function or compare function, they must be static.
This is necessary because C++ does not allow the passing of non-static member
functions. The Designer creates a user table in the .CPP file it generates. When this
file is compiled and linked into the application, it will be used to set the userTable
member. Alternately, a table can be created by hand and used to initialize userTable.

static UI_ITEM _userTable[] =
{

0, VOIDF (FilenameCallback), "FilenameCallback", 0 },
0, VOIDF (FilterCallback), "FilterCallback", 0 },
0, VOIDF(DirectoryCompare), "DirectoryCompare", 0 },
ID_END, ZIL_NULLP(void) , ZIL_NULLP(ZIL_ICHAR), 0 }

} i
UI_ITEM *UI_WINDOW_OBJECT::userTable = _userTablei

NOTE: Initially, userTable points to a default table (contained in G_JUMP.CPP).
The default table is empty.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UCWINDOW_OBJECT class, _className is "UI_WINDOW_OBJECT."

• eventMapTable is a pointer to the event map table used by the object. The event map
table is used to map raw events that were generated by an input device into logical
events that the library objects can act upon. All objects use the same event map table
by default, but individual objects can be assigned a special, user-defined table if
behavior that is different than the default is required.

• hotKeyMapTable is a pointer to the hotkey map table used by the object. The hotkey
map table is used to map the raw key event to the hotkey that was pressed. All
objects use the same hotkey map table by default, but individual objects can be
assigned a special, user-defined table if desired.

• paletteMapTable is a pointer to the palette map table used by the object. The palette
map table is used to determine what color the object is supposed to be under
particular circumstances. All objects use the same palette map table by default, but
individual objects can be assigned a special, user-defined table if different colors are
required.

404 Zinc Application Framework-Programmer's Reference Volume 1

• sereenID is a unique identification given to a window object when it (or its parent)
is attached to the Window Manager. This value is used in various places, but the
most significant is when calling display functions. The sereenID is used to identify
the object and its display space. In most graphical operating systems, sereenID is the
window handle of the object. In DOS it is a value that identifies a screen region.
In Motif it identifies the type of Motif widget the object is.

• eontrolSereenID is the Macintosh Handle to the object if it is a control object (e.g.,
button, scroll bar, etc.). Because the Macintosh toolbox has a specific handle type
and specific functions for this type of object, a screenID specific to this type of object
is required.

• listSereenID is the Macintosh Handle to the object if it is a list object (e.g., vertical
list, etc.). Because the Macintosh toolbox has a specific handle type and specific
functions for this type of object, a screenID specific to this type of object is required.

• menuSereenID is the Macintosh Handle to the object if it is a pop-up menu object.
Because the Macintosh toolbox has a specific handle type and specific functions for
this type of object, a screenID specific to this type of object is required.

• textSereenID is the Macintosh Handle to the object if it is an editable object (e.g.,
string, date, etc.). Because the Macintosh toolbox has a specific handle type and
specific functions for this type of object, a screenID specific to this type of object is
required.

windowSereenID is the Macintosh pointer to the object if it is a window. Because
the Macintosh toolbox has a specific pointer type and specific functions for this type
of object, a screenID specific to this type of object is required.

• woFlags are flags (common to all window objects) that determine the general
operation of the window object. The following flags (declared in UI_WIN.HPP)
control the general presentation of, and interaction with, a window object:

WOF_AUTO_CLEAR-Automatically marks the entire buffer if the end-user
tabs to the field from another object. If the user then enters data (without first
having pressed any movement or editing keys) the entire field will be replaced.
This flag applies to editable objects only.

WOF_BORDER-Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border mayor may not be drawn,
depending on the text style being used. See"Appendix A-Support

Chapter 43 - ULWINDOW_OBJECT 405

406

Definitions" of Programmer's Reference Volume 2 for information on changing
DOS graphics mode styles and text mode styles.

WOF_INVALID-Sets the initial status of the field to be "invalid." Invalid
entries fit in the absolute range determined by the object type but do not fulfill
all the requirements specified by the program. By denoting the field as invalid,
you force the user to enter an acceptable value. This flag applies to editable
fields that have validation, such as dates and times.

WOF_JUSTIFY_CENTER-Center-justifies the text within the displayed
object.

WOF_JUSTIFY_RIGHT-Right-justifies the text within the displayed object.

WOF_MINICELL-Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is I/lOth the size of a
normal cell by default.

WOF_NO_ALLOCATE_DATA-Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS-Does not associate any special window flags with the
object. Setting this flag left-justifies the data, where applicable. This flag should
not be used in conjunction with any other WOF flags.

WOF_NON_FIELD_REGION-Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE-Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor select the object.
Typically, the object will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

WOF_SUPPORT_OBJECT-Causes the object to be placed in the parent
object's support list. The support list is reserved for objects that are not
displayed as part of the user region of the window. Care should be taken when
setting this flag on objects that do not use it by default, as undesired effects may
result.

Zinc Application Framework-Programmer's Reference Volume 1

WOF_UNANSWERED-Sets the initial status of the field to be "unanswered."
An unanswered field is displayed as an empty field. This flag applies to editable
objects only.

WOF_VIEW_ONLY-Prevents the object from being edited. However, the
object may become current and the user may scroll through the data, mark it, and
copy it. This flag applies to editable objects only.

• woAdvancedFlags are flags (common to all window objects) that determine the
advanced operation of the window object. The following flags (declared in UI_­
WIN.HPP) control the advanced operation of a window object:

WOAF_DIALOG_OBJECT-Creates the window as a dialog box. A dialog
box is a temporary window used to display or receive information from the user.
Using this flag will cause a special dialog style border to be displayed.

NOTE: Some operating environments (e.g, Windows) will create a border,
system button and title for a dialog window. Other environments (e.g., DOS)
may not, and so a border, system button and title must be added to the dialog
window by the programmer. Zinc will ignore any support objects in
environments that automatically provide them, such as Windows.

WOAF_DRAG_OBJECT-Allows the object or its contents to be used in a
drag and drop operation.

WOAF_LOCKED-Prevents the window object from being removed from the
display. The WOAF_LOCKED flag must be cleared before the window object
can be removed from the display.

WOAF_MODAL-Prevents any other window from receiving events from the
Window Manager. A modal window receives all events until it is removed from
the display. This flag applies to objects attached directly to the Window
Manager only.

WOAF_MDI_OBJECT-Causes the window to be an MDI window. If this
flag is set on a window that is added to the Window Manager, it becomes an
MDI parent (i.e., it can contain MDI child objects). An MDI parent must have
a pull-down menu. An MDI parent should contain only support objects (i.e.,
system button, border, title, etc.), the required pull-down menu, an optional tool
bar and MDI children.

Chapter 43 - ULWINDOW_OBJECT 407

408

If this flag is set on a window that is added to another MDI window, it becomes
an MDI child window. MDI child windows can be moved or sized but will
remain entirely within the MDI parent window.

NOTE: MDI is not standard across environments. For example, in Windows,
DOS, Curses and OS/2, child windows will be clipped by their parent window,
but in Motif, NEXTSTEP and Macintosh, the child windows will not be clipped
by their parent. In these environments, the child windows are still owned by the
parent window, however, so closing the parent window will cause all child
windows added to the parent to close also.

WOAF_NO_DESTROY-Prevents the window from being destroyed when it
is closed. If this flag is set, the window object can be removed from the display,
but the programmer is responsible for destroying it. This flag applies to
windows, parent or child, only.

WOAF_NO_FLAGS-Does not associate any special advanced flags with the
window object. This flag should not be used in conjunction with any other
WOAF flags.

WOAF_NON_CURRENT-Prevents the object from becoming current. If this
flag is set, users will not be able to select the object from the keyboard. The
object may still be selected using the mouse or a hotkey, but it will not become
current.

WOAF_NORMAL_HOT_KEYS-Allows the end-user to select an option by
pressing its hotkey by itself, without the <Alt> key otherwise required for
selecting with a hotkey.

WOAF_NO_MOVE-Prevents the end-user from changing the screen location
of the window at run-time. This flag must be set if the window is to be a non­
MDI child.

WOAF_NO_SIZE-Prevents the end-user from changing the size of the window
at run-time. This flag must be set if the window is to be a non-MDI child.

WOAF_OUTSIDE_REGION-Indicates the window object occupies space
outside of the true region of the parent window but is still within the parent
window (e.g., the UIW_BORDER class).

WOAF_TEMPORARY-Causes the object to be displayed temporarily. If
another window is made current or a non-temporary window is added to the

Zinc Application Framework-Programmer's Reference Volume 1

Window Manager, all temporary windows are removed automatically by the
Window Manager. This flag applies to objects attached directly to the Window
Manager only.

• woStatus is a status flag that indicates the current state of a window object. The state
may be reflected in the appearance of the object, its behavior or may only be
recognized internally. These flags are updated occasionally when the object's state
changes. The following status flags (declared in UI_WIN.HPP) specify the window
object's current status:

WOS_CHANGED-Indicates that the window object's data has been modified
by the end-user.

WOS_CURRENT-Indicates that the window object is the current object in its
parent's list. Only one window object in a list may have the WaS_CURRENT
flag set at any given time.

WOS_GRAPHICS-Indicates that the window object region is specified in
graphics coordinates as opposed to cell coordinates. This flag is set when an
object's region is converted from cell coordinates to graphics coordinates.

WOS_INVALID-Indicates that the window object's data is in an "invalid"
state. An object's data is invalid if it is not within the absolute range for the
object or is not within a range specified by the programmer.

WOS_MAXIMIZED-Indicates that the window object is in a maximized state.

WOS_MINIMIZED-Indicates that the window object is in a minimized state.

WOS_NO_STATUS-Indicates that the window object has no status.

WOS_OWNERDRAW-Causes the window object's Drawltem() function to
be called when the object needs to be drawn.

WOS_READ_ERROR-Indicates that there was an error reading a storage file.

WOS_REDISPLAY-Indicates that the window object needs to be redisplayed.

WOS_SELECTED-Indicates that the object is selected. The most common
use for this flag is with buttons, where a button field can be in a selected or a
non-selected state.

Chapter 43 - U'- WINDOW_OBJECT 409

WOS_UNANSWERED-Indicates that the window object's data is in an
"unanswered" state.

• true is the region that is used to position the object in the operating system. An
object's true region is calculated from its relative region in the RegionMax()
function. In DOS, Curses and Macintosh, the true region is relative to the upper-left
comer of the screen. In all other environments true is relative to the parent window's
user region origin. The user region is the area of the window framed by, but not
including, the support objects. In these environments, the true region is very similar
to the relative region.

• relative is the region passed to the object in its constructor. It contains the desired
position of the window object relative to the object's parent.

• parent is a pointer to the window object's parent. Its parent is the object it was
attached to.

• helpContext is the help context identifier associated with the window object. The
help context is passed to the help system when displaying help information. The help
system displays the information identified by the help context. The help context
value is generated by the Designer. The help context identifier name can be obtained
from the header file produced by the Designer.

• userFlags is a flag field for the programmer's use. Zinc does not use this member.
userFlags is maintained when the object is stored in a data file.

• userStatus is a status flag field for the programmer's use. Zinc does not use this
member. As with other status flags, userStatus is not maintained when the object is
stored in a data file.

userObject is a pointer for the programmer's use. Since this is a void pointer, the
object must be typecast by the programmer. This pointer is used by Zinc Application
Framework for UIW_COMBO_BOX and UIW_PULL_DOWN_MENU objects and
so should not be used by the programmer for these objects. For all other objects, the
programmer is welcome to use this member as desired. If userObject has an entry
in the UI_WINDOW_OBJECT::userTable, then the text name in the table is saved in
the data file.

• userFunction is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function is generally
called by the library when the object becomes current, is selected or becomes non­
current. Because the user function is called at these times, the programmer can do

410 Zinc Application Framework-Programmer's Reference Volume 1

data validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UCWINDOW_OBJECT *object,
UCEVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.

• shell is a pointer to the object's shell widget. It must be set before a call to VI_­
WINDOW_OBJECT::RegisterObject() is made. This member is available for
Motif only.

search/D identifies the object's type. For example, if the object is a UIW_BUTTON,
its search/D is ID_BUTTON. search/D, sometimes also referred to as the object/D,
is stored with the object and is used to identify the object type when loading it from
a .DAT file. A complete list of ZIL_OBJECTID values can be found in
VI_WIN.HPP.

number/D is a numerical value used to identify an object. Zinc places certain
requirements on an object's number/D member. For example, a window's number/D
must be greater than the number/D of all objects attached to the window. Thus, Zinc
will modify a window's number/D. In general, this member should not be used by
the programmer.

• string/D is a string name used to identify an object. The programmer is responsible
for setting an object's string/D. string/D can be up to 32 characters, including the
NULL terminator.

• window/D is an array that contains an object's inheritance hierarchy. This hierarchy
is used at run-time by functions such as MapEvent() and MapPalette(), neither of
which have any knowledge of class hierarchies, to map events or palettes
appropriately for the object. For example, for a UIW_GROUP windowID[O] is

Chapter 43 - ULWINDOW_OBJECT 411

ID_GROUP, windowID[l] is ID_WINDOW, and the remaining entries are ID_WIN­
DOW_OBJECT.

• hotKey is the character to use as the hotkey for the object. A value of 0 means that
no hotkey is associated with the object.

• font is the ZIL_LOGICAL_FONT associated with the object. font is an index into
the fontTable array that is a member of each display class. For more information
regarding fonts, see the appropriate display chapter.

• lastPalette is a pointer to the last palette used to display the object. By maintaining
a pointer, unnecessary mapping will be prevented.

• userObjectName is the string representation of the user object name. This variable
is used for storage purposes only. The userObjectName is placed in the objectTable
in an entry for the userObject.

• userFunctionName is the string representation of the user function name. This
variable is used for storage purposes only. The userFunctionName is placed in the
userTable in an entry for the userFunction.

• clip provides additional clip region information for an object. clip contains the area
of the object clipped to the object's parent's user region. The user region is the
region encompassed by, but not including, the support objects. Thus, if an object is
partially outside its parents region (i.e., the window is clipping part of the object off)
clip will prevent the object from drawing those parts of the object that are outside the
parent.

• pasteBuffer is the global paste buffer. This member is available in DOS and Curses
only.

• pasteLength is the length of the global paste buffer. This member is available in
DOS and Curses only.

• dwStyle is the object's window style flags. This member is available in Windows
only.

• defaultCallback is the base class default callback function (e.g., DefWindowProc()
in Windows). This member is available in Windows, Windows NT and OS/2 only.

• flStyle is the object's window style flags. This member is available in OS/2 only.

412 Zinc Application Framework-Programmer's Reference Volume 1

• flFlag is the object's class-specific window style flags. This member is available in
OS/2 only.

• args is an array of Xt resources. This member is available for Motif only.

• nargs is a counter of how many entries have been made in the args array. This
member is available for Motif only.

NOTE: All the member functions in this chapter are advanced. In general, only derived
window objects should need access to these functions.

Syntax

#include <ui_win.hpp>

DCWINDOW_OBJECT(int left, int top, int width, int height,
WOF_FLAGS woFlags, WOAF_FLAGS woAdvancedFlags);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new DCWINDOW_OBJECT class object. A DCWINDOW_­
OBJECT by itself is of little use, so the constructor is protected so that only derived
classes can call it.

leftin and tOPin is the starting position of the object. Typically, these values are in cell
coordinates. If the WOF_MINICELL flag is set, however, these values will be
interpreted as minicell values.

• widthin is the width of the object. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

Chapter 43 - ULWINDOW_OBJECT 413

• heightin is the height of the object. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• woFlags are flags (common to all window objects) that determine the general
operation of the object. A full description of these flags is given at the beginning of
this chapter.

• woAdvancedFlags are flags (common to all window objects) that determine the
advanced operation of the object. A full description of these flags is given at the
beginning of this chapter.

Example

#include <ui_win.hpp>

UIW_BUTTON::UIW_BUTTON(int left, int top, int width, char *_string,
USHORT _btFlags, USHORT _woFlags,
void (*_userFunction) (void *object, UI_EVENT &event), USHORT _value)
UI_WINDOW_OBJECT(left, top, width, 1, _woFlags I WOF_BORDER,
WOAF_NO_FLAGS) ,
btFlags(_btFlags), btStatus(BTS_NO_STATUS), userFunction(_userFunction),
string (NULL) , value(_value), getString(NULL), time(O)

Syntax

#include <ui_win.hpp>

virtual -UCWINDOW_OBJECT(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

.OS/2
• NEXTSTEP

414 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This virtual destructor destroys the information associated with the UCWINDOW_­
OBJECT class. This function is declared virtual so that the destructors associated with
derived classes will be called before the base class destructor is called.

UI_WINDOW_OBJECT: :ClassName

Syntax

#include <uLwin.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function returns the class name associated with the object.

• returnValueout is a pointer to the _className member.

UI_WINDOW_OBJECT::CreateMotifString

Syntax

#include <uLwin.hpp>

static XmString CreateMotifString(ZIL_ICHAR *text,
ZIL_ICHAR **displayText =ZIL_NULLP(ZIL_ICHAR *),
int strip = TRUE);

Chapter 43 - ULWINDOW_OBJECT 415

Portability

This function is available on the following environments:

D DOS Text
D Macintosh

Remarks

D DOS Graphics
.OSFlMotif

D Windows
D Curses

D OS/2
D NEXTSTEP

This function creates a Motif string. Motif strings have several components that must be
associated with each other.

• returnValueout is the Motif string that is created.

• textin is the string that is to be placed in the Motif string.

• displayTextout is a doubly indirected pointer to a string buffer. This pointer will be
set to point to a buffer containing the text. The text will be the same as what was
passed in unless strip is TRUE, in which case the text will have any hotkey
designator characters removed.

• stripin specifies if hotkey designator characters (i.e., the '&' character) should be
stripped from the string.

UI_WINDOW_OBJEeT::DrawBorder

Syntax

#include <ui_win.hpp>

EVENT_TYPE DrawBorder(ZIL_SCREENID screen/D, UCREGION ®ion,
intfillRegion, EVENT_TYPE ccode);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

416 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This advanced function draws the border of a window object. The border drawn by this
function is the thin border that results from the WOF_BORDER flag being set. This
border is not the UIW_BORDER.

• returnValueou1 indicates if the border was drawn successfully. returnValue is TRUE
if the border was drawn successfully. Otherwise, returnValue is FALSE.

screen/Din is the screen/D of the object.

• regiOnin/oUl is the region where the border should be drawn. This value is decremented
by the size of the border. This argument should be a copy of the object's true
region.

• fillRegionin specifies if the region within the border should be filled. If fillRegion is
TRUE, the region will be filled. Otherwise, the region will not be filled.

ccodein is the logical or system event that caused the border to be drawn.

Example

#include <ui_win.hpp>

EVENT_TYPE UIW_WINDOW: : Event (const UI_EVENT &event)
{

II Switch on the event type.
switch (ccode)
{

case S_CURRENT:
case S_NON_CURRENT:
case S_DISPLAY_ACTIVE:
case S_DISPLAY_INACTIVE:

{
II Draw the border and fill the background.
UI_WINDOW_OBJECT::Event(event) ;
if (!FlagSet(woStatus, WOS_REDISPLAY))

break;
UI_REGION region = true;
display->VirtualGet(screenID, region);
if (FlagSet(woFlags, WOF_BORDER) && true.Overlap(event.region))

DrawBorder(screenID, region, FALSE, ccode);

}
II Return the control code.
return (ccode);

Chapter 43 - ULWINDOW_OBJECT 417

UI_WINDOW_OBJECT::Drawltem

Syntax

#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UCEVENT &event, EVENT_TYPE ccode);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the object. This
allows the programmer to derive a new class from UCWINDOW_OBJECT and handle
the drawing of the object, if desired.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is
returned.

• eventin contains the run-time message that caused the object to be redrawn.
event. region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS­
PLAY_INACTIVE-Messages that cause the object to be redrawn.

WM_DRAWITEM-A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Expose-A message that causes the object to be redrawn. This message is
specific to Motif.

• ccodein contains the logical interpretation of event.

418 Zinc Application Framework-Programmer's Reference Volume 1

UI_WINDOW_OBJECT::DrawShadow

Syntax

#include <uLwin.hpp>

EVENT_TYPE DrawShadow(ZIL_SCREENID screen/D, UCREGION ®ion,
int depth, intfillRegion, EVENT_TYPE ccode);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function draws the shadow that gives the object a three-dimensional
appearance.

• returnValueout indicates if the shadow was drawn successfully. returnValue is TRUE
if the shadow was drawn successfully. Otherwise, returnValue is FALSE.

• screen/Din is the screen/D of the object.

• regioninlout is the region where the shadow should be drawn. This value is
decremented by the size of the shadow. This argument should be a copy of the
object's true region.

• depthin specifies the degree of shading to be drawn. Values greater than 0 (i.e., 1, 2)
cause the object to appear to pop out of the screen, a value of 0 causes no shadow
to be drawn, and values less than 0 (i.e., -1, -2) cause the object to appear depressed.

• fillRegion in specifies if the region within the shadow should be filled. If fillRegion
is TRUE, the region will be filled. Otherwise, the region will not be filled.

ccodein is the logical or system event that caused the shadow to be drawn.

Chapter 43 - ULWINDOW_OBJECT 419

Example

#include <ui_win.hpp>

EVENT_TYPE UIW_BORDER::DrawItem(const UI_EVENT &, EVENT_TYPE ccode)
{

II Check for text mode.
if (display->isText)
{

UI_REGION region = parent->true;
DrawShadow(screenID, region, 2, FALSE, ccode);
return (ccode);

UI_WINDOW_OBJECT::DrawText

Syntax

#include <uLwin.hpp>

EVENT_TYPE DrawText(ZIL_SCREENID screen/D, UCREGION ®ion,
const ZIL_ICHAR *text, UI_PALETTE *palette, int fillRegion,
EVENT_TYPE ccode);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function draws text in the object.

• returnValueout indicates if the text was drawn successfully. returnValue is TRUE if
the text was drawn successfully. Otherwise, returnValue is FALSE.

• screen/Din is the screen/D of the object.

420 Zinc Application Framework-Programmer's Reference Volume 1

• regioninlout is the region where the text should be drawn. This argument should be a
copy of the object's true region.

• textin is a pointer to the text to be displayed. If the text string contains a hotkey
character, denoted by a preceding '&' character, then it will be underlined if the
application is running in graphics mode or highlighted if the application is running
in text mode.

• palettein is a pointer to the palette structure that defines the color to draw the text.
The palette's foreground color is used to draw the text. The palette's background
color is used to draw the background of the text (if fit/Region is TRUE).

• fit/Region in specifies if the region within the text should be filled. If fit/Region is
TRUE, the region will be filled. Otherwise, the region will not be filled.

• ccodein is the logical or system event that caused the text to be drawn.

UI_WINDOW_OBJECT::Event

Syntax

#include <uLwin.hpp>

virtual EVENT_TYPE Event(const UCEVENT &event);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function processes run-time messages sent to the object. It is declared virtual so that
any derived class can override its default operation. This function processes general
messages for all objects. If a derived object does not handle a particular message in its
Event() function, it should pass the event to its base class. Thus, events that are not
handled by derived objects may eventually be passed to this function since all objects are
derived from UCWINDOW_OBJECT.

Chapter 43 - ULWINDOW_OBJECT 421

422

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the object. The type of operation performed
depends on the interpretation of the event. The following logical events are
processed by Event():

E_KEY-Indicates that a key has been pressed. This message is interpreted
from a keyboard event.

L_BEGIN_SELECT-Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object.

L_CONTINUE_SELECT-Indicates that the end-user previously clicked down
on the object with the mouse and is now continuing to hold the mouse button
down while on the object.

L_DOWN-Moves the focus down one object. If there is no object below the
current object, focus will "wrap" to an object at the top of the window and to
the right of the current object. This message is interpreted from a keyboard
event.

L_END_SELECT-Indicates that the selection process, initiated with the L_­
BEGIN_SELECT message, is complete. For example, the end-user has pressed
and released the mouse button.

L_HELP-Requests the context-sensitive help associated with the object.

L_LEFT-Moves the focus left one object. If there is no object to the left of
the current object, focus will "wrap" to an object on the right of the window
and above the current object. This message is interpreted from a keyboard event.

L_NEXT-This message is passed to the object's parent, if one exists, for
processing.

L_PREVIOUS-This message is passed to the object's parent, if one exists, for
processing.

L_RIGHT-Moves the focus right one object. If there is no object to the right
of the current object, focus will "wrap" to an object on the left of the window
and below the current object. This message is interpreted from a keyboard event.

Zinc Application Framework-Programmer's Reference Volume 1

L_SELECT-Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

L_UP-Moves the focus up one object. If there is no object above the current
object, focus will "wrap" to an object at the bottom of the window and to the
left of the current object. This message is interpreted from a keyboard event.

L_VIEW-Indicates that the mouse is being moved over the object. This
message allows the object to alter the mouse image.

S_ADD_OBJECT-This message is passed to the object's parent, if one exists,
for processing.

S_CHANGED-Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CLOSE-If this message is received at the DCWINDOW_OBJECT level, it
will have come from the operating system. The message is placed on the event
queue for processing.

S_CLOSE_TEMPORARY-If this message is received at the DCWINDOW_­
OBJECT level, it will have come from the operating system. The message is
placed on the event queue for processing.

S_CREATE-Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT-Causes the object to draw itself to appear current. This message
is sent by the Window Manager to a window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.

S_DEINITIALIZE-Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in tum, relays the message to all objects
attached to it.

Chapter 43 - ULWINDOW_OBJECT 423

424

S_DISPLAY_ACTIVE-Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object
should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UCREGION portion of
the UCEVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.

S_DISPLAY_INACTIVE-Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UCREGION portion of
the UCEVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.

S_DRAG_COPY_OBJECT-Indicates that the end-user is dragging the object
for a copy operation.

S_DRAG_MOVE_OBJECT-Indicates that the end-user is dragging the object
for a move operation.

S_DROP_COPY_OBJECT-Indicates that the end-user is dropping an object
for a copy operation. The dragged object's text is copied to this object.

S_DROP_MOVE_OBJECT-Indicates that the end-user is dropping an object
for a move operation. The dragged object's text is moved to this object.

S_INITIALIZE-Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_MOVE-Causes the object to update its location. The distance to move is
contained in the position field of UCEVENT. For example, an event.position. ­
line of -10 and an event.position.column of 15 moves the object 10 lines up and
15 columns to the right.

S_NON_CURRENT-Indicates that the object has just become non-current.
This message is received when the user moves to another window or object.

Zinc Application Framework-Programmer's Reference Volume 1

S_REDISPLAY-Causes the object to redraw.

S_REGION_DEFINE-Causes the object to reserve a region of the screen in
which it will display.

S_REGISTER_OBJECT-Causes the object to register itself with the operating
system.

S_RESET_DISPLAY-Changes the display to a different resolution. event.data
should point to the new display class to be used. If event.data is NULL, then
a text mode display will be created. This event is specific to DOS and must be
placed on the event queue by the programmer. The library will never generate
this event.

S_SIZE-Causes the object to change its size. The object's new relative region
is passed in event. region.

S_SUBTRACT_OBJECT-This message is passed to the object's parent, if one
exists, for processing.

All other events cause the S_UNKNOWN message to be returned.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, Zinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

Example

#include <ui_win.hpp>

EVENT_TYPE UIW_BUTTON: : Event (const UI_EVENT &event)
{

EVENT_TYPE ccode = UI_WINDOW_OBJECT: : LogicalEvent (event, ID_BUTTON);
switch (ccode)
{
case S_CREATE:
case S_SIZE:

default:
ccode = UI_WINDOW_OBJECT::Event(event);
break;

Chapter 43 - ULWINDOW_OBJECT 425

II Return the control code.
return (ccode);

UI_WINDOW_OBJECT::Font

Syntax

#include <uLwin.hpp>

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sets the logical font for an object or returns the logical font in use by the
object. See the individual display class chapters for more information regarding fonts.

• returnValueOUI is the logical font in use by the object.

• fontin is the logical font to be assigned to the object. If font is FNT_NONE, the
default, then the font is not changed but the current font will be returned.

UI_WINDOW_OBJECT::Get

Syntax

#include <uLwin.hpp>

UCWINDOW_OBJECT *Get(const ZIL_ICHAR *name);
or

UCWINDOW_OBJECT *Get(ZIL_NUMBERID _number/D);

426 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions are used to get a pointer to a specific object in the object's
list. They do a depth-first search of the objects in the list, searching for a match on the
identification data specified. If the object is not derived from UCLIST, no action is
performed.

The first overloaded function returns the object whose stringID matches name.

• returnValueout is a pointer to the object whose string/D matches name. If no object
matches name, NULL is returned.

• name in is the string/D of the object to be located.

The second function returns the object whose number/D matches _number/D.

• returnValueout is a pointer to the object whose numberID matches _number/D. If no
object matches _numberID, NULL is returned.

• _number/Din is the number/D of the object to be located.

UI_WINDOW_OBJECT::HotKey

Syntax

#include <uLwin.hpp>

unsigned HotKey(unsigned hotKey = 0);
or

unsigned HotKey(ZIL_ICHAR *text);

Chapter 43 - ULWINDOW_OBJECT 427

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions set the hotkey for the object. If an object added to a window
contains sub-objects with hotkeys, then the object should have its hotkey set to HOT_­
KEY_SUB_WINDOW so that its children can process hotkeys. For example, a UIW_­
TOOL_BAR with buttons on it should have its hotkey set to HOT_KEY_SUB_­
WINDOW.

The first overloaded function sets the hotkey for the object.

• returnValueoul is the value of the hotkey after it has been changed.

• hotKeYin is the new hotkey value. Any alphanumeric character can be used for a
hotkey. If hotKey is 0, no change is made but the hotkey value is returned.

The second overloaded function sets the hotkey for the object by parsing the text that is
passed in looking for the hotkey designator character (an'&' by default).

• returnValueoul is the value of the hotkey after it has been changed.

• textin is a pointer to the text for the object. This text is searched for the hotkey
designator character (an'&' by default). If the character is found, then the character
immediately after it is set to be the object's hotkey.

Example
ExampleFunction(UI_WINDOW_OBJECT *objectl, UI_WINDOW_OBJECT *object2)
{

objectl->HotKey('A');

unsigned value = objectl->HotKey();
object2->HotKey(value);

428 Zinc Application Framework-Programmer's Reference Volume 1

UI_WINDOW_OBJECT::lnformation

Syntax

#include <ui_win.hpp>

virtual void *Information(INFORMATION_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function allows Zinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the window object:

I_CHANGED_FLAGS-Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

1_CLEAR_FLAGS-Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that
contains the flags to be cleared, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_­
OBJECT. If, for example, the object is a button and the BTF_FLAGS are to be
cleared, objectID should be ID_BUTTON. This allows the object to process the

Chapter 43 - ULWINDOW_OBJECT 429

430

request at the proper level. This request only clears those flags that are passed
in; it does not simply clear the entire field.

I_CHANGED_STATUS-Informs the object that the programmer has changed
some status flags associated with the object and that the object should update
itself accordingly. This request should be sent after changing an object's status
flags, particularly if the new status flag settings will change the visual
appearance of the object. If this request is sent, objectlD should indicate the
type of object with which the flags are associated. For example, if the
programmer changes the WaS_STATUS of an object, objectlD should be ID_­
WINDOW_OBJECT. If, for example, the object is a button and the BTS_­
STATUS is modified, objectlD should be ID_BUTTON. This allows the object
to process the request at the proper level.

I_CLEAR_STATUS-Clears the current status flag settings for the object. If
this request is sent, data should be a pointer to a variable of type UIS_STATUS
that contains the status flags to be cleared, and objectlD should indicate the type
of object with which the flags are associated. For example, if the programmer
wishes to clear the WaS_STATUS of an object, objectlD should be ID_­
WINDOW_OBJECT. If, for example, the object is a button and the
BTS_STATUS is to be cleared, objectlD should be ID_BUTTON. This allows
the object to process the request at the proper level. This request only clears
those status flags that are passed in; it does not simply clear the entire field.

I_GET_FLAGS-Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.
For example, if the programmer wishes to obtain the WaF_FLAGS of an object,
objectlD should be ID_WINDOW_OBJECT. If, for example, the object is a
button and the BTF_FLAGS are desired, objectID should be ID_BUTTON. This
allows the object to process the request at the proper level.

I_GET_NUMBERID_OBJECT-Returns a pointer to an object whose
number/D matches the value in data, if one exists. This object does a depth-first
search of the objects attached to it, looking for a match of the number/D. If no
object has a numberID that matches data, NULL is returned. If this message is
sent, data must be a pointer to a NUMBERID. Programmers should use a
window's numberID with caution as it may change at run-time. For more
details, see the note accompanying the description of UI_WINDOW_­
OBJECT: :NumberID() in this chapter.

Zinc Application Framework-Programmer's Reference Volume 1

I_GET_STATUS-Requests the current status flag settings for the object. If
this request is sent, data should be a pointer to a variable of type UIS_STATUS,
and object/D should indicate the type of object with which the flags are
associated. For example, if the programmer wishes to obtain the WaS_STATUS
of an object, object/D should be ID_WINDOW_OBJECT. If, for example, the
object is a button and the BTS_STATUS is desired, object/D should be
ID_BUTION. This allows the object to process the request at the proper level.

I_GET_STRINGID_OBJECT-Returns a pointer to an object whose string/D
matches the character string in data, if one exists. This object does a depth-first
search of the objects attached to it looking for a match of the string/D. If no
object has a string/D that matches data, NULL is returned. If this message is
sent, data must be a pointer to a string.

I_INITIALIZE_CLASS-Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_FLAGS-Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and object/D should indicate the type of object with which the
flags are associated. For example, if the programmer wishes to set the WaF_­
FLAGS of an object, objectlD should be ID_WINDOW_OBJECT. If, for
example, the object is a button and the BTF_FLAGS are to be set, objectlD
should be ID_BUTION. This allows the object to process the request at the
proper level. This request only sets those flags that are passed in; it does not
clear any flags that are already set.

I_SET_STATUS-Sets the current status flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIS_STATUS that
contains the status flags to be set, and objectlD should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
set the WaS_STATUS of an object, objectlD should be ID_WINDOW_­
OBJECT. If, for example, the object is a button and the BTS_STATUS is to be
set, objectlD should be ID_BUTTON. This allows the object to process the
request at the proper level. This request only sets those status flags that are
passed in; it does not clear any flags that are already set.

• datainlout is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

Chapter 43 - ULWINDOW_OBJECT 431

• object/Din is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. object/D removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for object/D, the object
will attempt to interpret the request with the object/D of the actual object type.

Example

#include <ui_win.hpp>
#include <string.h>

void *UIW_BUTTON::Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTIO objectIO)

II Switch on the request.
switch (request)
{

case I_GET_FLAGS:
case I_SET_FLAGS:
case I_CLEAR_FLAGS:

if (objectIO && objectIO != IO_BUTTON)
data = UI_WINDOW_OBJECT::lnformation(request, data, objectID);

else if (request == I_GET_FLAGS && !data)
data = &btFlags;

else if (request == I_GET_FLAGS)
*(BTF_FLAGS *)data = btFlags;

else if (request == I_SET_FLAGS)
btFlags 1= *(BTF_FLAGS *)data;

else
btFlags &= -(*(BTF_FLAGS *)data);

break;

}
II Return the information.
return (data);

UI_WINDOW_OBJECT: :Inherited

Syntax

#include <uLwin.hpp>

int Inherited(ZIL_OBJECTID match/D);

432 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function indicates if the object is inherited from a particular class, specified by the
objectID.

• returnValueout is TRUE if the window object is inherited from the class specified by
match/D. Otherwise, returnValue is FALSE.

• match/Din is the objectID to match. If the object is derived from the class specified
by match/D, returnValue will be TRUE. Inherited() determines the object's
inheritance hierarchy by inspecting the object's windowID array.

Example

#include <ui_win.hpp>

EVENT_TYPE UIW_ICON::Event(const UI_EVENT &event)
{

II Switch on the event type.
EVENT_TYPE ccode = event.type;
switch (ccode)
{
case S_CREATE:

if (!_iconJumpInstance)
_iconJumpInstance = (FARPROC) IconJumpProcedure;

UI_WINDOW_OBJECT::Event(event) ;
if (parent->Inherited(ID_LIST»)

parent->woStatus 1= WOS_OWNERDRAW;

II Return the control code.
return (ccode);

Chapter 43 - UL WINDOW_OBJECT 433

UI_WINDOW_OBJECT::LogicaIEvent

Syntax

#include <ui_win.hpp>

EVENT_TYPE LogicalEvent(const UCEVENT &event, ZIL_OBJECTID currentID = 0,
int nativeType = TRUE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used by all window objects to interpret a raw event.

• returnValueout is the logical event that is interpreted from the raw event and object
identification.

• eventin is the raw event that is to be interpreted. Typically, this event was generated
by a device, such as the keyboard.

• current/Din is the objectID of the object interpreting the event. This value is used to
determine the mapping of a logical event.

• nativeTypein specifies if the message is to be processed as a native operating system
message. By default, most keyboard and mouse events are not translated in graphical
operating systems. If nativeType is TRUE, this is how processing will occur and the
logical event that is returned will indicate that the event is a native operating system
event (e.g., a Windows event will return E_MSWINDOWS). If nativeType is FALSE
and the event did not directly map to a logical event, however, keyboard events will
return E_KEY and mouse events will return E_MOUSE, no matter what operating
system the application is running on. The native event is still returned in the message
field of the UI_EVENT structure.

434 Zinc Application Framework-Programmer's Reference Volume 1

Example

#include <ui_win.hpp>

EVENT_TYPE UIW_BORDER: : Event (const UI_EVENT &event)
{

II Switch on the event type.
UI_REGION regionj
EVENT_TYPE ccode = LogicalEvent(event, ID_BORDER)j
switch (ccode)
{

II Return the control code.
return (ccode)j

UI_WINDOW_OBJECT::LogicaIPalette

Syntax

#include <ui_win.hpp>

UCPALETTE *LogicaIPalette(LOGICAL_EVENT logicalEvent,
ZIL_OBJECTID currentID = 0);

PortabiIity

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used by all window objects to determine which palette should
be used to draw the object based on the logical event.

• returnValueout is a pointer to the palette that should be used to draw the object.

logicalEventin is the logical event that determines which palette entry to use. For
example, if logicalEvent is S_CURRENT and the object is current, then the PM_­
CURRENT palette will be used.

Chapter 43 - ULWINDOW_OBJECT 435

• current/Din is the objectID of the object interpreting the event. This value is used to
determine the palette mapping given the logical event.

Example

#include <ui_win.hpp>

EVENT_TYPE EXAMPLE_CLASS::Event(const UI_EVENT &event)
{

II Switch on the event type.
UI_REGION region;
EVENT_TYPE ccode = UI_WINDOW_OBJECT: : LogicalEvent (event, ID_WINDOW_OBJECT);
switch (ccode)
{
case S_DISPLAY_INACTIVE:
case S_DISPLAY_ACTIVE:

II Draw the borders around the object.
UI_WINDOW_OBJECT: :Event(event);
UI_PALETTE *palette = LogicalPalette(ccode, ID_WINDOW_OBJECT);

break;

II Return the control code.
return (ccode);

UI_WINDOW_OBJECT::Modify

Syntax

#include <uCwin.hpp>

void Modify(const DI_EVENT &event);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

436 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This advanced function is used to change an object's size or position. When this function
is called, an XOR outline of the object appears. The outline can be moved or sized with
the arrow keys on the keyboard or by moving the mouse (if Modify() was invoked as
a response to a mouse click). When <Enter> is pressed or the mouse button is released,
the object will take on its new size or position.

• eventin contains the type of modification to be done. event's members are set to the
following values:

event.type specifies if the function is to size (event. type is L_SIZE) or move
(event. type is L_MOVE) the object.

event.rawCode specifies which edges of the object can be modified (i.e.,
M_LEFT_CHANGE, M_TOP_CHANGE, M_RIGHT_CHANGE or M_BOT­
TOM_CHANGE.)

Example

#include <ui_win.hpp>

EVENT_TYPE UIW_WINDOW: : Event (const UI_EVENT &event)
{

II Switch on the event type.
switch (ccode)
{

case S_MOVE:
case S_SIZE:

Modify(event);
breaki

Chapter 43 - ULWINDOW_OBJECT 437

UI_WINDOW_OBJECT::NeedsUpdate

Syntax

#include <ui_win.hpp>

int NeedsUpdate(const UCEVENT &event, EVENT_TYPE ccode);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function determines if the object needs to be redrawn. Currently, this
function always returns TRUE.

• returnValueou1 is always TRUE.

• eventin is not used.

• ccodein is not used.

UI_WINDOW_OBJECT::Next

Syntax

#include <ui_win.hpp>

UCWINDOW_OBJECT *Next(void);

438 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the next object attached to the object's parent, if one
exists.

UI_WINDOW_OBJECT::NumberID

Syntax

#include <uLwin.hpp>

ZIL_NUMBERID NumberID(ZIL_NUMBERID number/D = 0);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sets or retrieves an object's number/D.

NOTE: The variable number/D is used by the library. An object's number/D must be
unique among all objects on a window and a window's number/D must be greater than
any of its children's number/D's. Thus, for a window, number/D may be modified by
the library. For this reason, number/D should not be used to identify a window. It is
recommended that programmers use string/D, rather than number/D, to identify objects.

returnValueout is the object's number/D.

Chapter 43 - ULWINDOW_OBJECT 439

• number/Din is the new number/D for the object. If this value is 0, the object's
number/D is not modified, but its current number/D is returned.

UI_WINDOW_OBJECT::Previous

Syntax

#include <uLwin.hpp>

DCWINDOW_OBJECT *Previous(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the previous object attached to the object's parent, if one
exists.

UI_WINDOW_OBJECT::RedisplayType

Syntax

#include <ui_win.hpp>

EVENT_TYPE RedisplayType(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

440 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function indicates what type of redisplay the object requires. The object may need
to be drawn to appear current, active or inactive.

• returnValueout indicates how the object needs to be redrawn. returnValue can have
one of the following values:

S_CURRENT-Indicates that the object should be drawn to appear current.

S_DISPLAY_ACTIVE-Indicates that the object should be drawn to appear
active.

S_DISPLAY_INACTIVE-Indicates that the object should be drawn to appear
inactive.

UI_WINDOW_OBJECT::RegionConvert

Syntax

#include <uLwin.hpp>

void RegionConvert(UCREGION ®ion, int absolute);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function converts a region to pixel coordinates. When an object is constructed, it is
usually given cell coordinates for its size and position. This function is used to convert
the coordinates into pixel coordinates when in graphics mode.

regioninlout is the region that is to be converted.

Chapter 43 - U,- WINDOW_OBJECT 441

• absolutein specifies if the function should add a preSpace and postSpace region to the
converted region. If absolute is TRUE, the converted region will not have a
preSpace and postSpace region added. Otherwise, preSpace and postSpace will be
added to the converted region. preSpace and postSpace are members of the display
class that define the space between the top or bottom of a cell and the top or bottom
of the object itself.

Example

#include <ui_win.hpp>

EVENT_TYPE UI_WINDOW_OBJECT::Event(const UI_EVENT &event)
{

static ZIL_TIME lastTimei
UI_WINDOW_OBJECT *objecti

II Switch on the event type.
EVENT_TYPE ccode LogicalEvent(event)i
switch (ccode)
{
case S_INITIALIZE:

dwStyle 1= parent? WS_CHILD 1 WS_VISIBLE : WS_OVERLAPPEDi
RegionConvert(relative, (parent && IFlagSet (woFlags,

WOF_NON_FIELD_REGION» ? FALSE: TRUE);
break;

UI_WINDOW_OBJECT::RegionMax

Syntax

#include <ui_win.hpp>

virtual void RegionMax(UCWINDOW_OBJECT *object);

442 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function sets the object's true and clip regions. They are set to the object's
relative region.

• objectin is a pointer to the object that needs its true region assigned. Its true member
will be modified with its actual position.

Example

#include <ui_win.hpp>

#if defined (ZIL_MSWINDOWS)
EVENT_TYPE UIW_PULL_DOWN_MENU: : Event (const UI_EVENT &event)
{

II Switch on the event type.
EVENT_TYPE ccode = event. type;
switch (ccode)
{

case S_SIZE:
II Compute the posltlons of the window objects.
if (FlagSet(pdStatus, PDS_MAIN_MENU))
{

true. top = true.bottom = 0;
break;

}
else if (ccode == S_SIZE)

parent->RegionMax(this);

break;

}
return (ccode);

Chapter 43 - U'- WINDOW_OBJECT 443

UI_WINDOW_OBJECT::RegisterObject

Syntax

#include <uLwin.hpp>

void RegisterObject(char *className, char *winClassName,
WNDPROC *defProcInstance, ZIL_ICHAR *title =ZIL_NULLP(ZIL_ICHAR),
HMENU menu =0);
or

void RegisterObject(char *className, char *winClassName, int *offset,
FARPROC *procInstance, FARPROC *defProcInstance,
ZIL_ICHAR *title = ZIL_NULLP(ZIL_ICHAR), HMENU menu = 0);
or

ZIL_SCREENID RegisterObject(char *className, PSZ os2ClassName,
int *classRegistered, ZIL_ICHAR *title, void *controlData = ZIL_NULLP(void));
or

void RegisterObject(WidgetClass widgetClass,
ZIL_MOTIF_CONVENIENCE_FUNCTION convenienceFunction,
EVENT_TYPE ccode, int useArgs =FALSE, int manage =TRUE,
ZIL_SCREENID parent =0);
or

void RegisterObject(char *name);

Portability

This function is available on the following environments:

D DOS Text
• Macintosh

Remarks

D DOS Graphics
.OSF/Motif

• Windows
D Curses

• OS/2
• NEXTSTEP

These functions register the object with the operating system. An object will not receive
any messages from the operating system if it has not been registered.

The first function is specific to Windows NT.

• classNamein is the name of the Zinc object being registered. These are Zinc names
such as "UIW_VT_LIST," "UIW_BUTTON," "UIW_WINDOW," etc.

444 Zinc Application Framework-Programmer's Reference Volume 1

• winClassNamein is the name of the Windows class from which the object being
registered is derived. winClassName is the base class of the Windows NT object and
does not necessarily follow Zinc's class hierarchy. For example, UIW_VT_LIST is
derived from UIW_WINDOW, but in the Windows environment, the Zinc object is
derived from LIST_BOX and must be registered that way.

• defProcInstanceout is the address of the default callback function that Windows
provides for each object.

• titlein is a string containing the title of the window, if any.

• menuin is the pull-down menu associated with the window, if any.

The second function is specific to Windows.

• classNamein is the name of the Zinc object being registered. These are Zinc names
such as "UIW_VT_LIST," "UIW_BUTTON," "UIW_WINDOW," etc.

• winClassNamein is the name of the Windows class from which the object being
registered is derived. winClassName is the base class of the Windows object and
does not necessarily follow Zinc's class hierarchy. For example, UIW_VT_LIST is
derived from UIW_WINDOW, but in the Windows environment, the Zinc object is
derived from LIST_BOX and must be registered that way.

• offsetinlout is the size (in bytes) of the user space that accompanies messages from the
operating system. Initially, this value should be -1 which will cause the function to
initialize the object.

• procInstanceinlout is the address of the callback function that Windows will call when
the object gets an event. This function is provided, for each object, by Zinc
Application Framework.

• defProcInstanceinlout is the address of the default callback function that Windows
provides for each object.

• titlein is a string containing the title of the window, if any.

• menuin is the pull-down menu associated with the window, if any.

The third function is specific to OS/2.

• returnValueout is the ZIL_SCREENID of the object created.

Chapter 43 - ULWINDOW_OBJECT 445

classNamein is the name of the Zinc object being registered. These are Zinc names
such as "UIW_VT_LIST," "UIW_BUTTON," "UIW_WINDOW," etc.

• classRegisteredinloul when passed in, indicates if the function should attempt to register
the class. If classRegister is TRUE, the function will try to register to the class with
the OS/2 operating system. Otherwise, it will only create an instance of the object.
classRegister is modified by the function to indicate if the class was registered.

• baseCallbackin/oul is the address of the default callback function that OS/2 provides
for each object.

• titlein is a string containing the title of the window, if any.

• controlDatain is frame control data. The flFlag member is used for this value.

The fourth function is specific to Motif.

• widgetClassin is the type of Xt widget that is to be created. If this parameter is used,
the convenienceFunction parameter should be NULL.

convenienceFunctionin is the convenienceFunction that is to be used to create the
object. If this paramete~ is used, the widgetClass parameter should be NULL.

• ccodein distinguishes the circumstances under which RegisterObject() is being called
(i.e., RegisterObject() could be called with an S_SIZE, an S_CREATE or some
other ccode. This parameter allows the function to distinguish between the various
events).

• useArgsin specifies whether the args array has been filled at all prior to the call to
RegisterObject(). If useArgs is TRUE, then the array has been partially filled
already.

managein indicates if the widget created by the corresponding convenience function
should be managed. Since most convenience functions don't manage their widget by
default, setting manage to TRUE will cause the widget to be managed.

• parentin specifies the Xt parent of the object.

The fifth function causes the object to be registered by sending an S_REGISTER_­
OBJECT message to the object.

• namein is the class name of the object to be registered.

446 Zinc Application Framework-Programmer's Reference Volume 1

Example

EVENT_TYPE UIW_VT_LIST::Event(const UI_EVENT &event)
{

II Switch on the event type.
EVENT_TYPE ccode = LogicalEvent(event)i
switch (ccode)
{

case S_CREATE:
UI_WINDOW_OBJECT: :Event(event)i
RegisterObject(IUIW_VT_LIST", "LISTBOX", &_listOffset,

&_listJumplnstance, &_listCallback, NULL);
SendMessage(screenID, WM_SETREDRAW, FALSE, Q)i
for (object = First() i objecti object = object->Next())

object->Event(event)i
SendMessage(screenID, WM_SETREDRAW, TRUE, Q)i
breaki

II Return the control code.
return (ccode)i

UI_WINDOW_OBJECT::Root

Syntax

#include <ui_dsp.hpp>

DCWINDOW_OBJECT *Root(int mdiChild = FALSE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the object's root window.

Chapter 43 - ULWINDOW_OBJECT 447

• returnValueout is a pointer to the object's root window. The root window is the
window that is attached to the Window Manager, unless mdiChild is TRUE, in which
case the root window is the MDI child window that is attached to the MDI parent
window.

• mdiChildin specifies if the root window that is returned should be the top-most root
or the MDI child window root. If mdiChild is TRUE, the MDI child root is returned.
Otherwise, the root window, attached to the Window Manager, is returned.

UI_WINDOW_OBJECT::SearchID

Syntax

#include <uLwin.hpp>

ZIL_OBJECTID SearchID(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This member function returns the search/D of the object. The search/D, sometimes also
referred to as the object/D, identifies the object's type. For example, a button has a
search/D of ID_BUTTON. The possible values for search/D are defined in UI_­
WIN.HPP.

returnValueout is the object's search/D.

Example

#include <ui_win.hpp>

ExampleFunctionl(UIW_WINDOW *window)
{

448 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_OBJECTID searchID = window->SearchID();

UI_WINDOW_OBJECT: :StringlD

Syntax

#include <ui_win.hpp>

ZIL_ICHAR *StringID(const ZIL_ICHAR *string/D = ZIL_NULLP(ZIL_ICHAR));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This member function sets or obtains the string/D of the object.

returnValue
OU1

is the object's string/D.

• string/Din is the new string/D for the object. If this value is NULL, the object's
string/D is not modified, but its current string/D is returned.

Example

#include <ui_win.hpp>
UIW_WINDOW *ExampleFunctionl(void)
{

II Create the standard Hello World! window.
UIW_WINDOW *window = UIW_WINDOW: :Generic(2, 2, 40, 6, "Hello World Window");
window->StringID("HELLO_WORLD_WINDOW") ;
II Add the window objects to the window.
*window

+ new UIW_TEXT(O, 0, 0, 0, "Hello, World!", 256,
WNF_NO_FLAGS, WOF_NON_FIELD_REGION);

II Return a pointer to the window.
return (window);

Chapter 43 - ULWINDOW_OBJECT 449

UI_WINDOW_OBJECT: :TopWidget

Syntax

#include <uLwin.hpp>

virtual ZIL_SCREENID TopWidget(void);

Portability

This function is available on the following environments:

D DOS Text
D Macintosh

Remarks

D DOS Graphics
.OSF/Motif

D Windows
D Curses

DOS/2
D NEXTSTEP

This virtual function returns the screen/D of the object's top-most Motif Widget if the
object is made up of multiple Widgets. Some objects may be created as a combination
of several Widgets with one Widget acting as the top-most, controlling Widget. This
function obtains that Widget's screen/D.

• returnValueout is the screenID of the top-most Widget.

UI_WINDOW_OBJECT::UserFunction

Syntax

#include <ui_win.hpp>

EVENT_TYPE UserFunction(const UCEVENT &event, EVENT_TYPE ccode);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

450 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function calls the object's user function, if it exists, or else validates the window
object. When a window object receives the L_SELECT, S_CURRENT or S_NON_CUR­
RENT messages, it will call UserFunction(). UserFunction() calls the object's user­
Function() if it exists. Otherwise it calls the object's Validate() function.

• returnValueout is the return value from the user function or validation function.

• eventin is the event that caused UserFunction() to be called. event is passed to the
user function.

• ccodein is the logical event that was interpreted from the event. It is used to
determine the type of action that is to take place.

UI_WINDOW_OBJECT::Validate

Syntax

#include <ui_win.hpp>

virtual int Validate(int processError = TRUE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function is used to validate objects. When an object receives the L_SELECT or
S_NON_CURRENT messages, it calls Validate() to check if the value entered is valid.
However, if a user function is associated with the object, Validate() must be called
explicitly from the user function if range checking is desired. The value is invalid if it
is not within the absolute range of the object or if it is not within a range specified by the
range member variable. The implementation of Validate() at the UCWINDOW_­
OBJECT level is merely as a stub. Not all objects can be validated (e.g., it doesn't make
sense to validate a button's data). Those objects that can be validated have an overloaded

Chapter 43 - ULWINDOW_OBJECT 451

Validate() function. Those objects that cannot be validated, though, do not have an
overloaded Validate(). This function is called in those cases.

• returnValueout is always 0, indicating success.

• processErrorin is not used.

Storage Members

This section describes those class members that are used for storage purposes.

UI_WINDOW_OBJECT::UI_WINDOW_OBJECT

Syntax

#include <ui_win.hpp>

UCWINDOW_OBJECT(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UCITEM *objectTable = ZIL_NULLP(UCITEM),
UCITEM *userTable =ZIL_NULLP(UCITEM»;

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced constructor creates a new UI_WINDOW_OBJECT by loading the object
from a data file. Typically, the programmer does not need to use this constructor. If an
object is stored in a data file it is usually stored as part of a UIW_WINDOW and will be
loaded when the window is loaded.

• namein is the name of the object to be loaded.

452 Zinc Application Framework-Programmer's Reference Volume 1

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
7o-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in this chapter. IfobjectTable
is NULL, the library will use the object table created by the Designer, if one was
linked into the program, or, if no Designer-created table exists, it will use a default
empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT: :userTable in this chapter. If userTable is
NULL, the library will use the user table created by the Designer, if one was linked
into the program, or, if no Designer-created table exists, it will use a default empty
table.

UI_WINDOW_OBJECT::Load

Syntax

#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UCITEM *objectTable,
UCITEM *userTable);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 43 - UCWINDOW_OBJECT 453

Remarks

This advanced function is used to load a UI_WINDOW_OBJECT from a persistent object
data file. It is called by the persistent constructor and is typically not used by the
programmer.

namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in this chapter. If objectTable
is NULL, the library will use the object table created by the Designer, if one was
linked into the program, or, if no Designer-created table exists, it will use a default
empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in this chapter. If userTable is
NULL, the library will use the user table created by the Designer, if one was linked
into the program, or, if no Designer-created table exists, it will use a default empty
table.

UI_WINDOW_OBJECT::New

Syntax

#include <ui_win.hpp>

static UCWINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),

454 Zinc Application Framework-Programmer's Reference Volume 1

UCITEM *objectTable = ZIL_NULLP(UCITEM),
UI_ITEM *userTable =ZIL_NULLP(ULITEM»~

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in this chapter. If objectTable
is NULL, the library will use the object table created by the Designer, if one was
linked into the program, or, if no Designer-created table exists, it will use a default
empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in this chapter. If userTable is
NULL, the library will use the user table created by the Designer, if one was linked

Chapter 43 - ULWINDOW_OBJECT 455

into the program, or, if no Designer-created table exists, it will use a default empty
table.

UI_WINDOW_OBJECT::NewFunction

Syntax

#include <uLwin.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function returns a pointer to the object's New() function.

• returnValueoul is a pointer to the object's New() function.

UI_WINDOW_OBJECT: :Store

Syntax

#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UCITEM *objectTable,
UCITEM *userTable);

456 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to write an object to a data file.

namein is the name of the object to be stored.

• file in is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66-ZIL_STORAGE."

objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68-ZIL_STORAGE_­
OBJECT."

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in this chapter. If objectTable
is NULL, the library will use the object table created by the Designer, if one was
linked into the program, or, if no Designer-created table exists, it will use a default
empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in this chapter. If userTable is
NULL, the library will use the user table created by the Designer, if one was linked
into the program, or, if no Designer-created table exists, it will use a default empty
table.

Chapter 43 - ULWINDOW_OBJECT 457

458 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 44 - UI_XT_DISPLAY

The UCXT_DISPLAY class implements a graphics display that uses the X Toolkit
Intrinsics and Xlib graphics functions to draw to the screen. This display class is used
with Motif applications. Since the UCXT_DISPLAY class is derived from
UI_DISPLAY, only details specific to the UI_XT_DISPLAY class are given in this
chapter. For descriptions and examples regarding virtual or inherited display members,
see "Chapter 7-UI_DISPLAY."

Applications using the UI_XT_DISPLAY class are true X Window or OSFlMotif
programs. The X resource database is used to specify such resources as default colors,
widget fonts, etc. While the default application class name is "ZincApp", users can create
their own class names and files that specify the application defaults. The X foreground
and background resources currently override UI_WINDOW_OBJECT::paletteMapTable
for objects. The UI_WINDOW_OBJECT::paletteMapTable is used only for graphics
display primitives. The X resource file is also used to specify which fonts are used as the
default Zinc fonts. If a different font is desired, simply make the appropriate changes in
the X resource file.

The UI_XT_DISPLAY class is declared in UI_DSP.HPP. Its public and protected
members are:

class ZIL EXPORT_CLASS UI_XT_DISPLAY public UI_DISPLAY
{
public:

struct XFONT
{

XFontStruct *fontStruct;
XmFontList fontList;

#if defined (ZIL_UNICODE)
XFontSet fontSet;

#endif
} ;

static XFONT fontTable[ZIL_MAXFONTS];

UI_XT_DISPLAY(int *argc = ZIL_NULLP(int),
char **argv = ZIL_NULLP(char *), char *appClass = "ZincApp",
XrmOptionDescList options ZIL_NDLLP(XrmOptionDescRec),
Cardinal numOptions = 0,
String *fallbackResources = ZIL_NULLP(String));

virtual -DI_XT_DISPLAY(void);
virtual void Bitmap(ZIL_SCREENID screenID, int column, int line,

int bitmapWidth, int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const DI_PALETTE *palette = ZIL_NDLLP(UI_PALETTE),
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_BITMAP_HANDLE *colorBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE),
ZIL_BITMAP_HANDLE *monoBitmap = ZIL_NULLP(ZIL_BITMAP_HANDLE));

virtual void BitmapArrayToHandle(ZIL_SCREENID screenID, int bitmapWidth,
int bitmapHeight, const ZIL_UINT8 *bitmapArray,
const UI_PALETTE *palette, ZIL_BITMAP_HANDLE *colorBitmap,
ZIL_BITMAP_HANDLE *monoBitmap);

virtual void BitmapHandleToArray(ZIL_SCREENID screenID,

Chapter 44 - ULXT_DISPLA Y 459

ZIL_BITMAP_HANDLE colorBitmap, ZIL_BITMAP_HANDLE monoBitmap,
int *bitmapWidth, int *bitmapHeight, ZIL_UINT8 **bitmapArray);

virtual void Ellipse(ZIL_SCREENID screenID, int column, int line,
int startAngle, int endAngle, int xRadius, int yRadius,
const UI_PALETTE *palette, int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void IconArrayToHandle(ZIL_SCREENID screenID, int iconWidth,
int iconHeight, const ZIL_UINT8 *iconArray,
const UI_PALETTE *palette, ZIL_ICON_HANDLE *icon);

virtual void IconHandleToArray(ZIL_SCREENID screenID,
ZIL_ICON_HANDLE icon, int *iconWidth, int *iconHeight,
ZIL_UINT8 **iconArray);

virtual void Line (ZIL_SCREENID screenID, int column1, int linel,
int column2, int line2, const UI_PALETTE *palette, int width = 1,
int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual ZIL_COLOR MapColor(const UI_PALETTE *palette, int isForeground);
virtual void Polygon(ZIL_SCREENID screenID, int numPoints,

const int *polygonPoints, const UI_PALETTE *palette,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void Rectangle (ZIL_SCREENID screenID, int left, int top,
int right, int bottom, const UI_PALETTE *palette, int width = 1,
int fill = FALSE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RectangleXORDiff(const UI_REGION &oldRegion,
const UI_REGION &newRegion, ZIL_SCREENID screenID = ID_SCREEN,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION));

virtual void RegionDefine(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual void RegionMove(const UI_REGION &oldRegion, int newColumn,
int neWLine, ZIL_SCREENID oldScreenID = ID_SCREEN,
ZIL SCREENID newScreenID = ID SCREEN);

virtual-void Text (ZIL_SCREENID screenID, int left, int top,
const ZIL_ICHAR *text, const UI_PALETTE *palette, int length -1,
int fill = TRUE, int _xor = FALSE,
const UI_REGION *clipRegion = ZIL_NULLP(UI_REGION),
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT);

virtual int TextHeight(const ZIL_ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL LOGICAL FONT font = FNT DIALOG FONT);

virtual-int TextWidth(const ZIL=ICHAR *string,
ZIL_SCREENID screenID = ID_SCREEN,
ZIL LOGICAL FONT font = FNT DIALOG FONT);

virtual-int VirtualGet(ZIL_SCREENID screenID, int left, int top,
int right, int bottom);

virtual int VirtualPut(ZIL_SCREENID screenID);
};

General Members

This section describes those members that are used for general purposes.

• XFONT is a structure that contains the following font information:

fontStruct is a pointer to the X font structure, XFontStruct.

fontList is a list of X Window fonts created from fontStruct.

460 Zinc Application Framework-Programmer's Reference Volume 1

fontSet is used in Unicode mode only. It is a set of all fonts required to display
characters for a given locale.

• fontTable is an array of font handles for X Windows. The following entries are pre­
defined by Zinc:

FNT_SMALL_FONT-A small font similar in size to a font that might be used
to display an icon's text string. The operating system's window manager is
responsible for displaying the text on an icon, so this font is not typically used
by Zinc.

FNT_DIALOG_FONT-A font that is used when text is displayed on window
objects (e.g., UIW_BUTTON, UIW_STRING, UIW_TEXT, etc.)

FNT_SYSTEM_FONT-A slightly larger font similar in size to a font that
might be used to display a window's title. The operating system's window
manager is responsible for displaying the title of a window, so this font is not
typically used by Zinc.

See the description of the UI_WINDOW_OBJECT: .iont member variable in "Chapter
43-UCWINDOW_OBJECT" for information on specifying which font an object
uses.

NOTE: All member functions use the standard Zinc screen pixel coordinates with (0,0)
being the top-left comer of the display. This is done to remain consistent across
platforms.

Syntax

#include <ui_dsp.hpp>

UCXT_DISPLAY(int *argc = NULL, char **argv = NULL,
char *appClass ="ZincApp",
XrmOptionDescList options = ZIL_NULLP(XrmOptionDescRec),
Cardinal numOptions =0, String *fallbackResources =ZIL_NULLP(String));

Chapter 44 - ULXT_DISPLA Y 461

Portability

This function is available on the following environments:

D DOS Text
D Macintosh

Remarks

D DOS Graphics
.OSFIMotif

D Windows
D Curses

DOSI2
D NEXTSTEP

This constructor creates a new UI_XT_DISPLAY class object. All parameters for this
constructor are passed to XtApplnitialize(). For more details on the use of these
parameters, see the description of XtApplnitialize() in the X Toolkit Intrinsics Reference
Manual.

• argcin is a pointer to an integer containing the number of arguments passed to
function main(). argc points to a 1 if the program was invoked with no command­
line arguments. If the program was invoked with one command-line argument, argc
will point to a 2, etc. argc is used to determine the number of parameters contained
in argv.

• argvin is a pointer to an array of character strings that contain the actual command­
line parameters. For example, if the program TEST were invoked with a IC switch,
argv[OJ would point to "TEST" and argv[1J would point to "/C".

• appClassin is a pointer to a character string denoting the class name of the application
being executed. This identifies the name of the resource file used to initialize
resources.

• optionsin describes how to parse the command line.

• numOptionsin specifies how many options were provided in options.

• fallbackResources in is a list of resource file entries that is used if the resource file
specified by appClass cannot be found.

Example

#include <ui_win.hpp>

int main(int argc, char **argv)
{

II Initialize the display.
UI_DISPLAY *display = new UI_XT_DISPLAY(&:argc, argv, "zincApp");

II Initialize the event manager.

462 Zinc Application Framework-Programmer's Reference Volume 1

UI_EVENT_MANAGER *eventManager new UI_EVENT_MANAGER(display);

*eventManager
+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

II Initialize the window manager.
UI_WINDOW_MANAGER *windowManager =

new UI_WINDOW_MANAGER(display, eventManager);

II Clean up.
delete windowManager;
delete eventManager;
delete display;
return (0);

Syntax

#include <ui_dsp.hpp>

-UCXT_DISPLAY(void);

Portability

This function is available on the following environments:

o DOS Text
o Macintosh

Remarks

o DOS Graphics
.OSFlMotif

o Windows
o Curses

o OS/2
o NEXTSTEP

This virtual destructor destroys the class information associated with the UI_XT_DIS­
PLAY class. Care should be taken to only destroy a UCXT_DISPLAY class that is not
attached to another associated object.

Chapter 44 - ULXT_DISPLA Y 463

464 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 45 - UID_CURSOR

The UID_CURSOR class is used to display a blinking cursor on the screen. It is used
by objects that can be edited in order to show the end-user's position within the field. In
text mode, this class uses BIOS calls to enable or disable the blinking hardware cursor.
In DOS graphics mode, this class paints a blinking cursor on the screen. In environments
other than DOS and Curses, the operating system handles the management of the cursor
(in some operating systems, the edit cursor is referred to as a "caret"). In those
environments, the UID_CURSOR class provides little, if any, control over the cursor.

The UID_CURSOR class is declared in UI_EVT.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UID_CURSOR public UI_DEVICE,
public ZIL_INTERNATIONAL

{
public:

static int blinkRatei

DEVICE_IMAGE imagei
UI_POSITION positioni

UID_CURSOR(ZIL_DEVICE_STATE state = D_OFF,
DEVICE_IMAGE image =. DC_INSERT) i

virtual -UID_CURSOR(void) i

virtual EVENT_TYPE Event (const UI_EVENT &event) i

protected:
UI_POSITION offseti

virtual void Poll(void)i
}i

General Members

This section describes those members that are used for general purposes.

• blinkRate identifies the rate at which the cursor will blink. This value is in
hundredths of seconds. This member is used for DOS and Curses only.

• image identifies the type of cursor being displayed on the screen. Its value may
either be DC_INSERT or DC_OVERSTRIKE. In DOS graphics mode, if image is
DC_INSERT, the cursor device displays a thick vertical bar cursor on the screen. If
it is DC_OVERSTRIKE, the cursor device displays a thin vertical bar cursor on the
screen. In DOS text mode, the DC_INSERT cursor is a wide box and the DC_­
OVERSTRIKE cursor is a short, wide underline. This member is used for DOS only.

Chapter 45 - UfD_CURSOR 465

• position contains the cursor's true screen position (based on the screen's 0,0 left-top
based coordinates). The value of this structure depends on the type of display mode
in which the application is running. For example, a cursor positioned in the middle
of the screen may contain a position.column value of 40 and position. line value of 12,
if the application is running in text mode. The same cursor position, however, may
produce values of 320 and 240 if the application is running in graphics mode. This
member is used for DOS and Curses only.

• offset is an offset, from position, where the cursor image will be displayed. This
member is used for DOS and Curses only.

Syntax

#include <ui_evt.hpp>

UID_CURSOR(ZIL_DEVICE_STATE state = D_OFF,
DEVICE_IMAGE image = DC_INSERT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

466

This constructor creates a new UID_CURSOR class object. It should be called after the
display and Event Manager constructors have been called.

• statein is the initial state of the cursor device. The cursor device may be initialized
to one of the following states (defined in UI_EVT.HPP):

D_HIDE-Initializes the cursor to be on but not visible. If the cursor is
blinking, its state is either D_ON or D_HIDE. Thus, the cursor will only be
invisible until it blinks back on. The blink rate is controlled by the blinkRate
member. The initial state mask is DC_INSERT.

Zinc Application Framework-Programmer's Reference Volume 1

D_OFF-Initializes the cursor to be off. In this state, the cursor is not shown
on the screen. This is the default value if no argument is provided.

D_ON-Initializes the cursor to be on and visible. The initial state mask is
DC_INSERT.

• imagein identifies the initial type of cursor being displayed on the screen. Its value
may be one of the following types (defined in UI_EVT.HPP):

DC_INSERT-The cursor device displays a thick vertical bar cursor in graphics
mode, or a wide block in text mode. This is the default value if no argument is
provided.

DC_OVERSTRIKE-The cursor device displays a thin vertical bar cursor in
graphics mode, or a short, wide underline in text mode.

Example

#include <ui_evt.hpp>

main()
{

II Attach the keyboard, mouse and cursor devices.
UI_TEXT_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UlD_CURSOR;

II This automatically calls the keyboard, mouse and cursor destructors.
delete eventManager;
delete display;
return (0);

UID_CURSOR::-UID_CURSOR

Syntax

#include <uLevt.hpp>

virtual -UID_CURSOR(void);

Chapter 45 - UfO_CURSOR 467

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the UID_CURSOR
object. Care should be taken to only destroy a cursor device that is not attached to the
Event Manager.

Example
#include <ui_evt.hpp>

ExampleFunction()
{

II Attach the keyboard, mouse and cursor devices.
UI_TEXT_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display);
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

II This automatically calls the keyboard, mouse and cursor destructors.
delete eventManager;
delete display;
return (0);

UID_CURSOR::Event

Syntax

#include <uLevt.hpp>

virtual EVENT_TYPE Event(const UCEVENT &event);

468 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function processes messages sent to the cursor device. It is declared
virtual so that any derived cursor class can override its default operation.

• returnVa[ueout is the current state of the cursor device. This value will be D_OFF,
DC_INSERT or DC_OVERSTRIKE.

• eventin contains a run-time message for the cursor object. The following messages
(declared in UI_EVT.HPP) are processed by the Event() function:

D_HIDE-Blinks the cursor off. If the cursor is blinking, its state is D_ON
when it is visible and D_HIDE when it is not visible. Thus, no cursor will be
visible until it blinks back on. The blink rate is controlled by the blinkRate
member.

D_OFF-Turns off the cursor. If the cursor is off, no cursor is shown on the
screen.

D_ON-Turns on the cursor. If the cursor is on, a cursor is shown on the
screen until it is time to blink off.

D_STATE-Returns the current state of the cursor. If the cursor is on, the
image will be returned.

DC_INSERT-Turns the cursor on and enables the insert cursor.

DC_OVERSTRIKE-Turns the cursor on and enables the overstrike cursor.

S_DEINITIALIZE-De-initializes the cursor device.

S_INITIALIZE-Initializes the cursor device.

S_POSITION-Changes the screen position of the cursor. If this message is
sent, event.position.column and event.position.line must contain the run-time

Chapter 45 - UfO_CURSOR 469

display position of the cursor on the screen. The values of event.position.column
and event.position.line depend on the type of display mode in which the
application is running. For example, if the cursor is to be positioned at the
center of the screen while the application is running in text mode (e.g., an 80
column by 25 line screen) the position values should be:

event.position.column = 40;
event.position.line = 13;

If, on the other hand, the application is running in a 640 column by 480 line
graphics mode, the position values should be:

event.position.column = 320;
event.position.line = 240;

If the cursor is in a D_OFF state, the position change will be reflected when the
cursor is turned back on.

The state of the cursor device may also be changed using the UI_EVENT_MANAGER::­
Event() or UI_EVENT_MANAGER::DeviceState() functions.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every environment.
Wherever possible, Zinc allows the operating system to process its own messages so that
memory use and speed will be as efficient as possible.

Example
#include <ui_evt.hpp>

ExampleFunction()
{

II Attach the keyboard to the event manager.
UI_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
UID_CURSOR *cursor = new UID_CURSOR;
*eventManager + cursor;

II Change the cursor to insert mode.
UI_EVENT event;
event.type = DC_INSERT;
cursor->Event(event);

II Reposition the cursor the top-left side of the screen.
event. type = S_POSITION;
event.position.column = event.position.line = 0;
cursor->Event(event);

470 Zinc Application Framework-Programmer's Reference Volume 1

UID_CURSOR::Poll

Syntax

#include <uLevt.hpp>

virtual void Poll(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is responsible for blinking the cursor on and off if the cursor is
on and the application is running in DOS graphics mode. In text mode, this function has
no effect. In addition, if the cursor is turned off, this function has no effect. This
function is declared virtual so that any derived cursor class can override its default
operation.

Example

An example of the Poll() member function is presented in VI_DEVICE: :Poll().

Chapter 45 - UfO_CURSOR 471

472 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 46 - UID_KEYBOARD

The DID_KEYBOARD class is used to manage the keyboard device. This class handles
events generated by the hardware keyboard device. Most compiler libraries have a set of
functions to get input from the keyboard (e.g., getch(), getchar(». However, because
Zinc Application Framework is an event-driven system, the keyboard is interfaced with
other devices, such as a mouse, to provide smooth control of the user's input. In
environments other than DOS and Curses, the operating system handles the management
of the keyboard. In those environments, the DID_KEYBOARD class provides little, if
any, control over the keyboard.

The DID_KEYBOARD class is declared in UI_EVT.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UID_KEYBOARD public UI_DEVICE,
public ZIL_INTERNATIONAL

{
public:

static EVENT_TYPE breakHandlerSet;

UID_KEYBOARD(ZIL_DEVICE_STATE state = D_ON);
virtual -UID_KEYBOARD(void);
virtual EVENT_TYPE Event (const UI_EVENT &event);

protected:
virtual void Poll (void) ;

};

General Members

This section describes those members that are used for general purposes.

• breakHandlerSet defines what action is taken if the end-user attempts to break out of
the program by hitting <Ctrl+Break> or <Ctrl+C>. If one of these key combinations
is hit, the value of breakHandlerSet is placed on the event queue as an event. By
default, breakHandlerSet is L_EXIT, which would cause the program to exit. If
breakHandlerSet is set to L_EXIT_FDNCTION, the exit function associated with the
Window Manager will be called, perhaps allowing the end-user to confirm that the
application should be closed. The example below shows how this can be done:

UI_APPLICATION::Main()
{

II Reset the break handler.
UID_KEYBOARD::breakHandlerSet L_EXIT_FUNCTION;

Chapter 46 - UfO_KEYBOARD 473

Keyboard event information

The keyboard device provides the following event information (declared in UI_EVT.HPP)
when a keyboard event is placed on the event queue:

struct ZIL_EXPORT_CLASS UI_KEY
{

ZIL_RAW_CODE shiftState;
ZIL_RAW_CODE value;

};

struct ZIL_EXPORT_CLASS UI_EVENT
{

EVENT_TYPE. type;
ZIL_RAW_CODE rawCode;
ZIL_RAW_CODE modifiers;

union
{

II The type of event (E_KEY).
II The key's raw scan code.

UI_KEY key; II The key information.
UI_REGION region;
UI_POSITION position;
UI_SCROLL_INFORMATION scroll;
void *data;

};

II Member functions are described in the UI_EVENT reference chapter.

} ;

• type is the event type. The DID_KEYBOARD device always generates an E_KEY
event.

• rawCode is the key's raw scan code. UI_MAP.HPP contains const values for raw
scan codes. Here are a few values for DOS:

const ZIL_RAW_CODE ENTER
const ZIL_RAW_CODE ESCAPE
const ZIL_RAW_CODE Fl
const ZIL_RAW_CODE GRAY_UP_ARROW

OxlCOD;
OxOllB;
Ox3BOO;
Ox48EOi

474

• modifiers is a flag field that indicates the shift state of the keyboard.

• key.shiftState is the shift state of the keyboard. The shift state may contain one or
more of the following flags (declared in UI_EVT.HPP):

S_ALT-Indicates that the <Alt> key was pressed.

Zinc Application Framework-Programmer's Reference Volume 1

S_CAPS_LOCK-Indicates that the <Caps-Lock> key was on.

S_CTRL-Indicates that the <Ctrl> key was pressed.

S_INSERT-Indicates that the <Ins> key was on.

S_LEFT_SHIFT-Indicates that the <Left-Shift> key was pressed.

S_NUM_LOCK-Indicates that the <Num-Lock> key was on.

S_RIGHT_SHIFT-Indicates that the <Right-Shift> key was pressed.

S_SCROLL_LOCK-Indicates that the <Scroll-Lock> key was on.

key. value is the key's value. It is not the scan code.

UID_KEYBOARD::UID_KEYBOARD

Syntax

#include <ui_evt.hpp>

UID_KEYBOARD(ZIL_DEVICE_STATE state = D_ON);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UID_KEYBOARD class object.

• statein is the initial state of the keyboard device. The keyboard device may be set to
one of the following states (declared in UI_EVT.HPP):

Chapter 46 - UfO_KEYBOARD 475

D_OFF-Turns the keyboard device off. If the keyboard state is set to D_OFF,
events are removed from the keyboard buffer but are not placed in the event
queue (i.e., they are discarded).

D_ON-Turns the keyboard device on. If the keyboard is on, keyboard events
will be placed on the event queue. This is the default value if no argument is
provided.

The state of the DID_KEYBOARD device can be changed at run-time using the
UID_KEYBOARD::Event(), UI_EVENT_MANAGER::Event() or UI_EVENT_­
MANAGER::DeviceState() function calls.

Example
#include <ui_evt.hpp>

main()
{

II Attach the keyboard, mouse and cursor devices.
UI_TEXT_DISPLAY *display = new UI_TEXT_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
*eventManager

+ new UlD_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

II This automatically calls the keyboard, mouse and cursor destructors.
delete eventManager;
delete display;
return (0);

Syntax

#include <uLevt.hpp>

virtualLJID_KEYBOARD(void);

476 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the UID_KEY­
BOARD object. Care should be taken to only destroy a keyboard device that is not
attached to the Event Manager.

Example

#include <ui_evt.hpp>

main()
{

II Attach the keyboard, mouse and cursor devices.
UI_DISPLAY *display = new UI_MSC_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display);
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

II This automatically calls the keyboard, mouse and cursor destructors.
delete eventManager;
delete display;

UID_KEYBOARD::Event

Syntax

#include <uLevt.hpp>

virtual EVENT_TYPE Event(const UCEVENT &event);

Chapter 46 - UfO_KEYBOARD 477

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function processes messages sent to the keyboard device. It is declared
virtual so that any derived keyboard class can override its default operation.

• returnValueout is the current state of the keyboard device. This value will be D_OFF
or D_ON.

• eventin contains a run-time message for the keyboard object. The following events
are processed by Event():

D_OFF-Tums the keyboard device off. If the keyboard state is set to D_OFF,
events are removed from the keyboard buffer but are not placed in the event
queue (i.e., they are discarded).

D_ON-Tums the keyboard device on. If the keyboard is on, keyboard events
will be placed on the event queue. This is the default value if no argument is
provided.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every environment.
Wherever possible, Zinc allows the operating system to process its own messages so that
memory use and speed will be as efficient as possible.

Example

#include <ui_evt.hpp>

main()
{

II Attach the keyboard to the event manager.
UI_DISPLAY *display = new UI_MSC_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;
UID_KEYBOARD *keyboard = new UID_KEYBOARD;
*eventManager + keyboard;

II Turn the keyboard off directly.

478 Zinc Application Framework-Programmer's Reference Volume 1

DI_EVENT event;
event. type = D_OFF;
keyboard->Event(event)i

UID_KEYBOARD::Poll

Syntax

#include <ui_evt.hpp>

virtual void Poll(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function places any pending keyboard events on the event queue.

Example

An example of the PolI() member function is given in UI_DEVICE::Poll().

Chapter 46 - UfO_KEYBOARD 479

480 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 47 - UID_MOUSE

The UID_MOUSE class is used to manage the mouse device. This class handles events
generated by the hardware mouse device and controls the presentation of the mouse
image. In environments other than DOS and Curses, the operating system handles the
management of the mouse. In those environments, the UID_MOUSE class provides little,
if any, control over the mouse.

The UID_MOUSE class is declared in UI_EVT.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UID_MOUSE : public UI_DEVICE
{
public:
#if defined(ZIL MSDOS) && !defined(ZIL TEXT ONLY)

static int-defaultlnitialized; - -
static ZIL ICHAR className[];

#endif - -
DEVICE_IMAGE image;
UI_POSITION position;

UID_MOUSE(ZIL_DEVICE_STATE state = D_ON, DEVICE_IMAGE image OM_WAIT);
virtual -UIO_MOUSE(void);
virtual EVENT_TYPE Event (const UI_EVENT &event);

protected:
UI_POSITION offset;

virtual void Poll (void) ;
II 118N member variables and functions.

#if defined (ZIL_MSDOS) && ! defined (ZIL_TEXT_ONLY)
const ZIL_OECORATION *myOecorations;

#endif
public:
#if defined (ZIL_MSDOS)

void MouseMove(int deltaX, int deltaY);
#endif
};

General Members

This section describes those members that are used for general purposes.

• defaultlnitialized indicates if the default decorations (i.e., images) for this object have
been set up. The default decorations are located in the file IMG_DEF.CPP. If
defaultlnitialized is TRUE, the decorations have been set up. Otherwise, they have
not been.

Chapter 47 - UfO_MOUSE 481

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UID_MOUSE class, _className is "UID_MOUSE."

• image identifies the type of mouse cursor being displayed on the screen. image may
be one of the following:

DM_DIAGONAL_ULLR-Displays the image shown when sizing the top-left
or bottom-right corner of a window.

DM_DIAGONAL_LLUR-Displays the image shown when sizing the top-right
or bottom-left corner of a window.

DM_DRAG_COPY-Displays the image shown when dragging an object to
copy it.

DM_DRAG_MOVE-Displays the image shown when dragging an object to
move it.

DM_EDIT-Displays the image shown when positioned over an editable field.

DM_HORIZONTAL-Displays the image shown when sizing a window
horizontally.

DM_MOVE-Displays the image shown when indicating that the object is to
be moved.

DM_POSITION-Displays the image shown when indicating that something is
to be positioned by the device.

DM_VERTICAL-Displays the image shown when sizing a window vertically.

DM_VIEW-Displays the default image, typically an arrow.

DM_WAIT-Displays the image shown to indicate to the user that some
processing is taking place and that he should wait.

NOTE: Because Zinc allows the graphical operating systems to handle their images,
not all of these images may be supported in all environments.

• position contains the mouse cursor's true screen position (based on the screen's 0,0
left-top based coordinates). The value of this structure depends on the type of display

482 Zinc Application Framework-Programmer's Reference Volume 1

mode in which the application is running. For example, a mouse cursor positioned
in the middle of the screen may contain a position. column value of 40 and
position. line value of 12, if the application is running in text mode. The same mouse
cursor position, however, may produce values of 320 and 240 if the application is
running in VGA graphics mode.

• offset is an offset, from position, where the mouse image will be displayed.

Mouse event information

The mouse device provides the following event information (declared in UI_EVT.HPP)
when a mouse event is placed on the event queue:

struct ZIL_EXPORT_CLASS DI_EVENT
{

struct DI_POSITION
{

int column;
int line;

};

EVENT_TYPE type;
ZIL_RAW_CODE rawCode;
ZIL_RAW_CODE modifiers;

#if defined (ZIL_MSWINDOWS)
MSG message;

#elif defined (ZIL_OS2)
QMSG message;

#elif defined (ZIL_MOTIF)
XEvent message;

#endif

union
{

II The mouse column position.
II The mouse line position.

II The type of event (E_MODSE).
II The keyboard and mouse scan code
II Keyboard modifier key scan codes.

II Windows message field.

II OS/2 message field.

II Motif message field.

DI_KEY key;
DI_REGION region;
DI_POSITION position; II The mouse position
DI_SCROLL_INFORMATION scroll;

void *data;
};

II Member functions are described in the DI_EVENT reference chapter.

};

• type is the event type. The mouse device always generates an E_MOUSE event in
DOS and Curses.

Chapter 47 - UfD_MOUSE 483

484

• rawCode contains the keyboard's shift state and the mouse's button state. The
possible state values are as follows:

M_LEFT-The left mouse button is pressed. The Macintosh uses this value
with single-button mice.

M_LEFT_CHANGE-The left mouse button state has changed. If the M_­
LEFf_CHANGE and M_LEFf flags are set, the left button has just been
pressed. Otherwise, the left button has just been released. The Macintosh uses
this value with single-button mice.

M_MIDDLE-The middle mouse button is pressed. This flag will only be set
when a three-button mouse is in use.

M_MIDDLE_CHANGE-The middle mouse button state has changed. If the
M_MIDDLE_CHANGE and M_MIDDLE flags are set, the middle button has
just been pressed. Otherwise, the middle button has just been released. This
flag will only be set when a three-button mouse is in use.

M_RIGHT-The right mouse button is pressed.

M_RIGHT_CHANGE-The right mouse button state has changed. If the M_­
RIGHT_CHANGE and M_RIGHT flags are set, the right button has just been
pressed. Otherwise, the right button has just been released.

S_ALT-Indicates that the <Alt> key was pressed.

S_CAPS_LOCK-Indicates that the <Caps-Lock> key was on.

S_CTRL-Indicates that the <Ctrl> key was pressed.

S_INSERT-Indicates that the <Ins> key was on.

S_LEFT_SHIFT-Indicates that the <Left-Shift> key was pressed.

S_NUM_LOCK-Indicates that the <Num-Lock> key was on.

S_RIGHT_SHIFT-Indicates that the <Right-Shift> key was pressed.

S_SCROLL_LOCK-Indicates that the <Scroll-Lock> key was on.

Zinc Application Framework-Programmer's Reference Volume 1

NOTE: The M_TOP_CHANGE and M_BOTTOM_CHANGE values are only used
when a window object is to be sized. They are not set by the UID_MOUSE class.

• modifiers is a flag field that indicates the shift state of the keyboard.

• position.column is the mouse's horizontal position. In graphics mode, this value is
given in pixel coordinates. In text mode, this value is given in character coordinates.

• position. line is the mouse's vertical position. In graphics mode, this value is given
in pixel coordinates. In text mode, this value is given in character coordinates.

Syntax

#include <ui_evt.hpp>

UID_MOUSE(ZIL_DEVICE_STATE state = D_ON,
DEVICE_IMAGE image = DM_WAIT);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UID_MOUSE class object.

• statein is the initial state of the mouse device. The mouse device may be set to one
of the following states (declared in UI_EVT.HPP):

D_HIDE-Initializes the mouse to be on but not visible.

D_OFF-Tums the mouse device off. If the mouse is off, no mouse events will
be placed on the event queue.

Chapter 47 - UfO_MOUSE 485

D_ON-Tums the mouse device on. If the mouse is on, mouse events will be
placed on the event queue. This is the default value if no argument is provided.

The state of the UID_MOUSE device can be changed at run-time using the UID_­
MOUSE::Event(), UI_EVENT_MANAGER::Event() or UI_EVENT_­
MANAGER::DeviceState() function calls.

• imagein identifies the initial mouse image to be displayed. See the description of the
image member above for more details.

Example

#include <ui_evt.hpp>

main()
{

II Attach the keyboard, mouse and cursor devices.
UI_DISPLAY *display = new UI_MSC_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display);
*eventManager

+ new UID_KEYBOARD
+ new UlD_MOUSE
+ new UID_CURSOR;

II This automatically calls the keyboard, mouse and cursor destructors.
delete eventManager;
delete display;
return (0);

Syntax

#include <uLevt.hpp>

virtual -UID_MOUSE(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

486 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This virtual destructor destroys the class information associated with the UID_MOUSE
object. Care should be taken to only destroy a mouse device that is not attached to the
Event Manager.

Example

#include <ui_evt.hpp>

main()
{

II Attach the keyboard, mouse and cursor devices.
UI_DISPLAY *display = new UI_MSC_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display);
*eventManager

+ new UID_KEYBOARD
+ new UID_MOUSE
+ new UID_CURSOR;

II This automatically calls the device destructors.
delete eventManager;
delete display;
return (0);

UID_MOUSE::Event

Syntax

#include <ui_evt.hpp>

virtual EVENT_TYPE Event(const UCEVENT &event);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function processes messages sent to the mouse device. It is declared

Chapter 47 - UfD_MOUSE 487

488

virtual so that any derived mouse class can override its default operation.

• retumValueout is the current state of the mouse device. This value will be D_OFF,
D_ON or D_HIDE.

• eventin contains a run-time message for the mouse device. The following events are
processed by Event():

DM_DIAGONAL_ULLR-Displays the image shown when sizing the top-left
or bottom-right comer of a window.

DM_DIAGONAL_LLUR-Displays the image shown when sizing the top-right
or bottom-left comer of a window.

DM_DRAG_COPY-Displays the image shown when dragging an object to
copy it.

DM_DRAG_MOVE-Displays the image shown when dragging an object to
move it.

DM_EDIT-Displays the image shown when positioned over an editable field.

DM_HORIZONTAL-Displays the image shown when sizing a window
horizontally.

DM_MOVE-Displays the image shown when indicating that the object is to
be moved.

DM_POSITION-Displays the image shown when indicating that something is
to be positioned by the device.

DM_VERTICAL-Displays the image shown when sizing a window vertically.

DM_VIEW-Displays the default image, typically an arrow.

DM_WAIT-Displays the image shown to indicate to the user that some
processing is taking place and that he should wait.

D_HIDE-Hides the mouse.

D_OFF-Tums the mouse device off. If the mouse is off, no mouse events will
be placed on the event queue.

Zinc Application Framework-Programmer's Reference Volume 1

D_ON-Turns the mouse device on. If the mouse is on, mouse events will be
placed on the event queue. This is the default value if no argument is provided.

D_STATE-Returns the current state of the mouse. If the mouse is on, the
image will be returned.

S_DEINITIALIZE-De-initializes the device.

S_INITIALIZE-Initializes the device.

S_POSITION-Changes the screen position of the mouse. If this message is
sent, event.position.column and event.position.line must contain the run-time
display position of the mouse on the screen. The values of event.position.column
and event.position.line depend on the type of display mode in which the
application is running. For example, if the mouse is to be positioned at the
center of the screen while the application is running in text mode (e.g., an 80
column by 25 line screen) the position values should be:

event.position.column = 40;
event.position.line = 13;

If, on the other hand, the application is running in a 640 column by 480 line
graphics mode, the position values should be:

event.position.column = 320;
event.position.line = 240;

If the mouse is in a D_OFF state, the position change will be reflected when the
mouse is turned back on.

The state of the mouse device may also be changed using the UI_EVENT_MANAGER::­
Event() or UI_EVENT_MANAGER::DeviceState() functions.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every environment.
Wherever possible, Zinc allows the operating system to process its own messages so that
memory use and speed will be as efficient as possible.

Example

#include <ui_evt.hpp>

main()
{

UI_DISPLAY *display = new UI_GRAPHICS_DISPLAY;
UI_EVENT_MANAGER *eventManager = new UI_EVENT_MANAGER(display) ;

Chapter 47 - UfD_MOUSE 489

UID_MOUSE *mouse = new UID_MOUSE;
*eventManager + mouse;

II Turn on the mouse wait cursor.
UI_EVENT event;
event.type = DM_WAIT;
mouse->Event(event);

II Turn on the mouse arrow cursor.
UI_EVENT event;
event. type = DM_VIEW;
mouse->Event(event);

UID_MOUSE::MouseMove

Syntax

#include <uLevt.hpp>

void MouseMove(int deltaX, int deltaY);

Portability

This function is available on the following environments:

• DOS Text
o Macintosh

Remarks

• DOS Graphics
o OSF/Motif

o Windows
D Curses

DOSI2
o NEXTSTEP

This advanced function moves the mouse from its current posItion by the amount
indicated in de/taX and deltaY. The mouse will not be allowed to move off the edge of
the screen.

• deltaXin is the distance to move the mouse horizontally.

• deltaYin is the distance to move the mouse vertically.

490 Zinc Application Framework-Programmer's Reference Volume 1

UID_MOUSE::Poll

Syntax

#include <uLevt.hpp>

virtual void Poll(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

III OS/2
• NEXTSTEP

This advanced function places any pending mouse events on the event queue.

Example

An example of the Poll() member function is given in UI_DEVICE::Poll().

Internationalization Members

This section describes those members that are used for internationalization purposes.

• myDecorations is the ZIL_DECORATION object that contains the images for this
object.

Chapter 47 - UfO_MOUSE 491

492 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 48 - UID_TIMER

The UID_TIMER class is used to notify an object when a specified length of time has
elapsed. When the timer expires, it sends a message to the object and, if desired, can also
place a message on the event queue. The timer should not be used for time-critical tasks
that require notification at exact time intervals. The UID_TIMER class is not an interrupt
driven class and must wait for current processes to give up the CPU before it can process
a timer expiration. It is possible, depending on the system load, for several timer intervals
to elapse before the timer is able to generate a timer message. Thus, the object requesting
timer services should look at the current time when it receives a timer notification if it
needs to know exactly how much time has elapsed since the last notification.

A timer can be set to expire at a single interval. If more than one timer interval is
required, simply create another timer with the new interval.

A timer device is attached to the Event Manager. Objects requesting timer services, if
any, are attached to the timer by sending the timer an S_ADD_OBJECT message. When
the object no longer requires timer services, it should notify the timer by sending an
S_SUBTRACT_OBJECT message. It is very important that an object be removed from
the timer device if it is being deleted. Otherwise, the timer may attempt to send a timer
message to the object after its memory has been freed, resulting in undefined, and likely
fatal, behavior. An object can remove itself from the timer either in its destructor or
when it receives an S_DEINITIALIZE message.

The UID_TIMER class is declared in UI_EVT.HPP. Its public and protected members
are:

class UID_TIMER : public UI_DEVICE
{
#if defined (ZIL_MOTIF)

friend void TimerCallback(XtPointer client_data, XtIntervalId *id);
#endif

public:
TMR_FLAGS tmrFlags;

UID_TIMER(ZIL_DEVICE_STATE state = D_ON, unsigned interval 0,
TMR_FLAGS tmrFlags = TMR_NO_FLAGS);

virtual -UID_TIMER(void);
virtual EVENT_TYPE Event (const UI_EVENT &event);

II NOTIFY_ELEMENT and NOTIFY_LIST should be treated as protected,
II but this causes compiler errors on some systems.
class NOTIFY_ELEMENT : public UI_ELEMENT
{
public:

UI_WINDOW_OBJECT *notifyObject;
NOTIFY_ELEMENT(UI_WINDOW_OBJECT *object);
virtual -NOTIFY_ELEMENT (void) ;
NOTIFY_ELEMENT *Next(void);

Chapter 48 - UID_TIMER 493

NOTIFY_ELEMENT *Previous(void);
};

class NOTIFY_LIST : public UI_LIST
{
public:

NOTIFY_ELEMENT *First(void);
NOTIFY_ELEMENT *Last(void);

};

protected:
unsigned msec;
ZIL_UTIME interval;
ZIL_UTIME lastTime;
NOTIFY_LIST notifyList;

virtual void Poll(void);
};

General Members

This section describes those members that are used for general purposes.

• tmrFlags are flags that define the operation of the DID_TIMER class. A full
description of the timer flags is given in the DID_TIMER constructor.

• msec is the length of time, in milliseconds, that must elapse before the timer
generates a timer message.

• interval is the length of time, in milliseconds, that must elapse before the timer
generates a timer message. This representation of the interval (i.e., as a ZIL_DTIME)
is used to ensure that time comparisons that cross the midnight boundary are
calculated correctly.

• lastTime is the last time at which the timer device expired and sent a timer message.
This time is used as a reference to determine if the time specified by interval has
expired.

• notifyList is the list of objects that have requested timer services from this timer
device. This list is a NOTIFY_LIST of NOTIFY_ELEMENT objects. These classes
will not be discussed, as they simply maintain a doubly-linked list of pointers.

494 Zinc Application Framework-Programmer's Reference Volume 1

UID_TIMER::UID_TIMER

Syntax

#include <ui_evt.hpp>

UID_TIMER(ZIL_DEVICE_STATE state = D_ON, unsigned interval = 0,
TMR_FLAGS tmrFlags = TMR_NO_FLAGS);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new UID_TIMER class object.

• statein is the initial state of the timer device. The timer device may be initialized to
one of the following states (defined in UI_EVT.HPP);

D_OFF-Initializes the timer to be off. In this state, the timer will not generate
timer messages.

D_ON-Initializes the timer to be on. In this state, the timer will generate timer
messages when the timer expires.

• intervalin is the length of time, in milliseconds, that must elapse before the timer
generates a timer message. The resolution of the timer (i.e., how short the intervals
can be) depends largely on the operating system and the system load. Because timer
messages are generated from the pone) function, how often the pone) function is
called can affect the resolution. For example, the OS/2 system timer can "fire" 18.2
times a second (the hardware clock tick rate). The OS/2 timer is only used to notify
the application in case the application has become idle (in which case the pone) is
not being called). So, we are "assured" (with the limitations mentioned previously)
of the timer activating at least 18.2 times each second in OS/2. Setting the Q_NO_­
BLOCK flag on calls to UI_EVENT_MANAGER::Get() in the main event loop
and setting an interval of°will result in timer messages being generated as quickly
as possible.

Chapter 48 - UID_TIMER 495

The maximum interval allowed varies depending on the operating system. Windows
has the shortest maximum interval at 65535 milliseconds. DOS can have intervals
of up to 232 milliseconds.

If interval is 0, the default, timer messages will be generated as quickly as possible.
How often zero-interval timer messages are generated depends on the operating
system, whether there are other processes running and how long the application takes
to process a timer message.

• tmrFlagsin are flags that define the operation of the UID_TIMER class. The
following flags (declared in UI_WIN.HPP) control the general presentation of a
UID_TIMER class object:

TMR_NO_FLAGS-Does not associate any special flags with the UID_TIMER
class object.

TMR_QUEUE_EVENTS-Causes the timer to place a timer event on the event
queue when the timer expires. Generally, this flag should only be set if no
objects are requesting timer services directly, but it can be used if objects are
requesting services.

Syntax

#include <ui_evt.hpp>

virtual -UID_TIMER(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

496

This virtual destructor destroys the class information associated with the UID_TIMER
object.

Zinc Application Framework-Programmer's Reference Volume 1

UID_TIMER::Event

Syntax

#include <ui_evt.hpp>

virtual EVENT_TYPE Event(const VI_EVENT &event);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function processes messages sent to the timer device. It is declared virtual
so that any derived timer class can override its default operation.

returnValueoul is the current state of the timer device. This value will be D_OFF or
D_ON.

• eventin contains a run-time message for the timer object. The following messages
(declared in UI_EVT.HPP) are processed by the Event() function:

D_OFF-Tums off the timer. If the timer is off, it will not generate timer
messages.

D_ON-Tums on the timer. If the timer is on, it will generate timer messages
when the timer expires.

S_DEINITIALIZE-De-initializes the timer device. If necessary, the timer will
tum off any timer processing that was previously set up with the operating
system.

S_INITIALIZE-Initializes the timer device. If necessary, the timer device will
set up timer processing with the operating system.

Chapter 48 - UID_ TIMER 497

S_ADD_OBJECT-Adds an object to the timer's notifyList. If this message is
sent, event.windowObject must be a pointer to the object requesting timer
services.

S_SUBTRACT_OBJECT-Removes an object from the timer's notifyList. If
this message is sent, event.windowObject must be a pointer to the object
requesting that it no longer receive timer services.

UID_TIMER::Poll

Syntax

#include <uLevt.hpp>

virtual void Poll(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

.OS/2
• NEXTSTEP

This advanced function checks to see if the timer has expired. If so, it sends an
E_TIMER message to all objects that have requested timer services from this timer. It
also places an E_TIMER event on the event queue if the TMR_QUEUE_EVENTS flag
is set for the timer. In both cases event.device will point to the timer device generating
the message.

Example

An example of the PolI() member function is presented in UI_DEVICE::PolI().

498 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 49

The ZIL_BIGNUM class is a lower-level class used to store and manipulate numerical
values. It is not a window object. See "Chapter l-UIW_BIGNUM" of Programmer S
Reference Volume 2 for information about the bignum window object. The values
handled by ZIL_BIGNUM include both integer and real bignums with a default maximum
of 30 digits to the left and 8 digits to the right of the decimal point.

The ZIL_BIGNUM class is declared in UI_GEN.HPP. Its public and protected members
are:

#define NUMBER_WHOLE 30
#define NUMBER_DECIMAL 8
#if ZIL_WORD_SIZE > 16
define ZIL_DIGITS 8
#else
define ZIL_DIGITS 4
#endif

typedef ZIL_INT32 ZIL_IBIGNUM;
typedef double ZIL_RBIGNUM;
#if ZIL_DIGITS == 4

typedef ZIL_UINT16 ZIL_NUMBER;
#elif ZIL_DIGITS == 8

typedef ZIL_UINT32 ZIL_NUMBER;
#endif

class ZIL_EXPORT_CLASS ZIL_BIGNUM : public ZIL_INTERNATIONAL
{

friend ZIL_BIGNUM &abs{const ZIL_BIGNUM &number);
friend ZIL_BIGNUM &ceil(const ZIL_BIGNUM &number);
friend ZIL_BIGNUM &floor{const ZIL_BIGNUM &number);
friend ZIL_BIGNUM &round{const ZIL_BIGNUM &number, int places = 0);
friend ZIL_BIGNUM &truncate{const ZIL_BIGNUM &number, int places = 0);

public:
ZIL_BIGNUM{void) ;
ZIL_BIGNUM{ZIL_IBIGNUM value) ;
ZIL_BIGNUM{ZIL_RBIGNUM value) ;
ZIL_BIGNUM{const ZIL_ICHAR *string,

const ZIL_ICHAR *decimalString = ZIL_NULLP(ZIL_ICHAR),
const ZIL_ICHAR *signString = ZIL_NULLP(ZIL_ICHAR));

ZIL_BIGNUM{const ZIL_BIGNUM &number) ;
virtual -ZIL_BIGNUM(void);
void Export {ZIL_IBIGNUM *value);
void Export (ZIL_RBIGNUM *value);
void Export (ZIL_ICHAR *string, NMF_FLAGS nmFlags,

const ZIL_ICHAR *decimalString = ZIL_NULLP(ZIL_ICHAR),
const ZIL_ICHAR *signStr = ZIL_NULLP(ZIL_ICHAR));

NMI_RESULT Import {ZIL_IBIGNUM value);
NMI_RESULT Import {ZIL_RBIGNUM value);
NMI_RESULT Import(const ZIL_BIGNUM &number);
NMI_RESULT Import(const ZIL_ICHAR *string,

const ZIL_ICHAR *decimalString = ZIL_NULLP(ZIL_ICHAR),
const ZIL_ICHAR *signString = ZIL_NULLP{ZIL_ICHAR));

ZIL BIGNUM &operator=(const ZIL_BIGNUM &number);
ZIL_BIGNUM &operator+(const ZIL_BIGNUM &number);

Chapter 49 - ZIL_BIGNUM 499

ZIL_BIGNUM &operator-(const ZIL_BIGNUM &number);
ZIL_BIGNUM &operator*(const ZIL_BIGNUM &number);
ZIL_BIGNUM &operator++(void);
ZIL_BIGNUM &operator--(void);
ZIL_BIGNUM &operator+=(const ZIL_BIGNUM &number);
ZIL_BIGNUM &operator-=(const ZIL_BIGNUM &number);
int operator==(const ZIL_BIGNUM &number);
int operatorl=(const ZIL_BIGNUM &number);
int operator>(const ZIL_BIGNUM &number);
int operator>=(const ZIL_BIGNUM &number);
int operator«const ZIL_BIGNUM &number);
int operator<=(const ZIL_BIGNUM &number);
void SetLocale(const ZIL_ICHAR *localeName)

protected:
. const ZIL_LOCALE *myLocale;

};

General Members

This section describes those members that are used for general purposes.

• NUMBER_WHOLE is the number of digits allowed to the left of the decimal place.
The default is to allow 30 digits to the left of the decimal place. To use numbers
with more than 30 digits to the left of the decimal place, simply change the value of
NUMBER_WHOLE to the desired amount and recompile the bignum module. No
other changes are necessary.

• NUMBER_DECIMAL is the number of digits allowed to the right of the decimal
place. The default is to allow 8 digits to the right of the decimal place. To use
numbers with greater precision than 8 decimal places, simply change the value of
NUMBER_DECIMAL to the desired amount and recompile the bignum module. No
other changes are necessary.

• ZIL_DIGITS is used for number conversion and manipulation. The default value is
4, which allows the ZIL_BIGNUM class to work with integer values of 32 bits or
less. If this value is changed to 8, the ZIL_BIGNUM class will work with integer
values of 32 bits or more. The size of the integer used depends on the environment
being compiled for.

NOTE: The ZIL_BIGNUM class uses special number types to do numerical operations.
With the ZIL_BIGNUM class, use the following number types:

• ZIL_IBIGNUM is an integral data type associated with ZIL_BIGNUM. This type
should be used when integer operations are done. It is defined to be of type

500 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_INT32, which will be a signed int of at least 32 bits, depending on the
word size of the environment being compiled for.

• ZIL_RBIGNUM is the real number data type associated with ZIL_BIGNUM.
This type should be used when real operations are done. It is defined to be of
type double. Using this type will require that the floating point library be used
which will increase, often significantly, the size of the executable. Unless an
individual application requires that floating point numbers be used, it is
recommended that the string equivalent of a decimal number be used instead of
the floating point numbers (i.e., "1.1" vs. 1.1).

• ZIL_NUMBER is a type used internally by the ZIL_BIGNUM class. Programmers
need not use this type.

• myLocale is the ZIL_LOCALE object that contains the formatting information for this
object.

Syntax

#include <ui_gen.hpp>

ZIL_BIGNUM(void);
or

ZIL_BIGNUM(ZIL_IBIGNUM value);
or

ZIL_BIGNUM(ZIL_RBIGNUM value);
or

ZIL_BIGNUM(const ZIL_ICHAR *string,
const ZIL_ICHAR *decimalString = ZIL_NULLP(ZIL_ICHAR),
const ZIL_ICHAR *signString = ZIL_NULLP(ZIL_ICHAR»;
or

ZIL_BIGNUM(const ZIL_BIGNUM &number);

Portability

These functions are available on the following environments:

• DOS Text
• Macintosh

Chapter 49 - ZIL_BIGNUM

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

501

Remarks

These overloaded constructors create a new ZIL_BIGNUM class object.

The first overloaded constructor creates a ZIL_BIGNUM object and initializes its value
to zero.

The second overloaded constructor creates a ZIL_BIGNUM object and initializes its value
with value.

• valuein is a ZIL_IBIGNUM (integer) value to which the ZIL_BIGNUM object will be
initialized.

The third overloaded constructor creates a ZIL_BIGNUM object and initializes its value
with value.

• valuein is a ZIL_RBIGNUM (real) value to which the ZIL_BIGNUM object will be
initialized.

The fourth overloaded constructor creates a ZIL_BIGNUM object and initializes its value
with string.

• stringin is a character string that contains the value, either integral or real, to which
the ZIL_BIGNUM object will be initialized.

• decimalStringin is a pointer to the decimal character to be used in formatting the
decimal number.

• signStringin is a pointer to the sign character to be used in formatting the bignum.

The fifth overloaded constructor creates a ZIL_BIGNUM object and initializes its value
with number.

• numberin is another ZIL_BIGNUM object whose value will be copied into the ZIL_­
BIGNUM object being constructed.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_IBIGNUM i 4;
ZIL_RBIGNUM r = 7.1;

502 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_BIGNUM numberl;
ZIL_BIGNUM *number2 = new ZIL_BIGNUM(i);
ZIL_BIGNUM *number3 = new ZIL_BIGNUM(r);
ZIL_BIGNUM *number4 = new ZIL_BIGNUM("lOO");
ZIL_BIGNUM *numberS = new ZIL_BIGNUM(&numberl);

delete number5;
delete number4;
delete number3;
delete number2;

Syntax

#include <uLgen.hpp>

virtual -ZIL_BIGNUM(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the ZIL_BIGNUM
object. Care should be taken to only destroy a ZIL_BIGNUM class that is not attached
to another associated object.

Example

#include <ui_gen.hpp>
ExampleFunction()
{

ZIL_BIGNUM *number new ZIL_BIGNUM("lOO");

delete number;

Chapter 49 - ZIL_BIGNUM 503

ZIL_BIGNUM::abs

Syntax

friend ZIL_BIGNUM &abs(const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to a ZIL_BIGNUM object containing the absolute value
of the ZIL_BIGNUM value passed in.

• returnValueoul is a ZIL_BIGNUM object containing the absolute value of number.

numberin is a ZIL_BIGNUM object for which the absolute value is desired.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM *firstValuei
ZIL_BIGNUM secondValue("-lOO")i
ZIL_BIGNUM thirdValue("-lOO") i

firstValue = abs(secondValue + thirdValue);

ZIL_BIGNUM::ceil

Syntax

friend ZIL_BIGNUM &ceil(const ZIL_BIGNUM &number);

504 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to a ZIL_BIGNUM object containing the ceiling value of
the ZIL_BIGNUM value. The ceiling of a bignum is considered to be the smallest integer
that is greater than or equal to number.

• returnValueout is a ZIL_BIGNUM object containing the ceiling value of number.

• numberin is a ZIL_BIGNUM object for which the ceiling value is desired.

Example

#include <ui_gen.hpp>

ExampleFunction(}
{

ZIL_BIGNUM *firstValue;
ZIL_BIGNUM secondValue("lOO.6");

firstValue = ceil(secondValue)i

ZIL_BIGNUM::Export

Syntax

#include <uLgen.hpp>

void Export(ZIL_IBIGNUM *value);
or

void Export(ZIL_RBIGNUM *value);
or

void Export(ZIL_ICHAR *string, NMF_FLAGS nmFlags,
const ZIL_ICHAR *decimalString = ZIL_NULLP(ZIL_ICHAR),
const ZIL_ICHAR *signStr = ZIL_NULLP(ZIL_ICHAR));

Chapter 49 - ZIL_BIGNUM 505

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions return the numerical information through a function-specific
numeric value.

The first two overloaded functions copy the bignum information into the value argument.

• valueou! is a numeric value. The following types are supported for value:

ZIL_IBIGNUM-A type which will be a signed int of at least 32 bits,
depending on the environment being compiled for. For an environment that uses
32-bit words or smaller, the value can be between -2,147,483,648 and
2,147,483,647 (32 bits, signed), inclusive. For environments that use 64-bit
words, the value can be between -9,223,372,036,854,775,809 and
9,223,372,036,854,775,808 (64 bits, signed), inclusive.

ZIL_RBIGNUM-A double precision floating point number.

The third overloaded function copies the number into the string argument. When this
function is used, space must be previously allocated for string by the programmer.

• stringou! is a pointer to a string that represents the bignum's value.

• nmFlagsin gives formatting information about the return bignum's value. The
following flags (declared in UI_GEN.HPP) are used to format the bignum string:

NMF_COMMAS-Formats the bignum with commas (or the appropriate locale­
specific thousands separator symbols).

NMF_CREDIT-Formats the bignum with the locale-specific credit symbols
whenever the bignum is negative.

NMF_CURRENCY-Formats the bignum string with the locale-specific
currency symbol.

506 Zinc Application Framework-Programmer's Reference Volume 1

NMF_DECIMAL(decimal)-Formats the bignum string with decimal number
of decimal places to the right of the decimal point. Decimal places from 0 to 8
are supported by default. If more decimal places are desired, modify the value
of the NUMBER_DECIMAL macro as described above.

NMF_DIGITS(digits)-Formats the bignum string with digits number of digits
to the left of the decimal point. Digits from 0 to 30 are supported. If more
digits are desired, modify the value of the NUMBER_WHOLE macro as
described above.

NMF_NO_FLAGS-Does not associate any special flags with the ZIL_BIG­
NUM class object. This flag should not be used in conjunction with any other
NMF flags.

NMF_PERCENT-Formats the bignum with the percent symbol.

• decimalStringin is a pointer to the decimal character to be used in formatting the
decimal number.

• signStrin is a pointer to the sign character to be used in formatting the bignum.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

char string2[40Ji
number. Export (string2, NMF_NO_FLAGS);

ZIL_BIGNUM::floor

Syntax

friend ZIL_BIGNUM &floor(const ZIL_BIGNUM &number);

Chapter 49 - ZIL_BIGNUM 507

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2

• NEXTSTEP

This function returns a pointer to a ZIL_BIGNUM object containing the floor value of the
ZIL_BIGNUM value passed in. The floor of a bignum is considered to be the largest
integer value that is not greater than number.

• returnValueoul is a ZIL_BIGNUM object containing the floor value of number.

• numberin is a ZIL_BIGNUM object for which the floor value is desired.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM *firstValuej
ZIL_BIGNUM secondValue(llOO.6")j

firstValue = floor(secondValue);

ZIL_BIGNUM::GetLocale

Syntax

const ZIL_LOCALE *GetLocale(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

508 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function returns a pointer to myLocale, the ZIL_LOCALE that provides formatting
information.

• returnValueout is a pointer to myLocale.

ZIL_BIGNUM: :Import

Syntax

#include <uLgen.hpp>

NMCRESULT Import(ZIL_IBIGNUM value);
or

NMI_RESULT Import(ZIL_RBIGNUM value);
or

NMCRESULT Import(const ZIL_BIGNUM &number);
or

NMI_RESULT Import(const ZIL_ICHAR *string,
const ZIL_ICHAR *decimalString = ZIL_NULLP(ZIL_ICHAR),
const ZIL_ICHAR *signString = ZIL_NULLP(ZIL_ICHAR));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions set the numerical information with a function-specific numeric
value.

The first two overloaded functions copy the bignum information from the value argument.

return Valueout is NMCOK if the conversion was successful. Otherwise, returnValue
is NMI_OUT_OF_RANGE and the bignum object will not be modified.

Chapter 49 - ZIL_BIGNUM 509

• valuein is a numeric value. The following values are supported:

ZIL_IBIGNUM-A type which will be a signed int of at least 32 bits,
depending on the environment being compiled for. For an environment that uses
32-bit words or smaller, the value can be between -2,147,483,648 and
2,147,483,647 (32 bits, signed), inclusive. For environments that use 64-bit
words, the value can be between -9,223,372,036,854,775,809 and
9,223,372,036,854,775,808 (64 bits, signed), inclusive.

ZIL_RBIGNUM-A double precision floating point bignum.

The third overloaded function copies the bignum information from the number argument.

• returnValueOU1 is NMCOK if the conversion was successful. Otherwise, returnValue
is NMCOUT_OF_RANGE and the bignum object will not be modified.

• numberin is a ZIL_BIGNUM reference variable. The value in number is copied into
the bignum object.

The last overloaded function sets the ZIL_BIGNUM information according to the string
argument.

• returnValueOU1 is NMCOK if the conversion was successful. Otherwise, returnValue
is NMCOUT_OF_RANGE and the bignum object will not be modified.

• stringin is a pointer to a string that represents a bignum in character form.

• decimalStringin is a pointer to the decimal character to be used in formatting the
decimal number.

signStringin is a pointer to the sign character to be used in formatting the bignum.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_ICHAR *string = "100";
ZIL_BIGNUM number;
number.lmport(string);

510 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_BIGNUM::round

Syntax

friend ZIL_BIGNUM &round(const ZIL_BIGNUM &number, int places = 0);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to a ZIL_BIGNUM object containing the rounded value
of the ZIL_BIGNUM value passed in.

• returnValueout is a ZIL_BIGNUM object containing the value of number rounded to
the places decimal place.

• numberin is the ZIL_BIGNUM value to be rounded.

• placesin determines how many decimal places to round number. For example, if
places were 1, the value 100.163 would be rounded to 100.2. If places were -1, the
value 123.789 would be rounded to 120. The default value, 0, causes number to be
rounded to a whole number.

Example

void UIW_INTL_CURRENCY: :SetCountryCode(int _countryTableEntry)
{

II Do Currency translation.
ZIL_BIGNUM *amount = DataGet();
ZIL_RBIGNUM value;
amount->Export(&value);

value *= _currency [countryTableEntry] [_countryTableEntry];
amount->Import(value) ;
*amount = round(*amount, 2);

countryTableEntry = _countryTableEntry;
DataSet (amount) ;

Chapter 49 - ZIL_BIGNUM 511

ZIL_BIGNUM::SetLocale

Syntax

void SetLocale(const ZIL_ICHAR *localeName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sets the locale to be used by the object. The locale information for the
object will be loaded and the object's myLocale member will be updated to point to the
new ZIL_LOCALE object. By default, the object uses the locale identified in the
LOC_DEF.CPP file, which compiles into the library. (If a different default locale is
desired, simply copy a LOC_<ISO>.CPP file from the ZINC\SOURCE\INTL directory
to the \zINC\SOURCE directory, and rename it to LOC_DEF.CPP before compiling the
library.) The locale information is loaded from the U8N.DAT file, so it must be shipped
with your application.

• localeNamein is the two-letter ISO country code identifying which locale information
the object should use.

ZIL_BIGNUM: :truncate

Syntax

friend ZIL_BIGNUM &truncate(const ZIL_BIGNUM &number, int places = 0);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

512 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function returns a pointer to a ZIL_BIGNUM object containing the truncated value
of the ZIL_BIGNUM value passed in.

• returnValueout is a ZIL_BIGNUM object containing the value of number after being
truncated to places decimal places.

• numberin is the ZIL_BIGNUM value to be truncated.

• placesin specifies to which digit to truncate number. For example, if places were I,
the value 100.163 would be truncated to 100.1. If places were -1, the value 123.789
would be truncated to 120. The default value, 0, causes number to be truncated to
the decimal point.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM *firstValue;
ZIL_BIGNUM secondValue(nlOO.6 n);

firstValue = truncate(secondValue);

ZIL_BIGNUM::operator =

Syntax

#include <ui_gen.hpp>

ZIL_BIGNUM &operator = (const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Chapter 49 - ZIL_BIGNUM

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

513

Remarks

This operator overload assigns the value of another ZIL_BIGNUM object specified by
number to the ZIL_BIGNUM object.

• returnValueout is a pointer to the ZIL_BIGNUM object after its value has been
modified. This pointer is returned so that the operator may be used in a statement
containing other operations.

• numberin is a ZIL_BIGNUM object containing the source value to be assigned.

Example
#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM sourceValue("lOO")i
ZIL_BIGNUM targetValuei

targetValue = sourceValue;

ZIL_BIGNUM::operator +

Syntax

#include <uLgen.hpp>

ZIL_BIGNUM &operator + (const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

514

This operator overload adds the value of another ZIL_BIGNUM object specified by
number to the ZIL_BIGNUM object.

Zinc Application Framework-Programmer's Reference Volume 1

• returnValueout is a pointer to the ZIL_BIGNUM object after its value has been
modified. This pointer is returned so that the operator may be used in a statement
containing other operations.

• numberin is a bignum object containing the value to be added to the ZIL_BIGNUM
object.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM firstValue;
ZIL_BIGNUM secondValue (" 200 ") ;

firstValue.lmport("lOO") ;
secondValue = secondValue + firstValue;

ZIL_BIGNUM::operator -

Syntax

#include <ui~en.hpp>

ZIL_BIGNUM &operator - (const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload subtracts the value of another ZIL_BIGNUM object specified by
number from the ZIL_BIGNUM object.

returnValueout is a pointer to the ZIL_BIGNUM object after its value has been
modified. This pointer is returned so that the operator may be used in a statement
containing other operations.

Chapter 49 - ZIL_BIGNUM 515

• numberin is another ZIL_BIGNUM object containing the value to be subtracted from
the ZIL_BIGNUM object.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM firstValuei
ZIL_BIGNUM secondValue (" 200") i

firstValue.lmport("lOO")i
secondValue = secondValue - firstValue;

ZIL_BIGNUM::operator *

Syntax

#include <uLgen.hpp>

ZIL_BIGNUM &operator * (const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

The operator overload multiplies the value of another ZIL_BIGNUM object specified by
number by the ZIL_BIGNUM object.

• returnValueoul is a pointer to the ZIL_BIGNUM object after its value has been
modified. This pointer is returned so that the operator may be used in a statement
containing other operations.

• numberin is another ZIL_BIGNUM object containing the value to be multiplied by the
ZIL_BIGNUM object.

516 Zinc Application Framework-Programmer's Reference Volume 1

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM firstValue;
ZIL_BIGNUM secondValue(1200");

firstValue. Import (" 100 ") ;
secondValue = secondValue * firstValue;

ZIL_BIGNUM::operator ++

Syntax

#include <ui_gen.hpp>

ZIL_BIGNUM &operator ++ (void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload increments the ZIL_BIGNUM object's value by one.

• returnValueout is a pointer to the ZIL_BIGNUM object after its value has been
modified. This pointer is returned so that the operator may be used in a statement
containing other operations.

Example

#include <ui_gen.hpp>

ExampleFunction(ZIL_BIGNUM &number)
(

Chapter 49 - ZIL_BIGNUM 517

number++;

ZIL_BIGNUM::operator --

Syntax

#include <uLgen.hpp>

ZIL_BIGNUM &operator -- (void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload decrements the ZIL_BIGNUM object's value by one.

• returnValueout is a pointer to the ZIL_BIGNUM object after its value has been
modified. This pointer is returned so that the operator may be used in a statement
containing other operations.

Example

#include <ui_gen.hpp>

ExampleFunction(ZIL_BIGNUM &number)
{

number--;

518 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_BIGNUM::operator +=

Syntax

#include <uLgen.hpp>

ZIL_BIGNUM &operator += (const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload adds the value of another ZIL_BIGNUM object, specified by
number, to the ZIL_BIGNUM object and copies the result back into the ZIL_BIGNUM
object.

• returnValueout is a pointer to the ZIL_BIGNUM object after its value has been
modified. This pointer is returned so that the operator may be used in a statement
containing other operations.

• numberin is another ZIL_BIGNUM object containing the value to be added to the
ZIL_BIGNUM object.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM firstValuej
ZIL_BIGNUM secondValuej

firstValue.lmport("lOO")j
secondValue.lmport("200") j

secondValue += firstValue;

Chapter 49 - ZIL_SIGNUM 519

ZIL_BIGNUM::operator -=

Syntax

#include <ui_gen.hpp>

ZIL_BIGNUM &operator -= (const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload subtracts the value of another ZIL_BIGNUM object, specified by
number, from the ZIL_BIGNUM object and copies the result back into the ZIL_BIGNUM
object.

• returnValueout is a pointer to the ZIL_BIGNUM object after its value has been
modified. This pointer is returned so that the operator may be used in a statement
containing other operations.

• numberin is another ZIL_BIGNUM object containing the value to be subtracted from
the ZIL_BIGNUM object.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM firstValue;
ZIL_BIGNUM secondValue;

firstValue.Import("lOO");
secondValue.Import("200");
secondValue -= firstValue;

520 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_BIGNUM::operator ==

Syntax

#include <uLgen.hpp>

int operator == (const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines if the value of the ZIL_BIGNUM object is equal to the
value of the ZIL_BIGNUM object specified by number.

• returnValueoul is TRUE if the ZIL_BIGNUM object is equal to number. Otherwise,
returnValue is FALSE.

• numberin is the other ZIL_BIGNUM object to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM governmentRevenue(nl0389230299.49 n);
ZIL_BIGNUM governmentSpending(n378321783443199.81 n);

if (governmentRevenue == governmentSpending)
printf(nBudget is balanced?\nn);

else if (governmentRevenue < governmentSpending)
printf(nBig deal, this is normal.\nn);

else
printf (nMust be a computer error! \nn) ;

Chapter 49 - ZIL_SIGNUM 521

ZIL_BIGNUM::operator !=

Syntax

#include <uLgen.hpp>

int operator != (const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines if the value of the ZIL_BIGNUM object is not equal
to the value of the ZIL_BIGNUM object specified by number.

• returnValueout is TRUE if the ZIL_BIGNUM object is not equal to number. Other­
wise, returnValue is FALSE.

• numberin is the other ZIL_BIGNUM object to be compared.

Example
#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM totalDays(1400");
ZIL_BIGNUM daysPerYear(1365");

if (totalDays != daysPerYear)
{

if (totalDays < daysPerYear)
printf("Less than one year has passed.\n");

else
printf("More than one year has passed.\n");

522 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_BIGNUM::operator >

Syntax

#inc1ude <ui_gen.hpp>

int operator> (const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the value of the ZIL_BIGNUM object is
greater than the value of the ZIL_BIGNUM object specified by number.

• returnValueoul is TRUE if the ZIL_BIGNUM object is greater than number. Other­
wise, returnValue is FALSE.

• numberin is the other ZIL_BIGNUM object to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM governmentRevenue("10389230299.49");
ZIL_BIGNUM governmentSpending("378321783443199.81");

if (governmentRevenue == governmentSpending)
printf("Budget is balanced?\n");

else if (governmentRevenue > governmentSpending)
printf ("Must be a computer error! \n ") ;

else
printf("Big deal, this is normal.\n");

Chapter 49 - ZIL_BIGNUM 523

ZIL_BIGNUM::operator >=

Syntax

#include <ui_gen.hpp>

int operator >= (const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

.OS/2
• NEXTSTEP

This operator overload determines whether the value of the ZIL_BIGNUM object is
greater than or equal to the value of the ZIL_BIGNUM object specified by number.

• returnValueout is TRUE if the ZIL_BIGNUM object is greater than or equal to
number. Otherwise, returnValue is FALSE.

• numberin is the other ZIL_BIGNUM object to be compared.

Example
#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM totalDays("400")i
ZIL_BIGNUM daysPerYear (" 365") i

if (totalDays >= daysPerYear)
printf("One year has passed.\n") i

else
printf("Less than one year has passed.\n")i

524 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_BIGNUM::operator <

Syntax

#include <uLgen.hpp>

int operator < (const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the value of the ZIL_BIGNUM object is less
than the value of the ZIL_BIGNUM object specified by number.

• returnValueout is TRUE if the ZIL_BIGNUM object is less than number. Otherwise,
returnValue is FALSE.

• numberin is the other ZIL_BIGNUM object to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM governmentRevenue(nl0389230299.49 n)i
ZIL_BIGNUM governmentSpending(n378321783443199.81 n)i

if (governmentRevenue == governmentSpending)
printf(nBudget is balanced?\nn)i

else if (governmentRevenue < governmentSpending)
printf(nWhat's new?!\nn)i

else
printf (nMust be a computer error! \nn) i

Chapter 49 - ZIL_BIGNUM 525

ZIL_BIGNUM::operator <=

Syntax

#include <uLgen.hpp>

int operator <= (const ZIL_BIGNUM &number);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the value of the ZIL_BIGNUM object is less
than or equal to the value of the ZIL_BIGNUM object specified by number.

• returnValueOUI is TRUE if the ZIL_BIGNUM object is less than or equal to number.
Otherwise, returnValue is FALSE.

• numberin is the other ZIL_BIGNUM object to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM totalDays("400");
ZIL_BIGNUM daysPerYear("365");

if (totalDays <= daysPerYear)
printf("Less than one year has passed.\n");

else
printf("One year has passed.\n");

526 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 50 - ZIL_BITMAP_ELEMENT

The ZIL_BITMAP_ELEMENT structure is used by the ZIL_DECORATION class to
provide the bitmap decorations for objects. An object's decorations are those bitmaps or
characters that are used to draw an image on the object. The decorations typically include
a graphical image, or bitmap, for use in graphics mode and a textual image, or character
string, for use in text mode. Most environments don't require these decorations since the
operating system typically provides them. Zinc does all the drawing in DOS and Curses,
however, so these environments use decorations extensively. An example of where a
decoration would be used is the maximize button. In graphics mode, it typically has a
small up-arrow bitmap. In text mode, though, it usually displays a left bracket, an up­
arrow character, and a right-bracket; all text characters, of course. This class maintains
the bitmap images. See "Chapter 71-ZIL_TEXT_ELEMENT" for information on the
text strings used for decorations.

The ZIL_BITMAP_ELEMENT class is declared in UI_GEN.HPP. Its public and
protected members are:

struct ZIL_EXPORT_CLASS ZIL_BITMAP_ELEMENT
{

ZIL_UINT8 *bitmap;
ZIL NUMBERID numberID;
ZIL=ICHAR stringID[ZIL_STRINGID_LEN);

};

General Members

This section describes those members that are used for general purposes.

• bitmap is the bitmap array maintained by the ZIL_BITMAP_ELEMENT.

• numberID is a numeric value used to identify the ZIL_BITMAP_ELEMENT.

• stringID is a string value used to identify the ZIL_BITMAP_ELEMENT.

Chapter 50 - ZIL_BITMAP_ELEMENT 527

528 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 51 - ZIL_DATE

The ZIL_DATE class is a lower-level class used to store and manipulate date values. It
is not a window object. See "Chapter 5-UIW_DATE" of Programmer's Reference
Volume 2 for information about the date window object.

NOTE: The DayOfWeek, DaysInMonth and DaysInYear functions may return question­
able values for dates before 1753 due to the switch from the Julian calendar to the
Gregorian calendar.

The ZIL_DATE class is declared in UI_GEN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS ZIL DATE public ZIL_UTIME
{
public:

ZIL_DATE (void) ;
ZIL DATE(const ZIL DATE &date);
ZIL=DATE(int year,-int month, int day);
ZIL_DATE(const ZIL_ICHAR *string, DTF_FLAGS dtFlags
ZIL_DATE(int packedDate);
int DayOfWeek(void);
int DaysInMonth(void);
int DaysInYear(void);
void Export (int *year, int *month, int *day,

int *dayOfWeek = ZIL_NULLP(int));
void Export (ZIL_ICHAR *string, DTF_FLAGS dtFlags);
void Export (int *packedDate);
DTI_RESULT Import(void);
DTI_RESULT Import(const ZIL_DATE &date);
DTI_RESULT Import (int year, int month, int day);
DTI_RESULT Import(const ZIL_ICHAR *string,

DTF_FLAGS dtFlags = DTF_NO_FLAGS);
DTI_RESULT Import(int packedDate);

ZIL_INT32 operator=(ZIL_INT32 days);
ZIL_INT32 operator=(const ZIL_DATE &date);
ZIL_INT32 operator+(ZIL_INT32 days);
ZIL_INT32 operator+(const ZIL_DATE &date);
ZIL_INT32 operator-(ZIL_INT32 days);
ZIL_INT32 operator-(const ZIL_DATE &date);
ZIL_INT32operator++(void);
ZIL_INT32operator--(void);
void operator+=(ZIL_INT32 days);
void operator-=(ZIL_INT32 days);
int operator==(const ZIL_DATE &date);
int operatorl=(const ZIL_DATE &date);
int operator>(const ZIL_DATE &date);
int operator>=(const ZIL_DATE &date);
int operator«const ZIL_DATE &date);
int operator<=(const ZIL_DATE &date);

void SetBasis(int _basisYear);
int GetBasis();

};

Chapter 51 - ZIL_DATE 529

General Members

This section describes those members that are used for general purposes.

Syntax

#include <uLgen.hpp>

ZIL_DATE(void);
or

ZIL_DATE(const ZIL_DATE &date);
or

ZIL_DATE(int year, int month, int day);
or

ZIL_DATE(const ZIL_ICHAR *string, DTF_FLAGS dtFlags = DTF_NO_FLAGS);
or

ZIL_DATE(int packedDate);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded constructors create a new ZIL_DATE object.

The first overloaded constructor takes no arguments. It sets the date information
according to the system's date.

The second overloaded constructor is a copy constructor that takes a previously
constructed ZIL_DATE object to specify the default date.

• datein is a reference pointer to a previously constructed ZIL_DATE object.

530 Zinc Application Framework-Programmer's Reference Volume 1

The third overloaded constructor uses integer arguments to specify the default date.

• yearin is the year. This argument must be either 0, if no year value is to be used with
the date, or a value in a range from 100 to 32,767.

• monthin is the month. This argument must be either 0, if no month value is to be
used with the date, or a value in a range from 1 (January) to 12 (December).

• daYin is the day. This argument must be either 0, if no day value is to be used with
the date, or a value in a range from 1 to 31 that should be valid for the specified
month and year.

The fourth overloaded constructor uses a string argument to specify the default date. The
following algorithm is used to determine the proper order and meaning of date values:

I-Any number greater than 31 is assumed to be the year.

2-If the number is less than 100, the basis year is added to the value. See ZIL_­
DATE::SetBasis() below for information about the basis year. Year values below
100 are not allowed in the ZIL_DATE class.

3-Any number between 13 and 31 is assumed to be the day. In ambiguous
situations where both the day and month values are less than 13, the country code
date format (e.g., DTF_US_FORMAT, DTF_ASIAN_FORMAT) is used to decide
the order of date values.

• stringin is a string that contains the date information.

• dtFlagsin specifies how to interpret the date string. The following flags (declared in
UI_GEN.HPP) override the country dependent information (supplied by the operating
system):

DTF_EUROPEAN_FORMAT-Forces the date to be interpreted in the Europ­
ean format (i.e., day/month/year), regardless of the default country information.

DTF_ASIAN_FORMAT-Forces the date to be interpreted in the Asian format
(i.e., year/month/day), regardless of the default country information.

DTF_MILITARY_FORMAT-Forces the date to be formatted in the United
States Air Force format, regardless of the default country information. The air
force format is ordered by day month year where month is either a 3-letter
abbreviated word and year is a two-digit year value (if the DTF_SHORT_YEAR

Chapter 51 - ZIL_DATE 531

or DTF_SHORT_MONTH flags are set) or month is spelled-out and year is a
four-digit value. The air force style is used as the default. However, in order
to accommodate the formats used in other branches of the military, other date
formatting options (e.g., zero fill, upper case, etc.) may be used in conjunction
with the standard military format.

DTF_NO_FLAGS-Does not associate any special flags with the ZIL_DATE
object. In this case, the string will be interpreted using the default country
information. This is the default argument if no other argument is provided. This
flag should not be used in conjunction with any other DTF flags.

DTF_SYSTEM-Sets the date value according to the system date if the string
is blank or NULL. For example, if the DTF_SYSTEM flag were set and a
NULL string value was specified, the date would be set to the system date.

DTF_US_FORMAT-Forces the date to be interpreted in the U.S. format (i.e.,
month/day/year), regardless of the default country information.

The fifth overloaded constructor uses a packed integer argument to specify the default
date.

• packedDatein is a packed representation of the date (whose format is the same as the
MS-DOS file dates). This argument is packed according to the following bit pattern:

bits 0-4 specify the day,
bits 5-8 specify the month, and
bits 9-15 specify the year minus 1980 (e.g., a value of 5 means 1985).

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_DATE datel;
ZIL_DATE date2(1990, 1, 1);
ZIL_DATE *date3 = new ZIL_DATE("Jan. 1, 1990");
ZIL_DATE *date4 = new ZIL_DATE(datel);

delete date4;
delete date3;
II The destructors for datel and date2 are automatically called
II when the scope of this function ends.

532 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_DATE::DayOfWeek

Syntax

#include <ui_gen.hpp>

int DayOfWeek(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

.OS/2
• NEXTSTEP

This function returns the numerical value of the day of the week (Sunday = 1, Monday
=2, ... Saturday = 7) for the ZIL_DATE object.

NOTE: DayOfWeek() may return questionable values for dates before 1753 due to the
switch from the Julian calendar to the Gregorian calendar.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_DATE date;

date.dayTable
{

"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"

} ;

II Print the current day of week.
printf("Today is %s.\n", date.dayTable[date.DayOfWeek() - 1]);

Chapter 51 - ZIL_DATE 533

ZIL_DATE::DayslnMonth

Syntax

#include <uLgen.hpp>

int DaysInMonth(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the number of days in the month specified by the ZIL_DATE object.
For example, if the date were December 15, 1993, DayslnMonth would return 31.

NOTE: DayslnMonth() may return questionable values for dates before 1753 due to the
switch from the Julian calendar to the Gregorian calendar.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

II Print the number of days in the current month.
ZIL_DATE date;
printf ("This month has %d days. \n", date. DayslnMonth()) ;

ZIL_DATE::DayslnYear

Syntax

#include <uLgen.hpp>

int DaysInYear(void);

534 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the number of days in the year specified by the ZIL_DATE object.
For example, if the date were January 15, 1992, DaysInYear() would return 366 (i.e.,
1 extra day for leap year).

NOTE: DaysInYear() may return questionable values for dates before 1753 due to the
switch from the Julian calendar to the Gregorian calendar.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

II Print the number of days in the year.
ZIL_DATE date;
printf("This year has %d days.\n", date.DayslnYear(»);

ZIL_DATE::Export

Syntax

#include <uLgen.hpp>

void Export(int *year, int *month, int *day, int *dayOjWeek =ZIL_NULLP(int»;
or

void Export(ZIL_ICHAR *string, DTF_FLAGS dtFlags);
or

void Export(int *packedDate);

Chapter 51 - ZIL_DATE 535

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions obtain the value of the ZIL_DATE object.

The first overloaded function returns date information through four integer arguments.

• yearout is a pointer to the variable that is to contain the year. If this argument is
NULL, no year information is returned. If there is no year associated with the date,
this argument will be O. Otherwise, this argument will be a value within the range
100 to 32,767.

• monthout is a pointer to the variable that is to contain the month. If this argument is
NULL, no month information is returned. If there is no month associated with the
date, this argument will be O. Otherwise, this argument will be a value within the
range 1 (January) to 12 (December).

• daYout is a pointer to the variable that is to contain the day. If this argument is
NULL, no day information is returned. If there is no day associated with the date,
this argument will be O. Otherwise, this argument will be a value within the range 1
to 31.

• dayOjWeekout is a pointer to the variable that is to contain the day-of-week. If this
argument is NULL, no day-of-week information is returned. If the year, month and
day values are all present in the date, this argument will be a value within the range
1 (Sunday) to 7 (Saturday). Otherwise, this argument will be O.

The second overloaded function returns the date information through the string argument.

• stringout is a pointer to a string that gets the formatted date. This string must be long
enough to contain the date.

• dtFlagsin specifies how the return date should be formatted. The following flags
(declared in UI_GEN.HPP) override the country dependent information (supplied by
the operating system):

536 Zinc Application Framework-Programmer's Reference Volume 1

DTF_ALPHA_MONTH-Causes the month
name to be spelled-out, as opposed to being
represented numerically.

DTF_DASH-Separates the date fields with a
dash, regardless of the default country date
separator.

DTF_DAY_OF_WEEK-Causes a spelled-out
day-of-week to be shown in the date.

DTF_EUROPEAN_FORMAT-Forces the
date to be formatted in the European format (i.e.,
day/month/year), regardless of the default country
information.

DTF_ASIAN_FORMAT-Forces the date to be
formatted in the Asian format (i.e., year/~

month/day), regardless of the default country
information.

DTF_MILITARY_FORMAT-Forces the date
to be formatted in the United States Air Force
format, regardless of the default country
information. The air force format is ordered by
day month year where month is either a 3-letter
abbreviated word and year is a two-digit year
value (if the DTF_SHORT_YEAR or DTF_­
SHORT_MONTH flags are set) or month is
spelled-out and year is a four-digit value. The
air force style is used as the default. However,
in order to accommodate the formats used in
other branches of the military, other date
formatting options (e.g., zero fill, upper case,
etc.) may be used in conjunction with the
standard military format.

DTF_NO_FLAGS-Does not associate any
special flags with the Export() function. In this
case, the date will be formatted using the default
country information. This flag should not be
used in conjunction with any other DTF flags.

Chapter 51 - ZIL_DATE

March 28, 1990
December 4, 1980
January 3, 2003

3-28-1990
12-04-1980
1-3-2003

Monday May 4, 1992
Friday Dec. 5, 1980
Sunday Jan. 4, 2003

28/3/1990
4 December, 1980
3 Jan., 2003

1990/3/28
1980 December 4
2003 Jan. 3

(air force style­
default)
4 Jul 91
4 July 1991

(European format)
4 December 1989
23 June 2000

(Asian format)
1989 December 4
2000 June 23

537

DTF_SHORT_DAY-Adds an abbreviated day­
of-week to the date.

DTF_SHORT_MONTH-Adds an abbreviated
month name to the date.

DTF_SHORT_YEAR-Forces the year to be
fonnatted as a two-digit value.

DTF_SLASH-Separates the date fields with a
slash, regardless of the default country date
separator.

DTF_SYSTEM-Uses the system date.

DTF_UPPER_CASE-Converts the alphabetic
date characters to upper-case.

DTF_US_FORMAT-Forces the date to be
formatted in the U.S. format (Le.,
month/day/year), regardless of the default country
infonnation.

DTF_ZERO_FILL-Forces the year, month and
day values to be zero filled when their values are
less than 10.

Wed. March 28, 1990
Thurs. Dec. 4, 1980
Sat. January 3, 2003

Mar. 28, 1990
Dec. 4, 1980
Jan. 3, 2003

3/28/90
December 4, 80
Jan. 3, 89

3/28/90
12/04/1900
1/3/2003

3/28/90
12/04/1980
1/3/2003

MARCH 28, 1990
DEC. 4, 1980
SATURDAY JAN 3, 2003

March 28, 1990
12/4/1980
Jan 3, 2003

March 08, 1990
12/04/1980
01/03/2003

The third overloaded function returns date infonnation through a packed integer.

• packedDateoul is a packed representation of the date (whose fonnat is the same as the
MS-DOS file dates). This argument is packed according to the following bit pattern:

bits 0-4 specify the day,
bits 5-8 specify the month, and
bits 9-15 specify the year minus 1980 (e.g., a value of 5 means 1985).

Example

#inc1ude <ui_gen.hpp>

Examp1eFunction()
{

ZIL_DATE date; // Initialize a system date.

538 Zinc Application Framework-Programmer's Reference Volume 1

II Print out the date in various forms.
int year, month, daYi
date. Export (&year, &month, &day);
printfl"Integer date value: year-%d. month-%d, day-%d\n",

year. month, day);
char stringDate[128Ji
date. Export (stringDate, DTF_NO_FLAGS);
printfl"String date value: %s". stringDate)i

II The destructor for date is automatically called when the
II scope of this function ends.

ZIL_DATE::GetBasis

Syntax

#include <uLgen.hpp>

int GetBasis();

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the year being used as a basis for date manipulation by the
ZIL_DATE object.

returnValueout is the year used as the basis. The basis year identifies the century to
be used to resolve two-digit year abbreviations. For example, if the basis year is
1800, then a year of 63 is resolved to be 1863. The basis year by default is obtained
from the operating system.

Chapter 51 - ZIL_DATE 539

ZIL_DATE::lmport

Syntax

#include <uLgen.hpp>

DTCRESULT Import(void);
or

DTCRESULT Import(const ZIL_DATE &date);
or

DTCRESULT Import(int year, int month, int day);
or

DTCRESULT Import(const ZIL_ICHAR *string,
DTF_FLAGS dtFlags = DTF_NO_FLAGS);
or

DTCRESULT Import(int packedDate);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions set the value of the ZIL_DATE object.

The first overloaded function sets the date information according to the system date.

• returnValueoul is the result of the import operation. returnValue can have one of the
following values:

DTI_AMBIGUOUS-The month name was ambiguous (e.g., "OI-JU-92").

DTI_GREATER_THAN_RANGE-The date was greater than the maximum
value of a negatively open-ended range.

DTI_INVALID-An invalid date format was encountered (e.g., "31 Jan,
1992").

540 Zinc Application Framework-Programmer's Reference Volume 1

DTI_INVALID_NAME-Either the month name or the day-of-week name was
invalid (e.g., "Tuesday Jaan 28, 1992" or "Tyesday Jan 28, 1992").

DTI_LESS_THAN_RANGE-The date was less than the minimum value of a
positively open-ended range.

DTI_OK-The date was entered in a correct format and within the valid range.

DTI_OUT_OF_RANGE-The date value was out of range (e.g., "Jan 33,
1992").

DTI_VALUE_MISSING-The required date value was missing (e.g., "5,
1991 ").

The second overloaded function copies the date information from the date reference
argument.

• returnValueout is the result of the import operation. See the first function for possible
values.

• datein is a reference pointer to a previously constructed date.

The third overloaded function sets the date information according to specified integer
arguments.

• returnValueout is the result of the import operation. See the first function for possible
values.

• yearin is the year. This argument must be 0 if no year value is to be used with the
date, or a value in the range 100 to 32,767.

• monthin is the month. This argument must be 0 if no month value is to be used with
the date, or a value in the range 1 (January) to 12 (December).

• daYin is the day. This argument must be 0 if no day value is to be used with the date,
or a value in the range 1 to 31 that should be valid for the specified month and year.

The fourth overloaded function sets the date using information passed in a string. The
following algorithm is used to determine the proper order and meaning of date values:

I-Any number greater than 31 is assumed to be the year.

Chapter 51 - ZIL_DATE 541

542

2-If the number is less than 100, the basis year is added to the value. See ZIL_­
DATE::SetBasis() below for information about the basis year. Year values below
100 are not allowed in the ZIL_DATE class.

3-Any number between 13 and 31 is assumed to be the day. In ambiguous
situations where both the day and month values are less than 13, the country code
date format (e.g., DTF_US_FORMAT, DTF_ASIAN_FORMAT) is used to determine
the order of date values.

returnValueout is the result of the import operation. See the first function for possible
values.

stringin is a pointer to the date string. If this is an empty string (i.e., ""), the
ZIL_DATE will be set to "blank." Passing a blank ZIL_DATE to the UIW_­
DATE::DataSet() function will cause the date field to be displayed as blank space.
See the DataSet section of "Chapter 5-UIW_DATE" in Programmer's Reference
Volume 2 for more information.

• dtFlagsin specifies how the date string should be interpreted. The following flags
(declared in UI_GEN.HPP) override the country dependent information (supplied by
the operating system):

DTF_EUROPEAN_FORMAT-Forces the date to be interpreted in the Europ­
ean format (i.e., day/month/year), regardless of the default country information.

DTF_ASIAN_FORMAT-Forces the date to be interpreted in the Asian format
(i.e., year/month/day), regardless of the default country information.

DTF_MILITARY_FORMAT-Forces the date to be formatted in the United
States Air Force format, regardless of the default country information. The air
force format is ordered by day month year where month is either a 3-letter
abbreviated word and year is a two-digit year value (if the DTF_SHORT_YEAR
or DTF_SHORT_MONTH flags are set) or month is spelled-out and year is a
four-digit value. The air force style is used as the default. However, in order
to accommodate the formats used in other branches of the military, other date
formatting options (e.g., zero fill, upper case, etc.) may be used in conjunction
with the standard military format.

DTF_NO_FLAGS-Does not associate any special flags with the ZIL_DATE
object. In this case, the string will be interpreted using the default country
information. This flag should not be used in conjunction with any other DTF
flags.

Zinc Application Framework-Programmer's Reference Volume 1

DTF_SYSTEM-Sets the date value according to the system date if the string
is blank or NULL. For example, if the DTF_SYSTEM flag were set and a
NULL string value was specified, the date would be set to the system date.

DTF_US_FORMAT-Forces the date to be interpreted in the U.S. format (i.e.,
month/day/year), regardless of the default country information.

The fifth overloaded function sets the date information through a packed integer argument.

• returnValueOUI is the result of the import operation. See the first function for possible
values.

• packedDatein is a packed representation of the date (whose format is the same as the
MS-DOS file dates). This argument is packed according to the following bit pattern:

bits 0-4 specify the day,
bits 5-8 specify the month, and
bits 9-15 specify the year minus 1980 (e.g., a value of 5 means 1985).

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_DATE date; II Initialize a system date.

II Import the date in various forms and print out the results.
char stringDate[128];
date.lmport(1990, 1, 1);
date.Export(stringDate, DTF_NO_FLAGS);
printf("String date value: %s\n", stringDatel;
date.lmport("1-1-1990", DTF_NO_FLAGS);
date.Export(stringDate, DTF_MILITARY_FORMAT);
printf("String date value: %s\n", stringDate);

II The destructor for date is automatically called when the
II scope of this function ends.

ZIL_DATE::SetBasis

Syntax

#include <ui_gen.hpp>

void SetBasis(int _basisYear);

Chapter 51 - ZIL_DATE 543

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2

• NEXTSTEP

This function sets the year being used as a basis for date manipulation by the ZIL_DATE
object.

• _basisYearin is the year to be used as the basis. The basis year identifies the century
to be used to resolve two-digit year abbreviations. For example, if the basis year is
1800, a year of 63 is resolved to be 1863. The basis year by default is obtained from
the operating system.

ZIL_DATE::operator =

Syntax

#include <ui_gen.hpp>

ZIL_INT32 operator = (ZIL_INT32 days);
or

ZIL_INT32 operator = (const ZIL_DATE &date);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

The first operator overload assigns the value specified by days to the ZIL_DATE object.

• returnValueout is the number of days in the resulting date. This raw value is returned
so that the operator may be used in a statement containing other operations.

544 Zinc Application Framework-Programmer's Reference Volume 1

• daysin is the date, given in the number of days, to be assigned to the ZIL_DATE
object.

The second operator overload assigns the value specified by date to the ZIL_DATE
object.

• returnValueout is the number of days in the resulting date. This raw value is returned
so that the operator may be used in a statement containing other operations.

• datein is the date to be assigned to the ZIL_DATE object.

Example

#include <ui_gen.hpp>

AddOneWeek(ZIL_DATE currentDate, ZIL_DATE &nextWeek)
{

ZIL_INT32 oneWeek = 7;

II Adding 1 week to the current date gives the next week.
nextWeek = currentDate + oneWeek;

ZIL_DATE::operator +

Syntax

#include <uLgen.hpp>

ZIL_INT32 operator + (ZIL_INT32 days);
or

ZIL_INT32 operator + (const ZIL_DATE &date);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload adds the value days to the ZIL_DATE object.

Chapter 51 - ZIL_DATE 545

• returnValueou1 is the number of days resulting from the addition operation. This raw
value is returned so that the operator may be used in a statement containing other
operations.

• daysin is the number of days to be added to the ZIL_DATE object.

The second operator overload adds the date contained in date to the ZIL_DATE object.

• returnValueou1 is the number of days resulting from the addition operation. This raw
value is returned so that the operator may be used in a statement containing other
operations.

• datein is the date to be added to the ZIL_DATE object.

Example

#include <ui_gen.hpp>

AddOneWeek(ZIL_DATE currentDate, ZIL_DATE &nextWeek)
{

ZIL_INT32 oneWeek = 7;

II Adding 1 week to the current date gives the next week.
nextWeek = currentDate + oneWeek;

ZIL_DATE::operator -

Syntax

#include <ui~en.hpp>

ZIL_INT32 operator - (ZIL_INT32 days);
or

ZIL_INT32 operator - (const ZIL_DATE &date);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

546 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

The first operator overload subtracts the value days from the ZIL_DATE object.

• returnValueoul is the number of days resulting from the subtraction operation. This
raw value is returned so that the operator may be used in a statement containing other
operations.

• daysin is the number of days to be subtracted from the ZIL_DATE object.

The second operator overload subtracts the date contained in date from the ZIL_DATE
object.

• returnValueoul is the difference, in days, between the ZIL_DATE object and the date
contained in date. This raw value is returned so that the operator may be used in a
statement containing other operations.

datein is the date to be subtracted from the ZIL_DATE object.

Example

#include <ui_gen.hpp>

SubtractOneWeek(ZIL_DATE currentDate, ZIL_DATE &lastWeek)
{

ZIL_INT32 oneWeek = 7;

II Subtracting 1 week from the current date gives the previous week.
lastWeek = currentDate - oneWeek;

ZIL_DATE::operator>

Syntax

#include <ui_gen.hpp>

int operator> (const ZIL_DATE &date);

Chapter 51 - ZIL_DATE 547

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_DATE object is chronologically
greater than the date specified by date.

• returnValueout is TRUE if the ZIL_DATE object is chronologically greater than date.
Otherwise, returnValue is FALSE.

• datein is the date to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_DATE currentDate; II Initialize a system date.
ZIL_DATE twentyFirstCentury ("Jan. 1, 2000");

II Check the dates.
if (currentDate > twentyFirstCentury I I

currentDate == twentyFirstCentury)
printf("The twenty first century has already come.\n");

ZIL_DATE::operator >=

Syntax

#include <uLgen.hpp>

int operator >= (const ZIL_DATE &date);

548 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_DATE object is chronologically
greater than or equal to the date specified by date.

• returnValueoul is TRUE if the ZIL_DATE object is chronologically greater than or
equal to date. Otherwise, returnValue is FALSE.

• datein is the date to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_DATE currentDate; II Initialize a system date.
ZIL_DATE twentyFirstCentury ("Jan. 1, 2000");

II Check the dates.
if (currentDate >= twentyFirstCentury)

printf("The twenty first century has already come.\n");

ZIL_DATE::operator <

Syntax

#inc1ude <ui_gen.hpp>

int operator < (const ZIL_DATE &date);

Chapter 51 - ZIL_DATE 549

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_DATE object is chronologically less
than the date specified by date.

• returnValueout is TRUE if the ZIL_DATE object is chronologically less than date.
Otherwise, returnValue is FALSE.

• datein is the date to be compared.

Example
#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_DATE currentDate; II Initialize a system date.
ZIL_DATE twentyFirstCentury ("Jan. 1, 2000");

II Check the dates.
if (currentDate < twentyFirstCentury)

printf("It's not the twenty first century.\n");

ZIL_DATE::operator <=

Syntax

#include <ui_gen.hpp>

int operator <= (const ZIL_DATE &date);

550 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_DATE object is chronologically less
than or equal to the date specified by date.

• returnValueoul is TRUE if the ZIL_DATE object is chronologically less than or equal
to date. Otherwise, returnValue is FALSE.

• datein is the date to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_DATE currentDate; II Initialize a system date.
ZIL_DATE endOfTwentiethCentury ("Dec. 31, 1999");

II Check the dates.
if (currentDate <= endOfTwentiethCentury)

printf("It's not the twenty first century.\n");

ZIL_DATE::operator ++

Syntax

#include <ui_gen.hpp>

ZIL_INT32 operator ++ (void);

Chapter 51 - ZIL_DATE 551

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload increments the value of the ZIL_DATE object by one day.

• returnValue
OUI

is the number of days after the ZIL_DATE object has been
incremented. This raw value is returned so that the operator may be used in a
statement containing other operations.

Example

#include <ui_gen.hpp>

AdvanceCurrentDate(ZIL_DATE ¤tDate)
{

II Advance the current date.
++currentDate;

ZIL_DATE: :operator --

Syntax

#include <uLgen.hpp>

ZIL_INT32 operator -- (void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

552 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This operator overload decrements the value of the ZIL_DATE object by one day.

returnValueOUI is the number of days after the ZIL_DATE object has been
decremented. This raw value is returned so that the operator may be used in a
statement containing other operations.

Example

#include <ui_gen.hpp>

DecrementCurrentDate(ZIL_DATE ¤tDate)
{

II Decrement the current date.
--currentDate;

ZIL_DATE::operator +=

Syntax

#include <ui_gen.hpp>

void operator += (ZIL_INT32 days);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload adds days to the ZIL_DATE object and copies the result back into
the ZIL_DATE object.

daysin is the number of days to be added to the ZIL_DATE object.

Chapter 51 - ZIL_DATE 553

Example
#include <ui_gen.hpp>

AddOneWeek(ZIL_DATE currentDate, ZIL_DATE &nextWeek)
{

ZIL_INT32 oneWeek = 7;

II Adding 1 week to the current date gives the next week.
nextWeek = currentDate;
nextWeek += oneWeek;

ZIL_DATE::operator -=

Syntax

#include <uLgen.hpp>

void operator -= (ZIL_INT32 days);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload subtracts days from the ZIL_DATE object and copies the result
back into the ZIL_DATE object.

• daysin is the number of days to be subtracted from the ZIL_DATE object.

Example
#include <ui_gen.hpp>
SubtractWeeks(ZIL_DATE currentDate, ZIL_DATE &lastWeek)
{

ZIL_INT32 oneWeek = 7;

II Subtracting 1 week from the current date gives the previous week.
lastWeek = currentDate;
lastWeek -= oneWeek;

554 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_DATE::operator ==

Syntax

#inc1ude <ui_gen.hpp>

int operator == (const ZIL_DATE &dafe);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_DATE object is chronologically equal
to the date specified by date.

• returnValueOU1 is TRUE if the ZIL_DATE object is chronologically equal to date.
Otherwise, returnValue is FALSE.

• date in is the date to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_DATE currentDate; II Initialize a system date.
ZIL_DATE newYears1990("Jan. . 1990");

II Check the dates.
if (currentDate == newYears1990)

printf("It's new years day 1990.\n"l

Chapter 51 - ZIL_DATE 555

ZIL_DATE: :operator !=

Syntax

#include <uLgen.hpp>

int operator != (const ZIL_DATE &date);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_DATE object is chronologically not
equal to the date specified by date.

• returnValueout is TRUE if the ZIL_DATE object is chronologically not equal to date.
Otherwise, returnValue is FALSE.

• datein is the date to be compared.

Example
#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_DATE currentDate; II Initialize a system date.
ZIL_DATE newYears1990 ("Jan. 1, 1990");

II Check the dates.
if (currentDate != newYears1990)

printf("It is not new years day 1990.\n")

556 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 52 - ZIL_DECORATION

The ZIL_DECORATION class object is used to maintain decorations, or images, for an
object. Any object that needs to be drawn by Zinc has a pointer to the ZIL_DECORA­
TION object containing that object's images. The object can get a pointer to the
appropriate ZIL_DECORATION object through the ZIL_DECORATION_MANAGER,
which maintains a list of all ZIL_DECORATION objects. The images are kept in ZIL_­
TEXT_ELEMENT and ZIL_BITMAP_ELEMENT objects. Because each instance of an
object can have its own ZIL_DECORATION object, any combination of locale images
can be used simultaneously.

The ZIL_DECORATION class is declared in UI_GEN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS ZIL_DECORATION public ZIL_I18N
{
public:

ZIL_DECORATION(void) ;
#if defined (ZIL_LOAD)

virtual void ClassLoadData(ZIL_STORAGE_OBJECT_READ_ONLY *object);
#endif
#if defined (ZIL_STORE)

virtual void ClassStoreData(ZIL_STORAGE_OBJECT *object);
#endif

int noOfTextElements;
ZIL_TEXT_ELEMENT *text;
int noOfBitmapElements;
ZIL_BITMAP_ELEMENT *bitmap;
ZIL_ICHAR *GetText(ZIL_NUMBERID numberID, int useDefault FALSE) const;
ZIL_UINT8 *GetBitmap(ZIL_NUMBERID numberID,

int useDefault = FALSE) const;
protected:

virtual void AssignData(const ZIL_I18N *data);
virtual void DeleteData(void);

};

General Members

This section describes those members that are used for general purposes.

• noO[FextElements indicates how many text images are maintained by the ZIL_­
DECORATION object.

• text is the list of ZIL_TEXT_ELEMENT objects that contain the text images.

• noOfBitmapElements indicates how many bitmap images are maintained by the ZIL_­
DECORATION object.

Chapter 52 - Z/LOECORATION 557

• bitmap is the list of ZIL_BITMAP_ELEMENT objects that contain the bitmap
images.

ZIL_DECORATION::ZIL_DECORATION

Syntax

#include <uLgen.hpp>

ZIL_DECORATION(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new ZIL_DECORATION object.

ZIL_DECORATION::AssignData

Syntax

#include <ui~en.hpp>

virtual void AssignData(const ZIL_I18N *data);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

558 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function assigns the data maintained by data to the ZIL_DECORATION object. The
noOfFextElements value, the noOfBitmapElements value, the text pointer, and the bitmap
pointer are copied. This function does not create a new copy of the data, but simply
assigns the pointers.

• datain is a pointer to the ZIL_DECORATION object containing the data that is to be
assigned.

ZIL_DECORATION::DeleteData

Syntax

#include <ui_gen.hpp>

virtual void DeleteData(void);

PortabiIity

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function deletes the data maintained by this object if allocated is TRUE. The text
in each ZIL_TEXT_ELEMENT, the bitmap in each ZIL_BITMAP_ELEMENT, the list
of ZIL_TEXT_ELEMENT objects, and the list of ZIL_BITMAP_ELEMENT objects are
deleted.

ZIL_DECORATION::GetBitmap

Syntax

#include <ui_gen.hpp>

ZIL_UINT8 *GetBitmap(ZIL_NUMBERID number/D, int useDefault = FALSE) const;

Chapter 52 - ZIL_DECORATlON 559

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the bitmap maintained by the ZIL_BITMAP_ELEMENT object
identified by number/D.

• returnValueout is a pointer to the bitmap.

• number/Din is a value identifying the ZIL_BITMAP_ELEMENT.

• useDefaultin indicates if the default bitmap should be used if no match is found on
number/D. If useDefault is TRUE, the bitmap from the first ZIL_BITMAP_­
ELEMENT is returned if no ZIL_BITMAP_ELEMENT objects matched number/D.
If no match was found and useDefaults is FALSE, NULL is returned.

ZIL_DECORATION: :GetText

Syntax

#include <ui_gen.hpp>

ZIL_ICHAR *GetText(ZIL_NUMBERID number/D, int useDefault = FALSE) const;

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the text image maintained by the ZIL_TEXT_ELEMENT object
identified by number/D.

560 Zinc Application Framework-Programmer's Reference Volume 1

• returnValueout is a pointer to the text string.

number/Din is a value identifying the ZIL_TEXT_ELEMENT.

• useDefaultin indicates if the default text image should be used if no match is found
on number/D. If useDefault is TRUE, the text from the first ZIL_TEXT_ELEMENT
is returned if no ZIL_TEXT_ELEMENT objects matched number/D. If no match
was found and useDefaults is FALSE, NULL is returned.

Storage Members

This section describes those class members that are used for storage purposes.

ZIL_DECORATION::ClassLoadData

Syntax

#include <ui_gen.hpp>

virtual void ClassLoadData(ZIL_STORAGE_OBJECT_READ_ONLY *object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to load ZIL_DECORATION data from a persistent object
data file. The data is loaded from the current directory. This function is typically not
used by the programmer.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY object that
contains the data. For more information on persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

Chapter 52 - ZIL_DECORATION 561

ZIL_DECORATION::ClassStoreData

Syntax

#include <ui~en.hpp>

virtual void ClassStoreData(ZIL_STORAGE_OBJECT *object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

562

This advanced function is used to store ZIL_DECORATION data in a persistent object
data file. The data is stored in the current directory. This function is typically not used
by the programmer.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the data will be stored.
For more information on persistent objects, see "Chapter
68-ZIL_STORAGE_OBJECT."

Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 53 - ZIL_DECORATION_MANAGER

The ZIL_DECORATION_MANAGER class object is used to maintain a list of ZIL_­
DECORATION objects. Each ZIL_DECORATION object contains decorations for library
objects. A decoration is the image used to draw the object. In graphics mode, the
decoration is a bitmap that is displayed on the object. In text mode, the decoration is a
text string made up of the characters used to display the object. Because Zinc does all
the drawing in DOS and Curses, this class is used extensively in these environments.
Other environments mayor may not use it for some objects.

The ZIL_DECORATION_MANAGER class is declared in UI_GEN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS ZIL_DECORATION_MANAGER public ZIL_I18N_MANAGER
{
public:

ZIL_DECORATION_MANAGER(void) ;
virtual ZIL_I18N *CreateData(void);

static void FreeDecorations(const ZIL_DECORATION *decorations);
static void LoadDefaultDecorations(const ZIL_ICHAR *decorationName);
static const ZIL_DECORATION *UseDecorations(const ZIL_DECORATION

*decorations);
static const ZIL_DECORATION *UseDecorations(const ZIL_ICHAR *className,

const ZIL_ICHAR *decorationName = ZIL_NULLP(ZIL_ICHAR));

static void SetDecorations(const ZIL_ICHAR *className,
ZIL_TEXT_ELEMENT *defaultText, ZIL_BITMAP_ELEMENT *defaultBitmap);

};

General Members

This section describes those members that are used for general purposes.

ZIL_DECORATION_MANAGER::ZIL_DECORATION MANAGER

Syntax

#include <ui_gen.hpp>

ZIL_DECORATION_MANAGER(void);

Chapter 53 - ZIL_DECORATlON_MANAGER 563

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new ZIL_DECORATION_MANAGER object.

ZIL_DECORATION_MANAGER::CreateData

Syntax

#include <ui~en.hpp>

virtual ZIL_I18N *CreateData(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function creates a new ZIL_DECORATION object. Because it is a pure
virtual function at the base ZIL_I18N_MANAGER class level, the generic code in the
ZIL_I18N_MANAGER class can use it to create the proper data object.

• returnValueOUI is a pointer to the new ZIL_DECORATION object that was created.

564 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_DECORATION_MANAGER::FreeDecorations

Syntax

#include <uLgen.hpp>

static void FreeDecorations(const ZIL_DECORATION *decorations);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function releases the ZIL_DECORATION object from use by decrementing the
ZIL_DECORATION object's useCount member. Whenever a library object requests the
use of a ZIL_DECORATION object, it does so by calling the UseDecorations() function,
which marks the ZIL_DECORATION object as used by incrementing its useCount
member. When the library object is done using the ZIL_DECORATION object, it must
release it by calling this function. If the releasing object was the last object using the
ZIL_DECORATION object, this function will deallocate the data being maintained by the
ZIL_DECORATION object unless it contains the default data.

• decorationsin is a pointer to the ZIL_DECORATION object that is being released.

ZIL_DECORATION MANAGER::LoadDefaultDecorations

Syntax

#include <ui_gen.hpp>

static void LoadDefaultDecorations(const ZIL_ICHAR *decorationsName);

Chapter 53 - ZIL_DECORATlON_MANAGER 565

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sets the default decorations for the application. Any objects that are using
the default decorations at the time this function is called will start using the new default
images. If necessary, this function loads the default images data from the I18N.DAT file.

• decorationsNamein is the two-letter ISO country name identifying which images are
to be the default for the application.

ZIL_DECORATION_MANAGER: :SetDecorations

Syntax

#include <uLgen.hpp>

static void SetDecorations(const ZIL_ICHAR *className,
ZIL_TEXT_ELEMENT *defaultText, ZIL_BITMAP_ELEMENT *defaultBitmap);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function places the default images for a particular object in the list of images
maintained by the ZIL_DECORATION_MANAGER class. An image must be placed in
the list using this function before it can be accessed using the UseDecorations() function.
The images are assumed to be for the country identified by the isolmageName global
variable. This variable and the default images are defined in the IMG_DEF.CPP file.
If different default images are desired, simply copy an IMG_<ISO>.CPP file from the

566 Zinc Application Framework-Programmer's Reference Volume 1

ZINC\SOURCE\INTL directory to the ZINC\SOURCE directory and rename it to
IMG_DEF.CPP. Then rebuild the library.

• classNamein is the class name of the object for which the image is being set. This
typically corresponds to the _className member variable of the object.

• defaultTextin is the ZIL_TEXT_ELEMENT class that contains the text mode character
image for the object.

• defaultBitmaPin is the ZIL_BITMAP_ELEMENT class that contains the graphics
mode bitmap image for the object.

ZIL_DECORATION_MANAGER::UseDecorations

Syntax

#include <uLgen.hpp>

static ZIL_DECORATION *UseDecorations(const ZIL_DECORATION *decorations);
or

static const ZIL_DECORATION *UseDecorations(const ZIL_ICHAR
*decorationsName =ZIL_NULLP(ZIL_ICHAR));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions mark a ZIL_DECORATION object as used by incrementing
its useCount member. Whenever a library object requests the use of a ZIL_DECORA­
TION object, it marks the object as used by calling this function, which increments the
object's useCount member. When the library object is done using the ZIL_DECORA­
TION object, it must release it by calling the FreeDecorations() function.

The first overloaded function takes a pointer to the ZIL_DECORATION object being
marked as used.

Chapter 53 - ZIL_DECORATlON_MANAGER 567

• returnValueou1 is a pointer to the ZIL_DECORATION object.

• languagein is a pointer to the ZIL_DECORATION object that is to be marked as
used.

The second overloaded function takes the decorations name. If load capability is enabled
(i.e., ZIL_LOAD was defined when the library was compiled) this function will load the
data from the I18N.DAT file if necessary. Otherwise, the data must have been compiled
and linked into the application.

• returnValueoul is a pointer to the ZIL_DECORATION object.

• decorationsNamein is the two-letter ISO country name identifying which images are
to be used.

568 Zinc Application Framework-Programmer's Reference Volume 1

The ZIL_DELTA_STORAGE_OBJECT class object is used to store changes, or deltas,
to objects. By using delta storage, entire objects don't need to be saved if only a small
part of the object changed. A prime use for delta storage is for creating international
applications. A window with several dozen objects on it may be created in the Designer.
If the application is to be used in several different languages, then the strings on the
window need to be translated. Rather than storing a complete copy of the window for
each language, however, the original window is stored and only the changes to the
objects, such as the new text, are saved.

The ZIL_DELTA_STORAGE_OBJECT class is declared in UI_GEN.HPP. Its public
and protected members are:

class ZIL_EXPORT_CLASS ZIL_DELTA_STORAGE_OBJECT : public ZIL_STORAGE_OBJECT
{
public: II Read/Write support

ZIL_DELTA_STORAGE_OBJECT(ZIL_STORAGE_OBJECT_READ_ONLY *_object,
ZIL_STORAGE &file, const ZIL_ICHAR *name,
ZIL_OBJECTID nObjectID, UIS_FLAGS pFlags = UIS_READWRITE);

-ZIL_DELTA_STORAGE_OBJECT(void);
int Store(ZIL_INT16 value);
int Store(ZIL_UINT16 value);
int Store(ZIL_INT32 value);
int Store(ZIL_UINT32 value);
int Store(ZIL_INT8 value);
int Store(ZIL_UINT8 value);
int Store(void *buff, int size, int length);
int Store(const ZIL_ICHAR *string);

};

General Members

This section describes those members that are used for general purposes.

ZIL_DELTA_STORAGE OBJECT::ZIL DELTA STORAGE_­
OBJECT

Syntax

#include <ui_gen.hpp>

ZIL_DELTA_STORAGE_OBJECT(ZIL_STORAGE_OBJECT_READ_ONLY *object,
ZIL_STORAGE &file, const ZIL_ICHAR *name,

569

ZIL_OBJECTID nObjectID, VIS_FLAGS pFlags = VIS_READWRITE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new ZIL_DELTA_STORAGE_OBJECT class object.

• objectin is the pointer to the original object. When the new object is stored, this
pointer is referenced to determine if a delta version of the object needs to be stored.

• file in is the file where the delta object will be stored.

• namein is the name of the delta object.

• nObjectIDin is the objectID for the delta object.

• pFlagsin indicates how the storage object is to be opened. The following
VIS_FLAGS are supported:

UIS_READ-Allows read only access to the object.

UIS_READWRITE-Allows read and write access to the object. This flag
allows modifications to be made to the object.

UIS_CREATE-Creates an object and allows write access to it. Any previous
object will be deleted.

UIS_OPENCREATE-Opens an existing object for read and write access. If
the object does not exist, it is created for read and write access.

570 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_DELTA_STORAGE_OBJ ECT: :-ZIL_DELTA_STORAG E_­
OBJECT

Syntax

#include <ui_gen.hpp>

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the ZIL_DELTA_­
STORAGE_OBJECT object.

Syntax

#include <ui_gen.hpp>

int Store(ZIL_INT16 value);
or

int Store(ZIL_UINT16 value);
or

int Store(ZIL_INT32 value);
or

int Store(ZIL_UINT32 value);
or

int Store(ZIL_UINT8 value);
or

int Store(ZIL_INT8 value);
or

int Store(void *buff, int size, int length);

571

or
int Store(const ZIL_ICHAR *string);

Portability

These functions are available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

The first six overloaded functions write information to the storage file according to the
type of value given.

• returnValueout is the number of bytes written.

• valuein is the numeric value to be written. The following values are supported:

ZIL_INT8-A number whose value is between -128 and 127 (8 bits, signed).

ZIL_UINT8-A number whose value is between 0 and 255 (8 bits, unsigned).

ZIL_INTl6--A number whose value is between -32,768 and 32,767 (16 bits,
signed).

ZIL_UINTl6--A number whose value is between 0 and 65,535 (16 bits,
unsigned).

ZIL_INT32-A number whose value is between -2,147,483,648 and
2,147,483,647 (32 bits, signed).

ZIL_UINT32-A number whose value is between 0 and 4,294,967,295 (32 bits,
unsigned).

The seventh overloaded function writes information into the storage file according to the
following values:

• returnValueout is the number of bytes written.

• bu.tt;n is a pointer to the buffer that contains the information to be written.

572 Zinc Application Framework-Programmer's Reference Volume 1

• sizein is the size of each item to be written.

• lengthin is the number of items to be written.

In general, programmers are discouraged from using this function, because the integrity
of the type of value being stored cannot be guaranteed across environments. For example,
the storage size of a value (e.g., int) in DOS might be different than that in Motif. All
of the other Store() functions, however, are the same across environments.

The eighth overloaded function writes information into the storage file according to the
following value:

• returnValueout is the number of bytes written.

• stringin is a pointer to the string that is to be written.

573

574 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 55­
ZIL_DELTA_STORAGE_OBJECT_READ_ONLY

The ZIL_DELTA_STORAGE_OBJECT_READ_ONLY class object is used to read
changes, or deltas, for an object from a file. By using delta storage, entire objects don't
need to be saved if only a small part of the object changed. A prime use for delta storage
is for creating international applications. A window with several dozen objects on it may
be created in the Designer. If the application is to be used in several different languages,
then the strings on the window need to be translated. Rather than storing a complete copy
of the window for each language, however, the original window is stored and only the
changes to the objects, such as the new text, are saved.

The ZIL_DELTA_STORAGE_OBJECT_READ_ONLY class is declared in UI_­
GEN.HPP. Its public and protected members are:

class ZIL_EXPORT_CLASS ZIL_DELTA_STORAGE_OBJECT_READ_ONLY
public ZIL_STORAGE_OBJECT_READ_ONLY

{
public: II Read-Only support

ZIL_DELTA_STORAGE_OBJECT_READ_ONLY(
ZIL_STORAGE_OBJECT_READ_ONLY *_object,
ZIL_STORAGE_READ_ONLY &file, const ZIL_ICHAR *name,
ZIL_OBJECTID nObjectID);

-ZIL_DELTA_STORAGE_OBJECT_READ_ONLY(void) ;

int Load(ZIL_INT16 *value);
int Load(ZIL_UINT16 *value);
int Load(ZIL_INT32 *value);
int Load(ZIL_UINT32 *value);
int Load(ZIL_UINT8 *value);
int Load(ZIL_INT8 *value);
int Load(void *buff, int size, int length);
int Load(ZIL_ICHAR *string, int length);
int Load(ZIL_ICHAR **string);

} ;

General Members

This section describes those members that are used for general purposes.

575

ZIL_DELTA_STORAGE_OBJECT_READ_ONLY: :ZIL_DELTA_­
STORAGE_OBJECT_READ_ONLY

Syntax

#include <uLgen.hpp>

ZIL_DELTA_STORAGE_OBJECT_READ_ONLY(
ZIL_STORAGE_OBJECT_READ_ONLY *object,
ZIL_STORAGE_READ_ONLY &file, const ZIL_ICHAR *name,
ZIL_OBJECTID nObjectlD);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

576

This constructor creates a new ZIL_DELTA_STORAGE_OBJECT_READ_ONLY class
object. The ZIL_DELTA_STORAGE_OBJECT_READ_ONLY that is created is passed
to the Load() member function of the window object as the ZIL_STORAGE_OBJECT_­
READ_ONLY parameter.

• objectin is a pointer to the object. If a pointer to the object that is already opened is
passed in, both the original object and the deltas are loaded. If this pointer is NULL,
it is assumed that the original object has already been loaded and only the deltas are
loaded.

• file in is the file where the delta object is located.

• namein is the name of the delta object.

nObjectIDin is the objectID for the delta object.

Zinc Application Framework-Programmer's Reference Volume 1

ZIL_DELTA_STORAGE_OBJECT_READ_ONLV::'LIL_DELTA_­
STORAGE_OBJECT_READ_ONLV

Syntax

#include <uLgen.hpp>

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the ZIL_DELTA_­
STORAGE_OBJECT_READ_ONLY object.

Syntax

#include <ui_gen.hpp>

int Load(ZIL_INTI6 *value);
or

int Load(ZIL_UINT16 *value);
or

int Load(ZIL_INT32 *value);
or

int Load(ZIL_UINT32 *value);
or

int Load(ZIL_UINT8 *value);
or

int Load(ZIL_INT8 *value);
or

int Load(void *buff, int size, int length);

577

or
int Load(ZIL_ICHAR *string, int length);

or
int Load(ZIL_ICHAR **string);

Portability

These functions are available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

The first six overloaded functions read information from the storage file according to the
type of value given.

• returnValueout is the number of bytes read.

• valueout is the numeric value read. The following values are supported:

ZIL_INT8-A number whose value is between -128 and 127 (8 bits, signed).

ZIL_UINT8-A number whose value is between 0 and 255 (8 bits, unsigned).

ZIL_INTl6-A number whose value is between -32,768 and 32,767 (16 bits,
signed).

ZIL_UINTl6-A number whose value is between 0 and 65,535 (16 bits,
unsigned).

ZIL_INT32-A number whose value is between -2,147,483,648 and
2,147,483,647 (32 bits, signed).

ZIL_UINT32-A number whose value is between 0 and 4,294,967,295 (32 bits,
unsigned).

The seventh overloaded function reads information from the storage file according to the
following values:

578 Zinc Application Framework-Programmer's Reference Volume 1

buffout is a pointer to the buffer that will receive the information. This buffer must
be large enough to contain the information read.

sizein is the size of each item to be read.

• lengthin is the number of items to be read.

In general, programmers are discouraged from using this function, because the integrity
of the type of value being loaded cannot be guaranteed across environments. For
example, the storage size of a value in DOS might be different than that in Motif. All
of the other Load() functions, however, are the same across environments.

The eighth overloaded function reads information from the storage file according to the
following values:

stringout is a pointer to the character buffer that will receive the information. This
buffer must be large enough to contain the information read.

• lengthin is the number of characters to read.

The ninth overloaded function reads information from the storage file according to the
following values:

• stringout is a pointer to a string pointer where the information will be written. This
string is allocated by the library.

579

580 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 56 - ZIL_118N

The ZIL_I18N class is the base class for the classes that maintain internationalization data.
Derived classes include ZIL_DECORATION, ZIL_LANGUAGE, and ZIL_LOCALE.
The ZIL_I18N class provides those member variables and functions that are common to
the derived classes.

The ZIL_I18N class is declared in UI_GEN.HPP. Its public and protected members are:

class ZIL_EXPORT_CLASS ZIL_I18N : public UI_ELEMENT
{

friend class ZIL_EXPORT_CLASS ZIL_I18N_MANAGER;
public:

const ZIL_ICHAR *className;
const ZIL_ICHAR *pathName;
ZIL_ICHAR name[12];
int useCount;
int error;

ZIL_I18N (void) ;
-ZIL_I18N(void) ;

#if defined (ZIL_LOAD)
static int Traverse(ZIL_STORAGE_READ_ONLY *storage,

const ZIL_ICHAR *-path);
void Load(ZIL_STORAGE_READ_ONLY *storage,

ZIL_STORAGE_OBJECT_READ_ONLY *object);
virtual void ClassLoadData(ZIL_STORAGE_OBJECT_READ_ONLY *object);

#endif
#if defined (ZIL_STORE)

static int Traverse(ZIL_STORAGE *storage, const ZIL_ICHAR *-path,
int create = FALSE);

void Store(ZIL_STORAGE *storage, ZIL_STORAGE_OBJECT *object);
virtual void ClassStoreData(ZIL_STORAGE_OBJECT *object);

#endif
static ZIL STORAGE READ ONLY *defaultStorage;
static ZIL=ICHAR *i18nName;

protected:
ZIL_UINT8 allocated;
ZIL_UINT8 defaults;

virtual void AssignData(const ZIL_I18N *data);
virtual void DeleteData(void) ;

} ;

General Members

This section describes those members that are used for general purposes.

className is a string that identifies the object with which the data maintained by the
ZIL_I18N class is associated.

Chapter 56 - ZIL_'18N 581

• pathName is the pathname off the ZIL_INTERNATIONAL directory within the
I18N.DAT internationalization data file where the data for this object is located.
pathName is "DECORATION" for the ZIL_DECORATION class, "LANGUAGE"
for the ZIL_LANGUAGE class, and "LOCALE" for the ZIL_LOCALE class.

• name identifies the country or language for which the internationalization data
applies. Typically this is the two-letter ISO country or language code.

• useCount indicates how many objects are currently using the instance of this object.
useCount is updated in the UseI18N() and FreeI18N() functions and their derived
equivalents (i.e., UseLanguage(), etc.).

• error contains any error codes returned by defaultStorage.

• defaultStorage is the data file that contains internationalization data. By default this
file is I18N.DAT.

• il8nName is the name of the internationalization data file. By default, il8nName is
"i18n.dat."

• allocated indicates if the memory for the data maintained by the object was allocated
by the library. If the memory was allocated by the library, allocated is TRUE.
Otherwise, allocated is FALSE. If allocated is TRUE, the data can be deleted by the
library.

• defaults indicates if the instance of this class contains the default data.

Syntax

#include <uLgen.hpp>

ZIL_Il8N(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

582 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This constructor creates a new ZIL_I18N class object.

Syntax

#include <ui_gen.hpp>

-ZIL_Il8N(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2

• NEXTSTEP

This destructor destroys the information associated with the ZIL_I18N object, including
the data maintained by the class if allocated is TRUE.

ZIL_118N::AssignData

Syntax

#include <ui_gen.hpp>

virtual void AssignData(const ZIL_I18N *data);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Chapter 56 - ZIL_118N

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

583

Remarks

This function is a stub that does nothing. It is provided in the event that a derived class
does not need to implement the function.

datain is not used.

ZIL_118N: :DeleteData

Syntax

#include <uLgen.hpp>

virtual void DeleteData(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function is a stub that does nothing. It is provided in the event that a derived class
does not need to implement the function.

Storage Members

This section describes those members that are used for storage purposes.

584 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_118N: :ClassLoadData

Syntax

#include <uLgen.hpp>

virtual void ClassLoadData(ZIL_STORAGE_OBJECT_READ_ONLY *object)~

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function is a stub that does nothing. It is provided in the event that a derived class
does not need to implement the function.

• objectin is not used.

ZIL_118N::ClassStoreData

Syntax

#include <ui_gen.hpp>

virtual void ClassStoreData(ZIL_STORAGE_OBJECT *object)~

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Chapter 56 - ZIL_118N

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

585

Remarks

This function is a stub that does nothing. It is provided in the event that a derived class
does not need to implement the function.

• objectin is not used.

ZIL_118N::Load

Syntax

#include <ui_gen.hpp>

virtual void Load(ZIL_STORAGE_READ_ONLY *storage,
ZIL_STORAGE_OBJECT_READ_ONLY *object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

586

This advanced function is used to load ZIL_I18N data from a persistent object data file.
This function is typically not used by the programmer.

• storagein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
data. For more information on persistent object files, see "Chapter 70-ZIL_­
STORAGE_READ_ONLY."

objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the data
will be loaded. For more information on loading information from persistent object
files, see "Chapter 69-ZIL_STORAGE_OBJECT_READ_ONLY."

Zinc Application Framework-Programmer's Reference Volume 1

ZIL_118N: :Store

Syntax

#include <ui_gen.hpp>

virtual void Store(ZIL_STORAGE *storage, ZIL_STORAGE_OBJECT *object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to store ZIL_II8N data in a persistent object data file.
This function is typically not used by the programmer.

storagein is a pointer to the ZIL_STORAGE where the data will be stored. For more
information on persistent object files, see "Chapter 66-ZIL_STORAGE."

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the data will be stored.
For more information on loading persistent objects, see "Chapter 68-ZIL_­
STORAGE_OBJECT."

ZIL_118N::Traverse

Syntax

static int Traverse(ZIL_STORAGE_READ_ONLY *storage, const ZIL_ICHAR *--path);
or

static int Traverse(ZIL_STORAGE *storage, const ZIL_ICHAR *--path,
int create =FALSE);

Chapter 56 - ZIL_118N 587

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These functions traverse the internationalization data file to the directory specified by
path. The first function is used for read-only files. The second function is used for files
that can be written to.

• returnValueout indicates whether the function was able to traverse the international­
ization data file to the appropriate subdirectory. If the function was able to traverse
the data file correctly, returnValue will be O. If the function was not successful,
returnValue will be non-zero.

• storagein is a pointer to the data file where the internationalization data is located.
Typically, this will be the data file pointed to by defaultStorage.

• -pathin is the path to which the file should be traversed.

• createin specifies if the function should create the subdirectory if it does not already
exist. If create is TRUE, the subdirectory will be created. Otherwise, the
subdirectory will not be created.

588 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 57 - ZIL_118N_MANAGER

The ZIL_I18N_MANAGER class object is an abstract class that defines the behavior of
derived internationalization manager classes. The manager classes maintain a list of "data
blocks" that contain bitmaps, text images, locale information, or language translations.
Derived manager classes include the ZIL_DECORATION_MANAGER, the ZIL_­
LANGUAGE_MANAGER and the ZIL_LOCALE_MANAGER.

The ZIL_I18N_MANAGER class is declared in UI_GEN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS ZIL_I18N_MANAGER public UI_LIST
{
public:

ZIL ICHAR *defaultName;
virtual ZIL I18N *CreateData(void) = 0;
void FreeI18N(const ZIL_I18N *i18n);
void LoadDefaultI18N(const ZIL_ICHAR *i18nName);
ZIL_I18N *UseI18N(const ZIL_I18N *i18n);
ZIL_I18N *UseI18N(const ZIL_ICHAR *className,

const ZIL_ICHAR *i18nName);
};

General Members

This section describes those members that are used for general purposes.

• defaultName is the two-letter ISO name identifying the default language or locale for
the application.

ZIL_118N_MANAGER::CreateData

Syntax

#include <ui~en.hpp>

virtual ZIL_II8N *CreateData(void) = 0;

Chapter 57 - ZIL_118N_MANAGER 589

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function creates a new ZIL_I18N object (or derived object). This function is a pure
virtual function and so it has no definition for the ZIL_I18N_MANAGER class. Each
derived manager class implements this function.

• returnValueout is a pointer to the new ZIL_I18N object (or derived object) that was
created.

ZIL_118N_MANAGER::Freel18N

Syntax

#include <uLgen.hpp>

void FreeI18N(const ZIL_I18N *il8n);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function releases the ZIL_I18N object from use by decrementing the ZIL_Il8N
object's useCount member. Whenever a library object requests the use of a ZIL_Il8N
object, it does so by calling the UseI18N() function, which marks the ZIL_II8N object
as used by incrementing its useCount member. When the library object is done using the
ZIL_I18N object, it must release it by calling this function. If the releasing object was
the last object using the ZIL_I18N object, this function will deallocate the data being
maintained by the ZIL_I18N object unless it contains the default data.

590 Zinc Application Framework-Programmer's Reference Volume 1

• il8nin is a pointer to the ZIL_Il8N object that is being released.

ZIL_118N_MANAGER::LoadDefaultl18N

Syntax

#include <uLgen.hpp>

void LoadDefaultIl8N(const ZIL_ICHAR *il8nName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sets the default language or locale for the application. Any objects that are
using the default information at the time this function is called will start using the new
default data. If necessary, this function loads the default internationalization data from
the I18N.DAT file.

• i18nNamein is the two-letter ISO name identifying the language or locale which is to
be the default for the application.

ZIL_118N_MANAGER::Use118N

Syntax

#include <uLgen.hpp>

ZIL_I18N *useIl8N(const ZIL_I18N *U8n);
or

ZIL_I18N *UseI18N(const ZIL_ICHAR *className, const ZIL_ICHAR *il8nName);

Chapter 57 - ZIL_118N_MANAGER 591

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

592

These overloaded functions mark a ZIL_Il8N object as used by incrementing its useCount
member. Whenever a library object requests the use of a ZIL_Il8N object, it marks the
object as used by calling this function, which increments the object's useCount member.
When the library object is done using the ZIL_Il8N object, it must release it by calling
the FreeI18N() function.

The first overloaded function takes a pointer to the ZIL_Il8N object being marked as
used.

• returnValueou1 is a pointer to the ZIL_Il8N object.

• i18nin is a pointer to the ZIL_Il8N object that is to be marked as used.

The second overloaded function takes the class name of the object and the
internationalization name. If load capability is enabled (i.e., ZIL_LOAD was defined
when the library was compiled) this function will load the data from the I18N.DAT file
if necessary. Otherwise, the data must have been compiled and linked into the
application.

• returnValueou1 is a pointer to the ZIL_Il8N object.

• classNamein is the class name of the object for which the internationalization data is
being requested. This typically corresponds to the _className member variable of
the object.

i18nNamein is the two-letter ISO name identifying which set of data is requested.
i18nName is either the country code or the language code, depending on the type of
derived manager making the request. In this way, the country- or language-specific
data for an object can be used.

Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 58 - ZIL_INTERNATIONAL

The ZIL_INTERNATIONAL class is the base class for internationalization in Zinc
Application Framework. This class maintains the default ZIL_LOCALE and ZIL_MAP_­
CHARS classes and also provides many replacement functions for Ctype, string and file
functions. These functions need to be overloaded to support Unicode 16-bit characters.

All UIW_ objects in the library are derived from ZIL_INTERNATIONAL through UC­
WINDOW_OBJECT, thus giving the objects access to these overloaded functions through
inheritance. Because of this, accessing the overloaded functions from within a member
function is transparent; by calling strdup, for instance, you get the Zinc-overloaded
strdup. So this portable functionality comes with no extra effort to you, the programmer.
In addition, all these overloaded functions are static members and public, so the functions
can be accessed globally as well.

The ZIL_INTERNATIONAL class structure is declared in UI_GEN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS ZIL_INTERNATIONAL
{

friend class ZIL_EXPORT_CLASS ZIL_LOCALE;
friend class ZIL_EXPORT_CLASS ZIL_LANGUAGE;
friend class ZIL_EXPORT_CLASS ZIL_MAP_CHARS;

public:
friend class ZIL_EXPORT_CLASS ZIL_STORAGE;
friend class ZIL_EXPORT_CLASS ZIL_STORAGE_OBJECT;

virtual -ZIL_INTERNATIONAL(void);

II Posix time() support
static ZIL_INT32 minutesWestGMT;
void TimeStamp(ZIL_UINT32 *value);

static void DefaultI18nInitialize(void);
static void CharMaplnitialize(void);
static void OSI18nInitialize(ZIL_ICHAR *langName,

int forcelnitialization = FALSE);
static void 118nInitialize(const ZIL_ICHAR localeName,

const ZIL_ICHAR languageName);

II Support for international Unicode/ISO helper functions.
static int chartod(const ZIL_ICHAR value) ;
static int IsNonspacing(ZIL_ICHAR value);

II Support for international Ctype functions.
static int IsAlnum(ZIL_ICHAR value) ;
static int IsAlpha(ZIL_ICHAR value);
static int IsAscii(ZIL_ICHAR value);
static int IsCntrl(ZIL_ICHAR value);
static int IsDigit(ZIL_ICHAR value);
static int IsGraph(ZIL_ICHAR value) ;
static int IsLower(ZIL_ICHAR value);
static int IsPrint(ZIL_ICHAR value);
static int IsPunct(ZIL_ICHAR value);
static int IsSpace(ZIL_ICHAR value);
static int IsUpper(ZIL_ICHAR value);

Chapter 58 - ZIL_INTERNA T10NAL 593

594

static int IsXDigit(ZIL_ICHAR value);
static ZIL ICHAR ToLower(ZIL_ICHAR value);
static ZIL_ICHAR ToUpper(ZIL_ICHAR value);

II Support for internationalized ANSI routines.
#if defined (ZIL_NEXTSTEP)

static double strtod(const ZIL_ICHAR *nptr);
static int strtoi(const ZIL_ICHAR *nptr);
static long strtol(const ZIL_ICHAR *nptr);

#else
static int atoi(const ZIL_ICHAR *nptr);
static long atol(const ZIL_ICHAR *nptr);
static double atof(const ZIL_ICHAR *nptr);

#endif

static long strtol(const ZIL_ICHAR *nptr, ZIL_ICHAR **endptr, int base);
static unsigned long strtoul(const ZIL_ICHAR *nptr, ZIL_ICHAR **endptr,

int base);
static double strtod(const ZIL_ICHAR *nptr, ZIL_ICHAR **endptr);

static ZIL_ICHAR *strcpy(ZIL_ICHAR *sl, const ZIL_ICHAR *s2);
static int strcmp(const ZIL_ICHAR *sl, const ZIL_ICHAR *s2);
static int strncmp(const ZIL_ICHAR *sl, const ZIL_ICHAR *s2, int n);
static ZIL_ICHAR *strncpy(ZIL_ICHAR *sl, const ZIL_ICHAR *s2, int n);

static ZIL_ICHAR *strcat(ZIL_ICHAR *sl, const ZIL_ICHAR *s2);
static ZIL_ICHAR *strncat(ZIL_ICHAR *sl, const ZIL_ICHAR *s2, int n);

#if ! defined (__SC__) I I defined (ZIL_MACINTOSH)
static int strcoll(const ZIL_ICHAR *sl, const ZIL_ICHAR *s2);

#endif
static int strxfrm(ZIL_ICHAR *sl, const ZIL_ICHAR *s2, int n);
static ZIL_ICHAR *strchr(const ZIL_ICHAR *s, int c);
static int strcspn(const ZIL_ICHAR *sl, const ZIL_ICHAR *s2);
static ZIL_ICHAR *strpbrk(const ZIL_ICHAR *sl, const ZIL_ICHAR *s2);
static ZIL_ICHAR *strrchr(const ZIL_ICHAR *s, int c);
static int strspn(const ZIL_ICHAR *sl, const ZIL_ICHAR *s2);
static ZIL_ICHAR *strstr(const ZIL_ICHAR *sl, const ZIL_ICHAR *s2);
static ZIL ICHAR *strtok(ZIL ICHAR *sl, const ZIL ICHAR *s2);
static ZIL=ICHAR *strerror(i~t errnum); -

II zinc (non-ANSI) routines
static int stricmp(const ZIL_ICHAR *a, const ZIL_ICHAR *b);
static int strnicmp(const ZIL_ICHAR *a, const ZIL_ICHAR *b, int n);
static ZIL_ICHAR *strlwr(ZIL_ICHAR *string);
static ZIL_ICHAR *strupr(ZIL_ICHAR *string);
static void strstrip(ZIL_ICHAR *string, ZIL_ICHAR c);
static ZIL_ICHAR *strdup(const ZIL_ICHAR *string);
static int WildStrcmp(ZIL_ICHAR *str, ZIL_ICHAR *pattern);
static void StripHotMark(ZIL_ICHAR *fillLine);

II Ansi routines
static int strlen(const ZIL_ICHAR *string);
static void itoa(ZIL_INT32 value, ZIL_ICHAR *string, int radix,

int pad = 0);
static void strrepc(ZIL_ICHAR *string, int c, int repc);
static int sprintf(ZIL_ICHAR *buffer, const ZIL_ICHAR *format,);
static int sscanf(ZIL_ICHAR *buffer, const ZIL_ICHAR *format,);

II File support routines.
static int chdir(const ZIL_ICHAR *path);
static ZIL_ICHAR *getcwd(ZIL_ICHAR *buffer, unsigned length);
static ZIL_ICHAR *getenv(const ZIL_ICHAR *envname);
static int open(const ZIL_ICHAR *path, int access, unsigned mode = 0);
static int rename(const ZIL_ICHAR *oldPath, const ZIL ICHAR *newPath);
static int stat(const ZIL_ICHAR *path, void *);
static ZIL_ICHAR *tmpnam(ZIL_ICHAR *path);
static int unlink(const ZIL_ICHAR *path);

Zinc Application Framework-Programmer's Reference Volume 1

II Character mapping routines
static char *MapText(const Z1L_1CHAR *mapped,

char *unMapped = Z1L_NULLP(char) , int allocate = TRUE);
static Z1L_1CHAR *UnMapText(const char *unMapped,

Z1L_1CHAR *mapped = Z1L_NULLP(Z1L_1CHAR), int allocate TRUE);
static Z1L_1CHAR *1SOtoUN1CODE(const char *isoString,

Z1L_1CHAR *retValue = Z1L_NULLP(Z1L_1CHAR));

II File support routines.
static void ConvertFromFilename(Z1L_1CHAR *dst,

const Z1L_F1LE_CHAR *src);
static void ConvertToFilename(Z1L_F1LE_CHAR *dst, const Z1L_1CHAR *src);

II Character mapping routines
static Z1L_1CHAR *1SOto1CHAR(const char *isoString,

Z1L_1CHAR *icharString = Z1L_NULLP(Z1L_1CHAR));
static int Load1CHARtoHardware(const Z1L_ICHAR *mapName,

const ZIL_ICHAR *extraName);
static ZIL_1CHAR UnMapChar(const char *hardware);
static char *MapChar(ZIL_1CHAR unicode);

#if defined(Z1L_UNICODE)
static int mblen(const char *hardware);
static int wcstombs(char *s, const Z1L_ICHAR *pwcs, int n -1);
static int mbstowcs(ZIL_ICHAR *pwcs, const char *s, int n -1);
static ZIL_ICHAR *DecomposeCharacter(Z1L_ICHAR val);
static Z1L_1CHAR *DecomposeString(const ZIL_ICHAR *str);

#endif

II 118N member variables and functions.
public:

static void ParseLangEnv(ZIL_1CHAR *codeSet, ZIL_ICHAR *locName,
Z1L_1CHAR *langName);

static const ZIL_LOCALE *defaultLocale;
static const Z1L_LOCALE canonicalLocale;
static Z1L_MAP_CHARS *defaultCharMap;

static Z1L_1CHAR _blankString[J;
static ZIL_ICHAR _errorString[J;

static void MachineName(void);
static Z1L 1CHAR machineName[32];

} ;

General Members

This section describes those members used for general purposes.

minutesWestGMT is how far west of Greenwich Mean Time the locale is, measured
in minutes.

The use of the Ctype, string, and file support functions is the same as described for the
C library with three exceptions. The first exception is that the Ctype functions are
renamed to be consistent with Zinc coding standards (i.e., each "word" in the function
name begins with a capital letter). This is done because most of these functions are
actually implemented as macros in many compilers and need to be renamed to avoid
symbol clashes.

Chapter 58 - ZIL_INTERNA TlONAL 595

The second difference is that the Zinc-overloaded functions use ZIL_ICHAR instead of
char. For a description of the ZIL_ICHAR type, see "Appendix A-Support
Definitions" of Programmer's Reference Volume 2.

The third difference is that the printf function has some enhanced formatting ability. If
a '%n' is encountered in the formatting string, where n is an integer, the ordering of the
fields will be altered so that the field will be the n-th field.

We will not discuss the use of these functions here. Refer to your C library reference for
assistance with these functions.

We encourage you to use the Zinc implementation of these functions instead of the C
library implementation even if you have no immediate plans to internationalize your
applications. It will require little extra overhead and minimal extra effort, if any, but will
provide a much easier path to internationalizing the application if you decide to do so in
the future.

ZIL_INTERNATIONAL::CharMaplnitialize

Syntax

#include <ui_gen.hpp>

static void CharMapInitialize(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

596

This function creates a new ZIL_MAP_CHARS object maintained by defaultCharMap.

Zinc Application Framework-Programmer's Reference Volume 1

ZIL_INTERNATIONAL: :chartod

Syntax

#include <uLgen.hpp>

static int chartod(const ZIL_ICHAR value);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the integer value of the character passed in. This function is used
for determining the value of a number from the string representation of the number.

• returnValueout is the integer value of the character that was passed in. Thus, if the
character was a digit, returnValue will be that digit's value. If the character that was
passed in is not a digit, returnValue will be -1.

• valuein is the character whose integer value is to be returned.

ZIL_INTERNATIONAL: :ConvertFromFilename

Syntax

#include <uLgen.hpp>

static void ConvertFromFilename(ZIL_ICHAR *dst, const ZIL_FILE_CHAR *src);

Chapter 58 - ZIL_INTERNATIONAL 597

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function converts an environment-specific filename string to a Unicode filename
string. A special function is necessary to convert filenames to ensure that any characters
that may cause problems as part of a filename are not translated incorrectly (e.g., '/' or
'\'). The ZIL_FILE_CHAR type may be different in each environment, depending on the
size of the character type in that environment.

• dstoul is a pointer to a buffer where the converted filename will be placed. This
buffer must be big enough to hold the converted filename.

srcin is a pointer to the filename string that is to be converted.

ZIL_INTERNATIONAL: :ConvertToFilename

Syntax

#include <uLgen.hpp>

static void ConvertToFilename(ZIL_FILE_CHAR *dst, const ZIL_ICHAR *src);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

598

This function converts a Unicode filename string to an environment-specific filename
string. A special function is necessary to convert filenames to ensure that any characters
that may cause problems as part of a filename are not translated incorrectly (e.g., '/' or

Zinc Application Framework-Programmer's Reference Volume 1

'\'). The ZIL_FILE_CHAR type may be different in each environment, depending on the
size of the character type in that environment.

• dstout is a pointer to a buffer where the converted filename will be placed. This
buffer must be big enough to hold the converted filename.

• srCin is a pointer to the string that is to be converted.

ZIL_INTERNATIONAL::DecomposeCharacter

Syntax

#include <uLgen.hpp>

static ZIL_ICHAR *DecomposeCharacter(ZIL_ICHAR val);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function splits a composed Unicode character into the individual characters it is made
from. Some languages use characters as modifiers in certain contexts. One or more
modifiers may be combined with other characters to form the desired character. It may
be necessary to decompose the character in order to properly collate it. This functionality
is only included in the library if the library is built with ZIL_DECOMPOSE defined in
UI_ENV.HPP. If the application will not need this functionality, make sure ZIL_­
DECOMPOSE is not defined and rebuild the library.

• returnValueou, is the string formed from the individual characters obtained by
decomposing val.

• Valin is the Unicode character that is to be decomposed.

Chapter 58 - ZIL_INTERNATIONAL 599

ZIL_INTERNATIONAL::DecomposeString

Syntax

#include <ui_gen.hpp>

static ZIL_ICHAR *DecomposeString(const ZIL_ICHAR *str);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function decomposes the characters in a Unicode string. See the description of
DecomposeCharacter(), above, for more details on composed characters. This
functionality is only included in the library if the library is built with ZIL_DECOMPOSE
defined in UI_ENV.HPP.

ZIL_INTERNATIONAL::Defaultl18nlnitialize

Syntax

#include <ui~en.hpp>

static void DefaultI18nInitialize(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2

• NEXTSTEP

600 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function initializes the defaultLocale member. It is called from the constructor of
the Event Manager as the program is starting up.

ZIL_INTERNATIONAL::118nlnitialize

Syntax

#include <ui_gen.hpp>

static void I18nInitialize(const ZIL_ICHAR *localeName,
const ZIL_ICHAR *languageName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function initializes the language and locale information being used by the application.

• localeNamein is the two-letter ISO country code that identifies which locale is to be
initialized.

• languageNamein is the two-letter ISO language code that identifies which language
is to be initialized.

ZIL_INTERNATIONAL::lsNonSpacing

Syntax

#include <ui_gen.hpp>

static int IsNonSpacing(ZIL_ICHAR value);

Chapter 58 - ZIL_INTERNATIONAL 601

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function determines if a character requires space when rendered. For example, some
languages (e.g., Thai) contain characters that distinguish a related character in a string.
The distinguishing character will appear above, below, before or after the character to be
distinguished. Such a distinguishing character would be non-spacing since it is rendered
in the region of the screen occupied by the distinguished character.

• returnValueout indicates whether the character is a spacing or non-spacing character.
returnValue will be FALSE if the character is a spacing character, or TRUE if the
character is non-spacing.

• valuein is the Unicode character whose spacing requirements are to be determined.

ZIL_INTERNATIONAL::ISOtoICHAR

Syntax

#include <ui~en.hpp>

static ZIL_ICHAR *ISOtoICHAR(const char *isoString,
ZIL_ICHAR *icharString = ZIL_NULLP(ZIL_ICHAR));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function converts an 8-bit IS08859-1 string to a Unicode string. The conversion is

602 Zinc Application Framework-Programmer's Reference Volume 1

performed by padding the high-order byte with zeros. This can be done because the first
256 entries in the Unicode character set are the IS08859-1 characters. If no destination
buffer is passed in, a buffer will be allocated by the function.

• returnValueout is a pointer to a buffer containing the generated Unicode string.

isoStringin is a pointer to the IS08859-1 string that is to be converted.

• unicodeStringoul is a pointer to a buffer to which the generated Unicode string will be
copied. If this pointer is used, the buffer must be big enough to hold the converted
string. If no buffer is passed in the function will allocate a buffer. This buffer will
need to be deleted by the programmer when he is done with the buffer.

ZIL_INTERNATIONAL::ISOtoUNICODE

Syntax

#inc1ude <ui_gen.hpp>

static ZIL_ICHAR *ISOtoUNICODE(const char *isoString,
ZIL_ICHAR *retValue = ZIL_NULLP(ZIL_ICHAR»;

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function converts an 8-bit IS08859-1 string to a Unicode string. The conversion is
performed by padding the high-order byte with zeros. This can be done because the first
256 entries in the Unicode character set are the IS08859-1 characters. If no destination
buffer is passed in, a buffer will be allocated by the function.

• returnValueout is a pointer to a buffer containing the generated Unicode string.

• isoStringin is a pointer to the IS08859-1 string that is to be converted.

Chapter 58 - Z'L_'NTERNATIONAL 603

• retaValueout is a pointer to a buffer to which the generated Unicode string will be
copied. If this pointer is used, the buffer must be big enough to hold the converted
string. If no buffer is passed in the function will allocate a buffer. This buffer will
need to be deleted by the programmer when he is done with the buffer.

ZIL_INTERNATIONAL::LoadICHARtoHardware

Syntax

#include <ui~en.hpp>

static int LoadICHARtoHardware(const ZIL_ICHAR *mapName,
const ZIL_ICHAR *extraName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function loads map tables to provide mapping between the Unicode character set and
the hardware character set. The hardware character set is the character set used by the
operating system in the environment on which the program is running.

• returnValueout indicates whether the function was successful in loading the map
tables. returnValue is 0 if the map tables were loaded successfully. It is non-zero
if not successful.

• mapNamein is the name of the map table to be loaded. This table is a standard table
for mapping characters between the Unicode character set and the particular hardware
character set.

• extraNamein is the name of a map table that contains exceptions to the mapName map
table. For instance, it is possible for the same character set on different operating
systems to be slightly different (i.e., some characters may be in different locations in
the character set). This map table resolves those problems by providing the proper
mapping for known exceptions. This map table will be searched before the mapName

604 Zinc Application Framework-Programmer's Reference Volume 1

map table. If a mapping is found in this map table, the mapName table will not be
searched.

ZIL_INTERNATIONAL::MapChar

Syntax

#include <ui_gen.hpp>

static char *MapChar(ZIL_ICHAR unicode);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function maps a character from the Unicode character set to the hardware character
set. MapChar will allocate space for the resulting string which the programmer is
responsible for deleting.

• returnValueout is a pointer to the hardware string.

• unicodein is the Unicode character that is to be mapped to the hardware character set.

ZIL_INTERNATIONAL::MapText

Syntax

#include <uLgen.hpp>

static char *MapText(const ZIL_ICHAR *mapped, char *unmapped = ZIL_NULLP(char),
int allocate = TRUE);

Chapter 58 - ZIL_INTERNATlONAL 605

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function maps a string from the Unicode character set to the hardware character set.
It does this by calling the MapText() function for the defaultCharMap member.
MapText may allocate space for the resulting string which the programmer would be
responsible for deleting.

• returnValueout is a pointer to the hardware string.

• mappedin is the Unicode string that is to be mapped to the hardware character set.

• unmappedout is a buffer in which the hardware string will be placed. If used, this
buffer must be large enough to contain the string. If no buffer is passed in, the
function can be directed to allocate a buffer or to use a temporary buffer.

• allocatein specifies if the function should allocate a buffer for the hardware string.
If allocate is TRUE and no buffer was passed through the unmapped argument, a
new buffer is allocated. Otherwise no buffer is allocated.

ZIL_INTERNATIONAL: :mblen

Syntax

#include <ui_gen.hpp>

static int mblen(const char *hardware);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

606 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function calculates how many bytes long a character is. The characters in some
character sets may be from one to four bytes long. This function is used to determine the
length of the first character in a string of multi-byte characters. This function calls the
mblen() function of the defaultCharMap member.

• returnValueOUI is the number of bytes in the first character of the string passed in.

• hardwarein is the multi-byte character string of which the first character's size is
required.

ZIL_INTERNATIONAL::mbstowcs

Syntax

#include <uLgen.hpp>

static int mbstowcs(ZIL_ICHAR *pwcs, const char *s, int n = -1);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function converts a multi-byte character string to a wide-character Unicode string.
The source string is made up of characters from any hardware character set. This
function calls the mbstowcs() function of the defaultCharMap member.

returnValue is a count of how many characters are in the converted string.

pWCS
OUI

is a pointer to a buffer in which the converted wide-character Unicode string
will be placed. This buffer must be large enough to contain the string.

• Sin is the source string to be converted. This string is made up of characters from the
local hardware character set.

Chapter 58 - ZIL_INTERNA TlONAL 607

• nin is a count of how many characters are to be converted. If n is less than 0, the
strlen of s is used. strlen will provide the maximum number of characters that the
input string may contain since strlen will not necessarily return the number of actual
characters in the string, but rather the number of 8-bit values in the string. Some
characters may be more than 8-bits wide.

ZIL_INTERNATIONAL: :OSl18nlnitialize

Syntax

#include <uLgen.hpp>

static void OSI18nInitialize(ZIL_ICHAR *langName, intforcelnitialization =FALSE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function loads language and locale data from the operating system.

• langNameoul is the two-letter ISO language name in use by the operating system.
langName is a buffer that should be allocated by the programmer.

• forcelnitialization in specifies what the function should do if the locale data has already
been initialized. If forcelnitialization is TRUE, the locale data will be loaded from
the operating system even if it has already been initialized. If forcelnitializtion is
FALSE, the locale data will not be loaded from the operating system if it has already
been initialized. This function is called from the constructor of the Event Manager
as the program is starting up.

608 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_INTERNATIONAL::StripHotMark

Syntax

#include <ui_gen.hpp>

static void StripHotMark(ZIL_ICHAR *fillLine);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function strips the hotkey marker (i.e., '&') from a string.

• fillLinein/out is the string that is to have its hotkey markers removed. The new string
is placed back into the existing buffer after having the hotkey markers removed.

ZIL_INTERNATIONAL: :strstrip

Syntax

#include <uLgen.hpp>

static void strstrip(ZIL_ICHAR *string, ZIL_ICHAR c);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 58 - ZIL_INTERNATIONAL 609

Remarks

This function strips all occurrences of c from string.

• stringinJoul is the string that is to be stripped.

• Cin is the character that is to be removed from string.

ZIL_INTERNATIONAL::TimeStamp

Syntax

#include <ui_gen.hpp>

void TimeStamp(ZIL_UINT32 *value);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the current time specified in milliseconds since January 1, 1970.

• valueOUI is the number of milliseconds that have passed since January I, 1970.

ZIL_INTERNATIONAL::UnMapChar

Syntax

#include <uLgen.hpp>

static ZIL_ICHAR UnMapChar(const char *hardware);

610 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function unmaps a character from the hardware character set and returns the
equivalent character from the Unicode character set. It does this by calling the
UnMapChar() function for the defaultCharMap member.

• returnValueout is the unmapped Unicode character.

• hardwarein is a pointer to a buffer containing the mapped hardware character.

ZIL_INTERNATIONAL::UnMapText

Syntax

#include <ui_gen.hpp>

static ZIL_ICHAR *UnMapText(const char *unmapped,
ZIL_ICHAR *mapped = ZIL_NULLP(ZIL_ICHAR), int allocate = TRUE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function unmaps a string from a hardware character set and restores it to a Unicode
character string.

returnValueout is a pointer to the unmapped Unicode text.

Chapter 58 - ZIL_INTERNATlONAL 611

• unmappedin is a pointer to a buffer containing the mapped hardware text.

• mapped
OUI

is a pointer to a buffer in which the unmapped Unicode text will be placed.

• allocatein indicates if the function should allocate a buffer for the unmapped Unicode
text. If allocate is TRUE and no buffer is passed through the mapped argument, the
function will allocate a buffer. This buffer must be deleted by the programmer when
he is done with it.

ZIL_INTERNATIONAL::wcstombs

Syntax

#include <ui_gen.hpp>

static int wcstombs(char *s, const ZIL_ICHAR *pwcs, int n =-1);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

612

This function converts a wide-character Unicode string to a multi-byte character string.
The destination string will be made up of characters from the hardware character set.
This function calls the wcstombs() function of the defaultCharMap member.

• returnValue is a count of how many characters are in the converted string.

SOUl is a pointer to a buffer in which the multi-byte character string will be placed
after it has been converted from the Unicode string. This string will be made up of
characters from the local hardware character set. The buffer must be large enough
to hold the converted string.

PWCSin is a pointer to the wide-character Unicode string.

Zinc Application Framework-Programmer's Reference Volume 1

• nin is a count of how many characters are to be converted. If n is less than 0, the
strlen of s is used.

ZIL_INTERNATIONAL::WildStrcmp

Syntax

#include <ui_gen.hpp>

static int WildStrcmp(ZIL_ICHAR *str, ZIL_ICHAR *pattern);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function is a strcmp that can accommodate wild card characters (i.e., '*' and '7').

• returnValueout indicates the result of the compare. If the two strings matched,
returnValue will be 0. Otherwise it will be a non-zero value.

• strin is a pointer to the string that is to be compared against.

• patternin is a pointer to the string that contains the pattern to be compared for.

Internationalization Members

This section describes those class members that are used for internationalization purposes.

• defaultLocale is the default ZIL_LOCALE object that is used to format data for a
particular locale.

• canonicalLocale is a ZIL_LOCALE class that is used when converting objects from
one locale to another, particularly when storing the object in a file. A consistent

Chapter 58 - ZIL_INTERNA TIONAL 613

format must be used so that data can be properly interpreted regardless of which
locale the data was formatted for when stored or which locale it needs to be
formatted for when loaded. canonicalLocale provides the consistent formatting
information.

• defaultCharMap is the ZIL_MAP_CHARS object that is used to map characters
among character sets.

• _blankString is an empty string.

• _errorString is the default error message.

• machineName is a string that identifies the type of hardware on which the program
is running.

ZIL_INTERNATIONAL::MachineName

Syntax

#include <ui_gen.hpp>

static void MachineName(void);

Portability

This function is available on the following environments:

• DOS Text
D Macintosh

Remarks

• DOS Graphics
D OSFlMotif

D Windows
D Curses

DOSI2
D NEXTSTEP

614

This function identifies the hardware platform being used and sets machineName
accordingly. This function is available in DOS mode only.

Zinc Application Framework-Programmer's Reference Volume 1

ZIL_INTERNATIONAL::ParseLangEnv

Syntax

#include <uLgen.hpp>

static void ParseLangEnv(ZIL_ICHAR *codeSet, ZIL_ICHAR *_locName,
ZIL_ICHAR *_langName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function queries the operating system to learn which language, locale and character
set should be used. It determines which to set up by inspecting the ZINC_LANG
environment variable, if it has been defined. The value of ZINC_LANG should have the
format language[_locale][.codeSet], where language is the two-letter ISO language code
to be used, _locale is the two-letter ISO country code to be used and .codeSet is the
character set to be used for the hardware character set.

• codeSetoul is a string identifying which character set should be used. The buffer
pointed to by codeSet must be allocated by the programmer.

• _locNameoul is the two-letter ISO country code specified in the ZINC_LANG
environment variable. The buffer pointed to by _locName must be allocated by the
programmer.

• _langNameoul is the two-letter ISO language code specified in the ZINC_LANG
environment variable. The buffer pointed to by _langName must be allocated by the
programmer.

Chapter 58 - ZIL_INTERNATIONAL 615

616 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 59 - ZIL_LANGUAGE

The ZIL_LANGUAGE class object is used to maintain language translations for an object.
Any object that needs string translations has a pointer to the ZIL_LANGUAGE object
containing that object's translations. The object can get a pointer to the appropriate ZIL_­
LANGUAGE object through the ZIL_LANGUAGE_MANAGER, which maintains a list
of all ZIL_LANGUAGE objects. The strings are each kept in a ZIL_LANGUAGE_­
ELEMENT. Because each instance of an object can have its own ZIL_LANGUAGE
object, any combination of languages can be used simultaneously.

The ZIL_LANGUAGE class is declared in UI_GEN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS ZIL LANGUAGE public ZIL_I18N
{
public:

ZIL_LANGUAGE(void) ;
#if defined (ZIL_LOAD)

ZIL_LANGUAGE(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY)) ;
virtual void Load(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY)) ;
void Load(ZIL_STORAGE_READ_ONLY *storage,

ZIL_STORAGE_OBJECT_READ_ONLY *object);
virtual void ClassLoadData(ZIL_STORAGE_OBJECT_READ_ONLY *object);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name,
ZIL_STORAGE *file = ZIL_NULLP(ZIL_STORAGE),
ZIL_STORAGE_OBJECT *object = ZIL_NULLP(ZIL_STORAGE_OBJECT));

void Store(ZIL_STORAGE *storage, ZIL_STORAGE_OBJECT *object);
virtual void ClassStoreData(ZIL_STORAGE_OBJECT *object);

#endif
int noOfElements;
ZIL_LANGUAGE_ELEMENT *data;
ZIL_ICHAR *GetMessage(ZIL_NUMBERID numberID,

int useDefault = FALSE) const;
protected:

virtual void AssignData(const ZIL_I18N *data);
virtual void DeleteData(void);

} ;

General Members

This section describes those members that are used for general purposes.

Chapter 59 - ZIL_LANGUAGE 617

• noOjElements indicates how many strings are maintained by the ZIL_LANGUAGE
object.

• data is the list of ZIL_LANGUAGE_ELEMENT objects that contain the translated
strings.

ZIL_LANGUAGE::ZIL_LANGUAGE

Syntax

#include <ui_gen.hpp>

ZIL_LANGUAGE(void);

Remarks

This constructor creates a new ZIL_LANGUAGE object.

ZIL_LANGUAGE: :AssignData

Syntax

#include <ui_gen.hpp>

virtual void AssignData(const ZIL_II8N *data);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFfMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

618

This function assigns the data maintained by data to the ZIL_LANGUAGE object. The
noOjElements value and the data pointer are copied. This function does not create a new
copy of the data, but simply assigns the pointer.

Zinc Application Framework-Programmer's Reference Volume 1

datain is a pointer to the ZIL_I18N object containing the data that is to be assigned.

ZIL_LANGUAGE::DeleteData

Syntax

#include <ui_gen.hpp>

virtual void DeleteData(void)~

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function deletes the data maintained by this object if allocated is TRUE. The text
in each ZIL_LANGUAGE_ELEMENT as well as the list of ZIL_LANGUAGE_ELE­
MENT objects is deleted.

ZIL_LANGUAGE::GetMessage

Syntax

#include <ui_gen.hpp>

ZIL_ICHAR *GetMessage(ZIL_NUMBERID number/D,
int useDefault = FALSE) const;

Portability

This function is available on the following environments:

• DOS Text
II Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 59 - ZIL_LANGUAGE 619

Remarks

This function returns the string maintained by the ZIL_LANGUAGE_ELEMENT object
identified by number/D.

• returnValueoul is the translated string.

• number/Din is a value identifying the ZIL_LANGUAGE_ELEMENT.

• useDefaultin indicates if the default text should be used if no match is found on
number/D. If useDefault is TRUE, the text of the first ZIL_LANGUAGE_ELE­
MENT is returned if no ZIL_LANGUAGE_ELEMENT objects matched number/D.
If no match was found and useDefaults is FALSE, NULL is returned.

Storage Members

This section describes those class members that are used for storage purposes.

ZIL_LANGUAGE::ZIL_LANGUAGE

Syntax

#include <uLgen.hpp>

ZIL_LANGUAGE(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

620 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This advanced constructor is used to load ZIL_LANGUAGE data from a persistent object
data file. It is typically not used by the programmer.

• namein is the name of the object to be loaded.

• file in is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the data.
For more information on persistent object files, see "Chapter 70-ZIL_STORAGE_­
READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the data
will be loaded. For more information on loading information from persistent object
files, see "Chapter 69-ZIL_STORAGE_OBJECT_READ_ONLY."

ZIL_LANGUAGE::ClassLoadData

Syntax

#include <uLgen.hpp>

virtual void ClassLoadData(ZIL_STORAGE_OBJECT_READ_ONLY *object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to load ZIL_LANGUAGE data from a persistent object
data file. The data is loaded from the current directory. This function is typically not
used by the programmer.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY object that
contains the data. For more information on persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

Chapter 59 - ZIL_LANGUAGE 621

ZIL_LANGUAGE::ClassStoreData

Syntax

#include <uLgen.hpp>

virtual void ClassStoreData(ZIL_STORAGE_OBJECT *object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to store ZIL_LANGUAGE data in a persistent object data
file. The data is stored in the current directory. This function is typically not used by the
programmer.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the data will be stored.
For more information on persistent objects, see "Chapter 68-ZIL_STORAGE_­
OBJECT."

ZIL_LANGUAGE::Load

Syntax

#include <uLgen.hpp>

virtual void Load(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY));
or

void Load(ZIL_STORAGE_READ_ONLY *storage,
ZIL_STORAGE_OBJECT_READ_ONLY *object);

622 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to load ZIL_LANGUAGE data from a persistent object
data file. This function is typically not used by the programmer.

• namein is the name of the object to be loaded.

• file in and storagein are pointers to the ZIL_STORAGE_READ_ONLY object that
contains the data. For more information on persistent object files, see "Chapter
70-ZIL_STORAGE_READ_ONLY."

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the data
will be loaded. For more information on loading information from persistent object
files, see "Chapter 69-ZIL_STORAGE_OBJECT_READ_ONLY."

ZIL_LANGUAGE::Store

Syntax

#include <ui_gen.hpp>

virtual void Store(const ZIL_ICHAR *name,
ZIL_STORAGE *file = ZIL_NULLP(ZIL_STORAGE),
ZIL_STORAGE_OBJECT *object = ZIL_NULLP(ZIL_STORAGE_OBJECT));
or

void Store(ZIL_STORAGE *storage, ZIL_STORAGE_OBJECT *object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 59 - ZIL_LANGUAGE 623

Remarks

This advanced function is used to store ZIL_LANGUAGE data in a persistent object data
file. This function is typically not used by the programmer.

• namein is the name of the object to be stored.

• file in and storagein are pointers to the ZIL_STORAGE where the data will be stored.
For more information on persistent object files, see "Chapter 66-ZIL_STORAGE."

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the data will be stored.
For more information on loading persistent objects, see "Chapter 68-ZIL_­
STORAGE_OBJECT."

624 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 60 - Zll_lANGUAGE_ElEMENT

The ZIL_LANGUAGE_ELEMENT structure is used by the ZIL_LANGUAGE class to
provide a translated text string.

The ZIL_LANGUAGE_ELEMENT class is declared in UI_GEN.HPP. Its public and
protected members are:

struct ZIL_EXPORT_CLASS ZIL_LANGUAGE_ELEMENT
{

ZIL_ICHAR *text;
ZIL NUMBERID numberID;
ZIL=ICHAR stringID[ZIL_STRINGID_LEN];

void SwapData(ZIL_LANGUAGE_ELEMENT &language);
};

General Members

This section describes those members that are used for general purposes.

• text is the text maintained by the ZIL_LANGUAGE_ELEMENT.

• numberID is a numeric value used to identify the ZIL_LANGUAGE_ELEMENT.

stringID is a string value used to identify the ZIL_LANGUAGE_ELEMENT.

ZIL_LANGUAGE_ELEMENT::SwapData

Syntax

#include <uLgen.hpp>

void SwapData(ZIL_LANGUAGE_ELEMENT &language);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 60 - ZIL_LANGUAGE_ELEMENT 625

Remarks

This function swaps the contents of the ZIL_LANGUAGE_ELEMENT with the contents
of language.

• languagein is the ZIL_LANGUAGE_ELEMENT whose contents are to be swapped
with the ZIL_LANGUAGE_ELEMENT.

626 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 61 - ZIL_LANGUAGE_MANAGER

The ZIL_LANGUAGE_MANAGER class object is used to maintain a list of ZIL_­
LANGUAGE objects. Each ZIL_LANGUAGE class contains translations for a particular
language for a single object.

The ZIL_LANGUAGE_MANAGER class is declared in UI_GEN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS ZIL_LANGUAGE_MANAGER public ZIL_I18N_MANAGER
{
public:

ZIL_LANGUAGE_MANAGER(void);
virtual ZIL_I18N *CreateData(void);

static void FreeLanguage(const ZIL_LANGUAGE *language);
static void LoadDefaultLanguage(const ZIL_ICHAR *languageName);
static const ZIL_LANGUAGE *UseLanguage(const ZIL_LANGUAGE *language);
static const ZIL_LANGUAGE *UseLanguage(const ZIL_ICHAR *className,

const ZIL_ICHAR *languageName = ZIL_NULLP(ZIL_ICHAR));

static void SetLanguage(const ZIL_ICHAR *className,
ZIL_PRIVATE_LANGUAGE_ELEMENT *defaultMessages);

};

General Members

This section describes those members that are used for general purposes.

Syntax

#include <ui_gen.hpp>

ZIL_LANGUAGE_MANAGER(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 61 - ZIL_LANGUAGE_MANAGER 627

Remarks

This constructor creates a new ZIL_LANGUAGE_MANAGER object.

ZIL_LANGUAGE_MANAGER: :CreateData

Syntax

#include <ui_gen.hpp>

virtual ZIL_I18N *CreateData(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function creates a new ZIL_LANGUAGE object. Because it is a pure virtual
function at the base ZIL_I18N_MANAGER class level, the generic code in the ZIL_­
I18N_MANAGER class can use it to create the proper data object.

• returnValueout is a pointer to the new ZIL_LANGUAGE object that was created.

ZIL_LANGUAGE_MANAGER::FreeLanguage

Syntax

#include <ui_gen.hpp>

static void FreeLanguage(const ZIL_LANGUAGE *language);

628 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function releases the ZIL_LANGUAGE object from use by decrementing the ZIL_­
LANGUAGE object's useCount member. Whenever a library object requests the use of
a ZIL_LANGUAGE object, it does so by calling the UseLanguage() function, which
marks the ZIL_LANGUAGE object as used by incrementing the its useCount member.
When the library object is done using the ZIL_LANGUAGE object, it must release it by
calling this function. If the releasing object was the last object using the ZIL_­
LANGUAGE object, this function will deallocate the data being maintained by the ZIL_­
LANGUAGE object unless it contains the default data.

• languagein is a pointer to the ZIL_LANGUAGE object that is being released.

ZIL_LANGUAGE_MANAGER::LoadDefaultLanguage

Syntax

#include <ui~en.hpp>

static void LoadDefaultLanguage(const ZIL_ICHAR *languageName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2

• NEXTSTEP

This function sets the default language for the application. Any objects that are using the
default language information at the time this function is called will start using the new

Chapter 61 - ZIL_LANGUAGE_MANAGER 629

default data. If necessary, this function loads the default language data from the
I18N.DAT file.

• languageNamein is the two-letter ISO name identifying the language which is to be
the default for the application.

ZIL_LANGUAGE_MANAGER::SetLanguage

Syntax

#include <ui_gen.hpp>

static void SetLanguage(const ZIL_ICHAR *className,
ZIL_PRIVATE_LANGUAGE_ELEMENT *defaultMessages);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function places the default translations for a particular object in the list of
translations maintained by the ZIL_LANGUAGE_MANAGER class. A translation must
be placed in the list using this function before the translations can be accessed using the
UseLanguage() function. The translations are assumed to be in the language identified
by the isoLanguageName global variable. This variable and the default translations are
defined in the LANG_DEF.CPP file. If a different default language is desired, simply
copy a LANG_<ISO>.CPP file from the ZINC\SOURCE\INTL directory to the ZINC\­
SOURCE directory and rename it to LANG_DEF.CPP. Then rebuild the library.

• classNamein is the class name of the object for which the language data is being set.
This typically corresponds to the _className member variable of the object.

• defaultMessagesin is the ZIL_PRIVATE_LANGUAGE_ELEMENT class that contains
the translations for the object. The ZIL_PRIVATE_LANGUAGE_ELEMENT class
is simply a ZIL_LANGUAGE_ELEMENT class except that in Unicode mode it does
not have the SwapData() member function.

630 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_LANGUAGE_MANAGER::UseLanguage

Syntax

#include <uLgen.hpp>

static const ZIL_LANGUAGE *UseLanguage(const ZIL_LANGUAGE *language);
or

static const ZIL_LANGUAGE *UseLanguage(const ZIL_ICHAR *className,
const ZIL_ICHAR *languageName = ZIL_NULLP(ZIL_ICHAR»;

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions mark a ZIL_LANGUAGE object as used by incrementing its
useCount member. Whenever a library object requests the use of a ZIL_LANGUAGE
object, it marks the object as used by calling this function, which increments the object's
useCount member. When the library object is done using the ZIL_LANGUAGE object,
it must release it by calling the FreeLanguage() function.

The first overloaded function takes a pointer to the ZIL_LANGUAGE object being
marked as used.

• returnValueout is a pointer to the ZIL_LANGUAGE object.

• languagein is a pointer to the ZIL_LANGUAGE object that is to be marked as used.

The second overloaded function takes the class name of the object and the
internationalization name. If load capability is enabled (i.e., ZIL_LOAD was defined
when the library was compiled) this function will load the data from the I18N.DAT file
if necessary. Otherwise, the data must have been compiled and linked into the
application.

• returnValueout is a pointer to the ZIL_LANGUAGE object.

Chapter 61 - ZIL_LANGUAGE_MANAGER 631

• classNamein is the class name of the object for which the internationalization data is
being requested. This typically corresponds to the _className member variable of
the object.

• languageNamein is the two-letter ISO name identifying the language to be used.

632 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 62 - ZIL_LOCALE

The ZIL_LOCALE class object is used to maintain locale information for a particaular
country for all objects. Any object that needs locale information has a pointer to the
ZIL_LOCALE object containing the data for the desired country. The object can get a
pointer to the appropriate ZIL_LOCALE object through the ZIL_LOCALE_MANAGER,
which maintains a list of all ZIL_LOCALE objects. Because each instance of an object
can have its own ZIL_LOCALE object, each field can be formatted for a different locale,
if desired.

The ZIL_LOCALE class is declared in UI_GEN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS ZIL_LOCALE public ZIL_I18N
{
public:

ZIL_LOCALE(void) ;
#if defined(ZIL LOAD)

virtual void ClassLoadData(ZIL_STORAGE_OBJECT_READ_ONLY *object);
#endif
#if defined(ZIL STORE)

virtual void ClassStoreData(ZIL_STORAGE_OBJECT *object);
#endif

ZIL_LOCALE_ELEMENT data;
#if defined (ZIL_MSDOS) I I defined (ZIL_MSWINDOWS) I I defined(ZIL_OS2) I I

defined (ZIL_CURSES) I I defined (ZIL_MACINTOSH)
static int oemCountryCode;

#endif
protected:

virtual void AssignData(const ZIL_I18N *data);
virtual void DeleteData(void);

};

General Members

This section describes those members that are used for general purposes.

• data is the ZIL_LOCALE_ELEMENT object that contains the locale data for this
locale.

• oemCountryCode is the country code for the environment on which the application
is running. This value is used to set the locale data.

Chapter 62 - ZIL_LOCALE 633

Syntax

#include <ui_gen.hpp>

ZIL_LOCALE(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This constructor creates a new ZIL_LOCALE class object.

ZIL_LOCALE::AssignData

Syntax

#include <uLgen.hpp>

virtual void AssignData(const ZIL_Il8N *data);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

634

This function assigns the data maintained by data to the ZIL_LOCALE object. The data
is copied.

Zinc Application Framework-Programmer's Reference Volume 1

• datain is a pointer to the ZIL_LOCALE object containing the data that is to be
assigned.

ZIL_LOCALE::DeleteData

Syntax

#include <ui_gen.hpp>

virtual void DeleteData(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function deletes the data maintained by this object.

Storage Members

This section describes those class members that are used for storage purposes.

ZIL_LOCALE::ClassLoadData

Syntax

#include <ui_gen.hpp>

virtual void ClassLoadData(ZIL_STORAGE_OBJECT_READ_ONLY *object);

Chapter 62 - ZIL_LOCALE 635

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function is used to load ZIL_LOCALE data from a persistent object data
file. The data is loaded from the current directory. This function is typically not used
by the programmer.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY object that
contains the data. For more information on persistent objects, see "Chapter
69-ZIL_STORAGE_OBJECT_READ_ONLY."

ZIL_LOCALE::ClassStoreData

Syntax

#include <uLgen.hpp>

virtual void ClassStoreData(ZIL_STORAGE_OBJECT *object);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2

• NEXTSTEP

This advanced function is used to store ZIL_LOCALE data in a persistent object data file.
The data is stored in the current directory. This function is typically not used by the
programmer.

636 Zinc Application Framework-Programmer's Reference Volume 1

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the data will be stored.
For more information on persistent objects, see "Chapter 68-ZIL_STORAGE_­
OBJECT."

Chapter 62 - ZIL_LOCALE 637

638 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 63 - ZIL_LOCALE_ELEMENT

The ZIL_LOCALE_ELEMENT structure is used by the ZIL_LOCALE class to provide
locale information for objects.

The ZIL_LOCALE_ELEMENT structure is declared in UI_GEN.HPP. Its public and
protected members are:

struct ZIL_EXPORT_CLASS ZIL_LOCALE_ELEMENT
{

ZIL_ICHAR decimalSeparator[4]i
ZIL_ICHAR monDecimalSeparator[4] i

ZIL_ICHAR thousandsSeparator [4] i
ZIL_ICHAR monThousandsSeparator[4] i

ZIL_ICHAR currencySymbol[8] i

char grouping[lO] i
char monGrouping[lO]i
ZIL_ICHAR intCurrencySymbol[5] i

int posCurrencyPrecedesi
int negCurrencyPrecedesi
int fractionDigitsi
int intFractionDigitsi
ZIL_ICHAR positiveSign[4] i

int posSignPrecedesi
int posSpaceSeparationi
ZIL_ICHAR negativeSign[4] i

int negSignPrecedesi
int negSpaceSeparationi

ZIL_ICHAR *bnumLeftPareni
ZIL_ICHAR *bnumRightPareni

ZIL_ICHAR *timeStringFormati
ZIL_ICHAR *dateStringFormati
ZIL_ICHAR *dateTimeStringFormati
ZIL_ICHAR *time12StringFormati
ZIL_ICHAR *defDigitsi
ZIL_ICHAR *altDigitsi

ZIL_ICHAR timeSeparator[4] i
ZIL_ICHAR dateSeparator[4]i
int defaultDateFlagsi
int defaultTimeFlagsi

}i

General Members

This section describes those members that are used for general purposes.

NOTE: The following examples use the United States format unless otherwise specified.

• decima/Separator is the system's decimal separator (e.g., 100.00).

Chapter 63 - ZIL_LOCALE_ELEMENT 639

• monDecimalSeparator is the system's currency decimal separator (e.g., $100.00).

• thousandsSeparator is the system's thousands separator (e.g., 100,000).

• monThousandsSeparator is the system's currency thousands separator (e.g.,
$100,000.00).

• currencySymbol is the system's currency symbol (e.g., '$').

• grouping is a string that indicates the format to be used for grouping digits in a
number. For more specific information, see the ANSI Standard Specification for the
C Programming Language.

• monGrouping is a string that indicates the format to be used for grouping digits in
a monetary number. For more specific information, see the ANSI Standard
Specification for the C Programming Language.

• intCurrencySymbol is the system's international currency symbol (e.g., 'USD').

• posCurrencyPrecedes is TRUE if the currency symbol precedes the currency amount
for positive currency values (e.g., '$100,000.00'). Otherwise, posCurrencyPrecedes
is FALSE and the currency symbol will be displayed following the currency amount.

• negCurrencyPrecedes is TRUE if the currency symbol precedes the currency amount
for negative currency values (e.g., '-$100,000.00'). Otherwise, negCurrencyPrecedes
is FALSE and the currency symbol will be displayed following the currency amount.

• fractionDigits specifies the number of fractional digits to display after the decimal
point on currency values (e.g., $100.00).

• intFractionDigits specifies the number of fractional digits to display after the decimal
point on currency values in international format (e.g., USD100.00).

positiveSign specifies the symbol for positive values (e.g., +100 or 100).

• posSignPrecedes is TRUE if the symbol for positive amounts is displayed before the
currency symbol. Otherwise, posSignPrecedes is FALSE and the symbol will be
displayed following the amount.

• posSpaceSeparation is TRUE if there is a space separator between the currency
symbol and the currency amount when the currency is positive. Otherwise,
posSpaceSeparation is FALSE.

640 Zinc Application Framework-Programmer's Reference Volume 1

• negativeSign specifies the symbol for negative values (e.g., -100).

• negSignPrecedes is TRUE if the symbol for negative amounts is displayed before the
currency symbol. Otherwise, negSignPrecedes is FALSE and the symbol will be
displayed following the amount.

• negSpaceSeparation is TRUE if there is a space separator between the currency
symbol and the currency amount when the currency is negative. Otherwise,
negSpaceSeparation is FALSE.

• bnumLeftParen is the symbol used to the left of a negative number if the number
format calls for encompassing negative symbols.

bnumRightParen is the symbol used to the right of a negative number if the number
format calls for encompassing negative symbols.

• timeStringFormat is the system's current time format (e.g., 12:00a).

dateStringFormat is the system's current date format (e.g., 12/25/91).

• dateTimeStringFormat is the system's current format for presenting a date and time
together.

• time12StringFormat is the system's current format for presenting a time.

dejDigits is a string containing the default digits to use when a '%d' is encountered
in a printf format string.

• altDigits is a string containing the alternate digits to use when a '%ad' is encountered
in a printf format string.

• timeSeparator is the system's time separator (e.g., 12:00).

dateSeparator is the system's date separator (e.g., 12/25/91).

defaultDateFlags is the default date flags as obtained from the operating system.

• defaultTimeFlags is the default time flags as obtained from the operating system.

Chapter 63 - ZIL_LOCALE_ELEMENT 641

642 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 64 - ZIL_LOCALE_MANAGER

The ZIL_LOCALE_MANAGER class object is used to maintain a list of ZIL_LOCALE
objects. Each ZIL_LOCALE class contains all formatting information for a particular
locale.

The ZIL_LOCALE_MANAGER class is declared in UI_GEN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS ZIL_LOCALE_MANAGER public ZIL_I18N_MANAGER
{
public:

ZIL_LOCALE_MANAGER(void) ;
virtual ZIL_I18N *CreateData(void);

static void FreeLocale(const ZIL_LOCALE *locale);
static void LoadDefaultLocale(const ZIL_ICHAR *localeName);
static const ZIL_LOCALE *UseLocale(const ZIL_LOCALE *locale);
static const ZIL_LOCALE *UseLocale(const ZIL_ICHAR *localeName

ZIL_NULLP(ZIL_ICHAR)) ;

static void SetLocale(const ZIL_ICHAR *localeName,
ZIL_LOCALE_ELEMENT *defaultLocale);

};

General Members

This section describes those members that are used for general purposes.

Syntax

#include <ui_gen.hpp>

ZIL_LOCALE_MANAGER(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 64 - ZIL_LOCALE_MANAGER 643

Remarks

This constructor creates a new ZIL_LOCALE_MANAGER object.

ZIL_LOCALE_MANAGER::CreateData

Syntax

#include <uLgen.hpp>

virtual ZIL_I18N *CreateData(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function creates a new ZIL_LOCALE object. Because it is a pure virtual
function at the base ZIL_I18N_MANAGER class level, the generic code in the ZIL_­
I18N_MANAGER class can use it to create the proper data object.

• returnValueout is a pointer to the new ZIL_LOCALE object that was created.

ZIL_LOCALE_MANAGER::FreeLocale

Syntax

#include <uLgen.hpp>

static void FreeLocale(const ZIL_LOCALE *locale);

644 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function releases the ZIL_LOCALE object from use by decrementing the ZIL_­
LOCALE object's useCount member. Whenever a library object requests the use of a
ZIL_LOCALE object, it does so by calling the UseLocale() function, which marks the
ZIL_LOCALE object as used by incrementing its useCount member. When the library
object is done using the ZIL_LOCALE object, it must release it by calling this function.
If the releasing object was the last object using the ZIL_LOCALE object, this function
will deallocate the data being maintained by the ZIL_LOCALE object unless it contains
the default data.

• locale in is a pointer to the ZIL_LOCALE object that is being released.

ZIL_LOCALE_MANAGER::LoadDefauItLocale

Syntax

#include <uLgen.hpp>

static void LoadDefaultLocale(const ZIL_ICHAR *localeName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sets the default locale for the application. Any objects that are using the
default locale information at the time this function is called will start using the new

Chapter 64 - ZIL_LOCALE_MANAGER 645

default data. If necessary, this function loads the default locale data from the I18N.DAT
file.

• localeNamein is the two-letter ISO name identifying the locale which is to be the
default for the application.

ZIL_LOCALE_MANAGER::SetLocale

Syntax

#include <uLgen.hpp>

static void SetLocale(const ZIL_ICHAR *localeName,
ZIL_LOCALE_ELEMENT *defaultLocale);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function places the default locale data for a particular object in the list of locale
information maintained by the ZIL_LOCALE_MANAGER class. Locale information
must be placed in the list using this function before it can be accessed using the Use­
Locale() function. The default locale information is defined in the LOC_DEF.CPP file.
If a different default locale is desired, simply copy a LOC_<ISO>.CPP file from the
ZINC\SOURCE\INTL directory to the ZINC\SOURCE directory and rename it to
LOC_DEF.CPP. Then rebuild the library.

• classNamein is the class name of the object for which the locale data is being set.
This typically corresponds to the _className member variable of the object.

• defaultLocalein is the ZIL_LOCALE_ELEMENT class that contains the default locale
information for the object.

646 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_LOCALE_MANAGER::UseLocale

Syntax

#include <uLgen.hpp>

static ZIL_LOCALE *UseLocale(const ZIL_LOCALE *locale);
or

static const ZIL_LOCALE *UseLocale(const ZIL_ICHAR *localeName =
ZIL_NULLP(ZIL_ICHAR));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions mark a ZIL_LOCALE object as used by incrementing its
useCount member. Whenever a library object requests the use of a ZIL_LOCALE object,
it marks the object as used by calling this function, which increments the object's
useCount member. When the library object is done using the ZIL_LOCALE object, it
must release it by calling the FreeLocale() function.

The first overloaded function takes a pointer to the ZIL_LOCALE object being marked
as used.

• returnValueout is a pointer to the ZIL_LOCALE object.

• localein is a pointer to the ZIL_LOCALE object that is to be marked as used.

The second overloaded function takes the internationalization name. If load capability is
enabled (i.e., ZIL_LOAD was defined when the library was compiled) this function will
load the data from the I18N.DAT file if necessary. Otherwise, the data must have been
compiled and linked into the application.

• returnValueout is a pointer to the ZIL_LOCALE object.

• localeNamein is the two-letter ISO name identifying the locale to be used.

Chapter 64 - ZIL_LOCALE_MANAGER 647

648 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 65 - ZIL_MAP_CHARS

The ZIL_MAP_CHARS class object is used to map characters between the Zinc standard
character set and the "hardware" character set. The Zinc standard character set is
Unicode, if the application is running in Unicode mode, or IS08859-1 if not. The
hardware character set is the character set in use on the system. The ZIL_MAP_CHARS
class loads and maintains the required character map tables. The mapping provided by
this class allows applications to properly interpret entered data at program execution. But
this mapping also allows applications, like the Designer, to load a text file that was
created using one character set and save it in another character set. At the time of this
printing, map tables were available for the following character sets in Unicode mode:
IBM 932, including extra tables for AT and NEC machines; Big Five; IBM 938, including
an extra table for AT machines; IBM 1381, including an extra table for AT machines;
IBM 949, including an extra table for AT machines; EUC JIS, including an extra table
for Motif; IBM 437; IBM 737; IBM 850; IBM 852; IBM 855; IBM 857; IBM 860; IBM
861; IBM 863; IBM 865; IBM 866; IBM 869; IBM 1251; Macintosh; and NEXTSTEP.
Map tables were available for the following character sets in IS08859-1 mode (i.e., non­
Unicode mode): IBM 437; IBM 737; IBM 850; IBM 852; IBM 855; IBM 857; IBM 860;
IBM 861; IBM 863; IBM 865; IBM 866; IBM 869; IBM 1251; Macintosh; and
NEXTSTEP. The complete list of available tables can be determined using the Browse
utility and inspecting the I18N.DAT file.

The ZIL_MAP_CHARS class is declared in UI_GEN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS ZIL_MAP_CHARS : public ZIL_II8N
{
public:

ZIL_MAP_CHARS(const ZIL_ICHAR *_mapName, const ZIL_ICHAR *extraName);
ZIL_MAP_CHARS(const ZIL_ICHAR *_mapName, const void *fromStandard,

const void *toStandard, int _doDelete);
-ZIL_MAP_CHARS() ;
char *MapChar(ZIL_ICHAR mapped);
char *MapText(const ZIL_ICHAR *mapped,

char *unMapped = ZIL_NULLP(char) , int allocate = TRUE);
ZIL_ICHAR UnMapChar(const char *unMapped);
ZIL_ICHAR *UnMapText(const char *unMapped,

ZIL_ICHAR *mapped = ZIL_NULLP(ZIL_ICHAR), int allocate = TRUE);

#if defined (ZIL_UNICODE)
int mblen(const char *hardware);
int wcstombs(char *s, const ZIL_ICHAR *pwcs, int n= -1);
int mbstowcs(ZIL_ICHAR *pwcs, const char *s, int n = -1);

#endif
ZIL_ICHAR dirSepStr[2];
int error; II Returned error of storage
ZIL_ICHAR name[12];

};

Chapter 65 - ZIL_MAP_CHARS 649

General Members

This section describes those members that are used for general purposes.

• dirSepStr is the character used to separate directories in the environment on which
the application is running. For example, on Posix systems, directories are separated
with the '/' character, but on Japanese systems, directories are separated with the '¥'
character.

• error indicates if there were any errors when accessing the storage file where the map
table is located.

• name is the name of the map table.

Syntax

#include <uLgen.hpp>

ZIL_MAP_CHARS(const ZIL_ICHAR *_mapName, const ZIL_ICHAR *extraName);
or

ZIL_MAP_CHARS(const ZIL_ICHAR *_mapName, const void *fromStandard,
const void *toStandard, int _doDelete);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded constructors create a new ZIL_MAP_CHARS class object.

The first overloaded constructor loads the map tables from the I18N.DAT file.

650 Zinc Application Framework-Programmer's Reference Volume 1

_mapNamein identifies the map table to be loaded based on the character set used by
the environment. For example, in Windows NT _mapName is "Unicode" since
Windows NT uses the Unicode character set. In OS/2, however, _mapName may be
"IBM_850" since OS/2 commonly uses code page 850.

• extraNamein is the name of the map table that contains exceptions to the map table
identified by _mapName. Some character sets may be arranged slightly differently
on different operating systems. This map table contains mappings for those
characters that are known to be in different locations. It also contains some
characters that Zinc uses that are not part of the normal character sets, such as text
mode line draw characters.

The second overloaded constructor uses pointers to existing map tables.

• _mapNamein identifies the map table based on the character set used by the
environment. For example, in Windows NT _mapName is "Unicode" since
Windows NT uses the Unicode character set. In OS/2, however, _mapName may be
"IBM_850" since OS/2 commonly uses code page 850.

fromStandardin is a map table that provides character mappings from the Zinc
standard character set (either Unicode or IS08859-1) to the hardware character set.

toStandardin is a map table that provides character mappings from the hardware
character set to the Zinc standard character set. This map table will not be used in
Unicode mode since the fromStandard map table is small enough that a simple search
can provide the mapping from the hardware character set to Unicode.

• _doDeletein specifies if the map tables can be deleted.

Syntax

#include <uLgen.hpp>

Chapter 65 - ZIL_MAP_CHARS 651

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the ZIL_MAP_­
CHARS object.

ZIL_MAP_CHARS::MapChar

Syntax

#include <ui~en.hpp>

char *MapChar(ZIL_ICHAR mapped);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2

• NEXTSTEP

This function maps a character from the Zinc standard character set to the hardware
character set. MapChar uses static space for the return string, so its value should be
copied, and should not be deleted.

returnValueou1 is a pointer to the hardware string.

• mappedin is the Zinc standard character that is to be mapped to the hardware character
set.

652 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_MAP_CHARS::MapText

Syntax

#include <uLgen.hpp>

char *MapText(const ZIL_ICHAR *mapped, char *unmapped = ZIL_NULLP(char),
int allocate =TRUE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function maps a string from the Zinc standard character set to the hardware character
set. MapText may allocate space for the resulting string which the programmer would
be responsible for deleting.

• returnValueout is a pointer to the hardware string.

• mappedin is the Zinc standard character string that is to be mapped to the hardware
character set.

• unmappedout is a buffer in which the hardware string will be placed. If used, this
buffer must be large enough to contain the string. If no buffer is passed in, the
function can be directed to allocate a buffer or to use a temporary buffer.

• allocatein specifies if the function should allocate a buffer for the hardware string.
If allocate is TRUE and no buffer was passed through the unmapped argument, a
new buffer is allocated which the programmer is responsible for freeing. Otherwise,
a static buffer is used.

653

ZIL_MAP_CHARS::mblen

Syntax

#include <ui_gen.hpp>

int mblen(const char *hardware);

PortabiIity

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function calculates how many bytes long a character is. The characters in some
character sets may be from one to four bytes long. This function is used to determine the
length of the first character in a string of multi-byte characters. This function is defined
in Unicode mode only.

• returnValueout is the number of bytes in the first character of the string passed in.

• hardwarein is the multi-byte character string of which the first character's size is
required.

ZIL_MAP_CHARS::mbstowcs

Syntax

#include <ui_gen.hpp>

int mbstowcs(ZIL_ICHAR *pwcs, const char *s, int n = -1);

654 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function converts a multi-byte character string to a wide-character Unicode string.
The source string is made up of characters from any hardware character set. This
function is defined in Unicode mode only.

• returnValue is a count of how many characters are in the converted string.

• pwcsout is a pointer to a buffer in which the converted wide-character Unicode string
will be placed. This buffer must be large enough to contain the string.

• Sin is the source string to be converted. This string is made up of characters from the
local hardware character set.

• nin is a count of how many characters are to be converted. If n is less than 0, the
stden of S is used. strlen will provide the maximum number of characters that the
input string may contain since strlen will not necessarily return the number of actual
characters in the string, but rather the number of 8-bit values in the string. Some
characters may be more than 8-bits wide.

ZIL_MAP_CHARS::UnMapChar

Syntax

#include <ui_gen.hpp>

ZIL_ICHAR UnMapChar(const char *unMapped);

655

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2

• NEXTSTEP

This function unmaps a character from the hardware character set and returns the
equivalent character from the Zinc standard character set.

• returnValueoul is the unmapped Zinc standard character.

• unMappedin is a pointer to a buffer containing the hardware character.

ZIL_MAP_CHARS::UnMapText

Syntax

#include <ui_gen.hpp>

ZIL_ICHAR *UnMapText(const char *unmapped,
ZIL_ICHAR *mapped =ZIL_NULLP(ZIL_ICHAR), int allocate =TRUE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function unmaps a string from a hardware character set to a Zinc standard character
string.

• returnValueoul is a pointer to the unmapped Zinc standard text.

• unmappedin is a pointer to a buffer containing the mapped hardware text.

656 Zinc Application Framework-Programmer's Reference Volume 1

• mappedoul is a pointer to a buffer in which the unmapped Zinc standard text will be
placed.

• allocatein indicates if the function should allocate a buffer for the unmapped Zinc
standard text. If allocate is TRUE and no buffer is passed through the mapped
argument, the function will allocate a buffer. The programmer is responsible for
deleting the buffer. If allocate is FALSE, a static buffer is used.

ZIL_MAP_CHARS::wcstombs

Syntax

#include <uLgen.hpp>

int wcstombs(char *s, const ZIL_ICHAR *pwcs, int n = -1);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function converts a wide-character Unicode string to a multi-byte character string.
The destination string will be made up of characters from the hardware character set.
This function is defined in Unicode mode only.

• returnValue is a count of how many characters are in the converted string.

• SOUl is a pointer to a buffer in which the multi-byte character string will be placed
after it has been converted from the Unicode string. This string will be made up of
characters from the local hardware character set. The buffer must be large enough
to hold the converted string.

• pwcsin is a pointer to the wide-character Unicode string.

• nin is a count of how many characters are to be converted. If n is less than 0, the
strlen of S is used.

657

658 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 66 - ZIL_STORAGE

The ZIL_STORAGE class is used to write Zinc Application Framework data files. It is
created as a class so that the file can be treated as an object, which does the writing.
Because ZIL_STORAGE is derived from ZIL_STORAGE_READ_ONLY, this class
inherits reading functionality.

Although the ZIL_STORAGE is stored in a file, it should be thought of as a file system
and not just a file. The ZIL_STORAGE class is similar, in design, to the Unix file
system. This means that within a ZIL_STORAGE object, there can be many files (Le.,
objects derived from ZIL_STORAGE_OBJECT) and levels of sub-directories. The
programmer has the ability to copy, delete and move files across directories. The
maximum length of a ZIL_STORAGE object is about 16 megabytes with the maximum
size of an individual object being 4 megabytes. A single ZIL_STORAGE object may
contain a maximum of 16,000 objects (Le., ZIL_STORAGE_OBJECT.)

The ZIL_STORAGE class is typically used for persistent objects (e.g., objects created
using Zinc Designer) and for storing internationalization data. It is also commonly used
as a simple data base.

The ZIL_STORAGE class is declared in UI_GEN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS ZIL_STORAGE : public ZIL_STORAGE_READ_ONLY
{
public: // Read/Write Storage

ZIL_STORAGE(void) ;
ZIL_STORAGE(const ZIL_ICHAR *name, UIS_FLAGS pFlags UIS_READWRITE);
-ZIL_STORAGE(void) ;
int DestroyObject(const ZIL_ICHAR *name);
int Flush(void);
int Link(const ZIL_ICHAR *pathl, const ZIL_ICHAR *path2);
int MkDir(const ZIL_ICHAR *newName);
int RenameObject(const ZIL_ICHAR *oldObject, const ZIL_ICHAR *newName);
int RmDir(const ZIL_ICHAR *name);
int Save(int revisions = 0);
int SaveAs(const ZIL_ICHAR *newName, int revisions = 0);

};

General Members

This section describes those members that are used for general purposes.

Chapter 66 - ZIL_STORAGE 659

Syntax

#include <ui_gen.hpp>

ZIL_STORAGE(void);
or

ZIL_STORAGE(const ZIL_ICHAR *name, UIS_FLAGS pFlags =UIS_READWRITE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded constructors both create a new ZIL_STORAGE class object.

The first overloaded constructor creates a ZIL_STORAGE with no associated disk file.

The second overloaded constructor creates a ZIL_STORAGE and binds it to a disk file.

• namein is the name of the file to be opened. name can include a path, if desired. If
the storage file cannot be opened, this function will use UI_PATH functions to search
other paths for the file. For example, "-zinc-examples-*.dat" will return the first
.DAT file found with that path. Notice that the ,-, character is used as the directory
separator. The '*' character is considered to be a wildcard character.

• pFlagsin indicates how a file is to be opened. The following VIS_FLAGS are
supported:

UIS_READ-Opens the file for read access only.

UIS_READWRITE-Opens the file for read and write access. This flag allows
modifications to be made to the file.

UIS_CREATE-Creates and opens a file for write access. Any previous file
will be deleted.

660 Zinc Application Framework-Programmer's Reference Volume 1

UIS_OPENCREATE-Opens an existing object for read and write access. If
the object does not exist, it is created for read and write access.

UIS_TEMPORARY-Creates the file as a temporary file.
ZIL_STORAGE is destroyed, the file will be deleted.

Example

#include <ui_win.hpp>

UI_HELP_SYSTEM: :UI_HELP_SYSTEM(char *pathName,
UI_WINDOW_MANAGER *windowManager, UI_HELP_CONTEXT helpContext)
defaultHelpContext(helpContext)

II Open the help storage unit.
storage = new ZIL_STORAGE(pathName, UIS_READ);
if (storage->storageError)
{

delete storage;
storage = NULL;

ZIL_STORAGE::'LIL_STORAGE

Syntax

#include <ui_gen.hpp>

-ZIL_STORAGE(void);

Portability

This function is available on the following environments:

When

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This destructor destroys the class information associated with the ZIL_STORAGE object
and closes any files opened by the ZIL_STORAGE constructor. If a file was opened with
the VIS_TEMPORARY flag, it will be deleted when this destructor is called.

Chapter 66 - ZIL_STORAGE 661

Example

#include <ui_win.hpp>

UI_HELP_SYSTEM: :-UI_HELP_SYSTEM(void)
{

if (storage)
delete storage;

delete helpWindow;

ZIL_STORAGE::DestroyObject

Syntax

#include <uLgen.hpp>

int DestroyObject(const ZIL_ICHAR *name);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This removes an object from the ZIL_STORAGE file. After it is removed, the object is
destroyed. The file space associated with the object is not freed, but is re-used if a new
object is written to the file.

• returnValueout is 0 on success. If a failure occurred, -1 is returned.

• namein is the name of the object to be destroyed.

Example

#include <ui_win.hpp>

int RemoveDirectory(ZIL_STORAGE *storage, const char *name,
const char *directoryName)

II Clean the directory.
for (name = FindFirstObject(name); name; name FindFirstObject(name))

DestroyObject(name);

662 Zinc Application Framework-Programmer's Reference Volume 1

storage->ChDir(" .. ") ;
storage->RmDir(directoryName);

ZIL_STORAGE::Flush

Syntax

#include <uLgen.hpp>

int Flush(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function writes the internal cache buffer to a temporary file. One use of this
function would be to save backup copies of a file within a timer function. Flush() does
not update the actual storage file. To commit the changes to the storage file, use Save().

• returnValueout is 0 on success and -1 if an error occurs.

Example

#include <ui_gen.hpp>

int TimerBackup(ZIL_STORAGE *storage)
{

storage->Flush();

Chapter 66 - ZIL_STORAGE 663

ZIL_STORAGE::Link

Syntax

#include <ui~en.hpp>

int Link(const ZIL_ICHAR *pathl, const ZIL_ICHAR *path2);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function gives an existing object a second name. This allows a second (or later)
instance of an object within a .DAT file to reference, or point to, the data stored with the
original instance of the object. Thus, many objects can use the same data without
duplicating the data for each instance. After this function is called, both names refer to
the same object. Deleting one name will not delete the other name or the object. This
is different than a rename.

• returnValueout is 0 on success and -1 if an error occurs.

• pathl in is the original name (including its path) of the object .

• path2in is the new name (including its path) by which the object can also be
referenced.

Example

#include <ui_gen.hpp>

int EmployeeSetup(void)
{

storage->Link("-employees-Blake", "-development-Blake");

664 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_STORAGE::MkDir

Syntax

#include <uLgen.hpp>

int MkDir(const ZIL_ICHAR *newName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

.OS/2
• NEXTSTEP

This function makes a new directory within a ZIL_STORAGE file.

• returnValueOUI is 0 on success and -Ion failure.

• newNamein is the name of the directory to be created. For example,
"-UCHPP~YDIR" can be specified to make the directory "MYDIR" in the
UCHPP subdirectory.

Example

#include <ui_gen.hpp>

main(int argc, char *argv[])
{

II Create the help directory.
ZIL_STORAGE *helpFile = new ZIL_STORAGE(fileName, UIS_READWRITE);
if (helpFile->storageError)
{

delete helpFile;
helpFile = new ZIL_STORAGE(fileName, UIS_CREATE I UIS_READWRITE);

}
helpFile->MkDir("UI_HPP");
if (newHelpDirectory)

helpFile->RmDir("UI_HELP_CONTEXT");
helpFile->MkDir("UI_HELP_CONTEXT");

II Print genhelp status.
PrintStatus("PROCESSING %s:\n", fileName);

Chapter 66 - ZIL_STORAGE 665

ZIL_OBJECTID helpID = 0;

II Generate the HPP directory.
helpFile->ChDir (" -UI_HPP") ;
ZIL_STORAGE_OBJECT *hppElement = new ZIL_STORAGE_OBJECT(*helpFile,

"HELP_CONTEXTS", ID_HELP_CONTEXT, UIS_CREATE I UIS_READWRITE);

II Generate the help contexts.
helpFile->ChDir("-UI_HELP_CONTEXT");

ZIL_STORAGE::RenameObject

Syntax

#include <ui_gen.hpp>

int RenameObject(const ZIL_ICHAR *oldObject, const ZIL_ICHAR *newName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function changes the name (i.e., string/D) of an object inside the storage object.

• returnValueout is 0 on success and -Ion failure.

• oldObjectin is the name of the object whose name is to be changed.

• newNamein is the new name of the object.

Example
#include <ui_gen.hpp>

ExampleFunction(ZIL_STORAGE *storage)
{

666 Zinc Application Framework-Programmer's Reference Volume 1

storage->RenameObject(IIteml", "Firstltem");

ZIL_STORAGE::RmDir

Syntax

#include <uLgen.hpp>

int RmDir(const ZIL_ICHAR *name);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function removes a directory within a ZIL_STORAGE file.

• returnValueout is 0 on success and -Ion failure.

• namein is the name of the directory to be removed.

NOTE: A directory must be empty in order for it to be deleted.

Example

#include <ui_win.hpp>

main(int argc, char *argv[])
{

II Create the help directory.
ZIL_STORAGE *helpFile = new ZIL_STORAGE(fileName, UIS_READWRITE);
if (helpFile->storageError)
{

delete helpFile;
helpFile = new ZIL_STORAGE(fileName, UIS_CREATE I UIS_READWRITE);

Chapter 66 - ZIL_STORAGE 667

}
helpFile->MkDir ("UI_HPP") ;
if (newHelpDirectory)

helpFile- >RmDir ("Ul_HELP_CONTEXT") ;
helpFile->MkDir ("UI_HELP_CONTEXT") ;

II Print genhelp status.
PrintStatus("PROCESSING %s:\n", fileName);
ZIL_OBJECTID helpID = 0;

II Generate the HPP directory.
helpFile->ChDir ("-UI_HPP") ;
ZIL_STORAGE_OBJECT *hppElement = new ZIL_STORAGE_OBJECT(*helpFile,

"HELP_CONTEXTS", ID_HELP_CONTEXT, UIS_CREATE I UIS_READWRITE);

II Generate the help contexts.
helpFile->ChDir ("-UI_HELP_CONTEXT") ;

ZIL_STORAGE::Save

Syntax

#include <uLgen.hpp>

int Save(int revisions = 0);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function saves the storage file and all of the information contained in it. This
operation (or a call to SaveAs(» must be performed even if each individual object is
stored. Since some objects are saved in temporary files, this is the only way to ensure
that the information is saved to the main storage file.

• returnValueout is 0 on success, or -Ion failure.

668 Zinc Application Framework-Programmer's Reference Volume 1

revisionsin is the number of backup files to be kept. Backup files are files with the
.BK? extension where the "?" denotes which backup number the file is. For
example, TEST.BKI would be the most recent backup of the file TEST.DAT,
TEST.BK2 would be the previous backup of the file TEST.DAT, etc.

NOTE: A backup file is only created the first time Save() is called. The different
backup file revisions are created from previous times the file was opened. To create
another backup file, you must close and then re-open the storage.

Example

#include <ui_gen.hpp>

int ZIL_STORAGE::SaveAs(const char *newName, int revisions)
{

if (lFlagSet(flags, UIS_READWRITE))
{

storageError = EACCES;
return -1;

}
if (modified) (void) time (&sb->modifytime) ;
Flush();
StripFullPath(newName, pname, fname);
firstTime = 1;
Save(revisions);
return 0;

ZIL_STORAGE::SaveAs

Syntax

#include <uLgen.hpp>

int SaveAs(ZIL_ICHAR *newName, int revisions = 0);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 66 - ZIL_STORAGE 669

Remarks

This function saves the storage file and all of the information contained in it. This
operation (or a call to Sayee)) must be performed even if each individual object is stored.
Since some objects are saved in temporary files, this is the only way to ensure that the
information is saved to the main storage file.

• returnValueout is 0 on success, or -Ion failure.

• newNamein is the new name of the storage file.

revisionsin is the number of backup files to be kept. Backup files are files with the
.BK? extension where the "?" denotes which backup number the file is. For
example, TEST.BKI would be the most recent backup of the file TEST.DAT,
TEST.BK2 would be the previous backup of the file TEST.DAT, etc.

NOTE: A backup file is only created the first time SaveAs() is called. The different
backup file revisions are created from previous times the file was opened. To create
another backup file, you must close and then re-open the storage.

Example
#include <ui_gen.hpp>

int CloseAll(ZIL_STORAGE *storage, const char *newName, int revisions)
{

char currentName[129];

Flush() ;
StorageName(currentName) ;
if (lstrcmp(currentName, newName));

Save (revisions) ;
else

SaveAs(newName, revisions);
return 0;

670 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 67 - ZIL_STORAGE_DIRECTORY

The ZIL_STORAGE_DIRECTORY class object provides a directory pointer and the
functionality to manipulate the directory pointer. It is used by ZIL_STORAGE_READ_­
ONLY and ZIL_STORAGE to maintain multiple directory pointers. A new instance of
ZIL_STORAGE_DIRECTORY can only be created using the ZIL_STORAGE_READ_­
ONLY::OpenDir() function. This class is typically not used by the programmer.

The ZIL_STORAGE_DIRECTORY class is declared in UI_GEN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS ZIL_STORAGE_DIRECTORY
{
public:

-ZIL_STORAGE_DIRECTORY(void) ;
directoryEntry *ReadDir(void);
void RewindDir(void);
void SeekDir(ZIL_UINT16 -position);
ZIL_UINT16 TellDir(void);

};

General Members

This section describes those members that are used for general purposes.

ZIL_STORAGE_DIRECTORY: :-ZIL_STORAGE_DIRECTORY

Syntax

#include <uLgen.hpp>

virtual -ZIL_STORAGE_DIRECTORY(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 67 - ZIL_STORAGE_DIRECTORY 671

Remarks

This virtual destructor destroys the class information associated with the ZIL_­
STORAGE_DIRECTORY object.

ZIL_STORAGE_DIRECTORV::ReadDir

Syntax

#include <ui_gen.hpp>

directoryEntry *ReadDir(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function obtains information about the current directory.

• returnValueout is a pointer to directoryEntry, a structure that contains some data
about the directory.

ZIL_STORAGE_DIRECTORV::RewindDir

Syntax

#include <uLgen.hpp>

void RewindDir(void);

672 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function repositions the directory file pointer to the position it was at when the ZIL_­
STORAGE_DIRECTORY object was created.

ZIL_STORAGE_DIRECTORV: :SeekDir

Syntax

#include <ui~en.hpp>

void SeekDir(ZIL_DINT16 -position);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function positions the file pointer to the position specified by -position.
This function should only be used with a value obtained from TellDir().

• -positionin is the position to which the file pointer should be set.

Chapter 67 - ZIL_STORAGE_DIRECTORY 673

ZIL_STORAGE_DIRECTORY::TeliDir

Syntax

#include <ui_gen.hpp>

ZIL_UINTI6 TellDir(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

674

This advanced function returns the current position of the file pointer. This position
should only be used for setting the position with the SeekDir() function.

returnValueout is the current position of the file pointer.

Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 68 - ZIL_STORAGE_OBJECT

The ZIL_STORAGE_OBJECT class is used to store data in Zinc Application Framework
data files. The most common use is to store persistent objects (e.g., objects created using
Zinc Designer) using Zinc data files created with ZIL_STORAGE. Although the ZIL_­
STORAGE_OBJECT is stored in a file, it should be thought of as a file and not a record
in a file. A ZIL_STORAGE_OBJECT may have many pieces of data associated with it.
As each piece of data is stored to, or loaded from, the ZIL_STORAGE_OBJECT its file
pointer is advanced so that it is pointing to the next piece of data. Because ZIL_STOR­
AGE_OBJECT is derived from ZIL_STORAGE_OBJECT_READ_ONLY, this class can
also read from the ZIL_STORAGE file. See "Chapter 66-ZIL_STORAGE" in this
manual for more information regarding data files.

The ZIL_STORAGE_OBJECT class is declared in UI_GEN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS ZIL_STORAGE_OBJECT public
ZIL_STORAGE_OBJECT_READ_ONLY

{
public: // Read/Write support

ZIL_STORAGE_OBJECT(void) ;
ZIL_STORAGE_OBJECT(ZIL_STORAGE &file, const ZIL_ICHAR *name,

OBJECTID nObjectID, UIS_FLAGS pFlags = UIS_READWRITE);
-ZIL_STORAGE_OBJECT(voidl;

void SetCTime(ZIL_INT32 val);
void SetMTime(ZIL_INT32 val);
void Touch(void) ;
virtual int Store(ZIL_INT16 value);
virtual int Store(ZIL_UINT16 value);
virtual int Store(ZIL_INT32 value);
virtual int Store(ZIL_UINT32 value);
virtual int Store(ZIL_INT8 value);
virtual int Store(ZIL_UINT8 value);
virtual int Store(void *buff, int size, int length);
virtual int Store(const ZIL_ICHAR *string);

} ;

General Members

This section describes those members that are used for general purposes.

Chapter 68 - ZIL_STORAGE_OBJECT 675

Syntax

#include <uLgen.hpp>

ZIL_STORAGE_OBJECT(void);
or

ZIL_STORAGE_OBJECT(ZIL_STORAGE &file, const ZIL_ICHAR *name,
ZIL_OBJECTID nObjectID, UIS_FLAGS pFlags = UIS_READWRITE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

676

These overloaded constructors each create a new ZIL_STORAGE_OBJECT.

The first overloaded constructor creates a ZIL_STORAGE_OBJECT with no associated
object. This advanced constructor is reserved for internal use only.

The second overloaded constructor creates a ZIL_STORAGE_OBJECT with the following
parameters:

• file in is the file containing the object. If the object is not found, it will be created if
UIS_CREATE or UIS_OPENCREATE is specified.

• namein is the name of the object.

• nObjectIDin is the objectID of the object.

• pFlagsin indicates how the storage object is to be opened. The following
UIS_FLAGS are supported:

UIS_READ-Allows read only access to the object.

Zinc Application Framework-Programmer's Reference Volume 1

UIS_READWRITE-Allows read and write access to the object. This flag
allows modifications to be made to the object.

UIS_CREATE-Creates an object and allows write access to it. Any previous
object will be deleted.

UIS_OPENCREATE-Opens an existing object for read and write access. If
the object does not exist, it is created for read and write access.

Example

#include <ui_win.hpp>

void DIW_WINDOW::Load(const char *name, ZIL_STORAGE *directory,
ZIL_STORAGE_OBJECT *file)

II Check for a valid directory and file.
int tempDirectory = FALSE, tempFile = FALSE;
if (name && !file)
{

char pathName[128] , fileName [32] , objectName[32];
ZIL_STORAGE::StripFullPath(name, pathName, fileName, objectName);
if (!directory)
{

ZIL_STORAGE: :AppendFullPath(pathName, pathName, fileName);
ZIL_STORAGE::ChangeExtension(pathName, ".dat");
directory = new ZIL_STORAGE(pathName, DIS_READ);
tempDirectory = TRUE;

}
if (!file)
{

if (objectName[O] == '\0')
strcpy(objectName, fileName);

directory->ChDir (" -UIW_WINDOW") ;
file = new ZIL_STORAGE_OBJECT(*directory, objectName, ID_WINDOW,

UIS_READ) ;
if (file->objectError)

Chapter 68 - ZIL_STORAGE_OBJECT 677

Syntax

#include <uLgen.hpp>

-ZIL_STORAGE_OBJECT(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This destructor destroys the class information associated with the ZIL_STORAGE_­
OBJECT.

Example

#include <ui_win.hpp>

void UIW_WINDOW: :Load(const char *name, ZIL_STORAGE *directory,
ZIL_STORAGE_OBJECT *file)

II Clean up the file and storage.
if (tempFile)

delete file;
if (tempDirectory)

delete directory;

ZIL_STORAGE_OBJECT::SetCTime

Syntax

#include <uLgen.hpp>

void SetCTime(ZIL_INT32 val);

678 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sets the create time for the object.

• valin is the new create time.

ZIL_STORAGE_OBJECT::SetMTinle

Syntax

#include <uLgen.hpp>

void SetMTime(ZIL_INT32 val);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sets the modify time for the object.

• Valin is the new modify time.

Chapter 68 - ZIL_STORAGE_OBJECT 679

ZIL_STORAGE_OBJECT::Store

Syntax

#include <ui_gen.hpp>

int Store(ZIL_INTI6 value);
or

int Store(ZIL_UINTI6 value);
or

int Store(ZIL_INT32 value);
or

int Store(ZIL_UINT32 value);
or

int Store(ZIL_UINT8 value);
or

int Store(ZIL_INT8 value);
or

int Store(void *buff, int size, int length);
or

int Store(const ZIL_ICHAR *string);

Portability

These functions are available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

The first six overloaded functions write information to the storage file according to the
type of value given.

returnValueout is the number of bytes written.

• valuein is the numeric value to be written. The following values are supported:

ZIL_INT8-A number whose value is between -128 and 127 (8 bits, signed).

ZIL_UINT8-A number whose value is between 0 and 255 (8 bits, unsigned).

680 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_INTl6-A number whose value is between -32,768 and 32,767 (16 bits,
signed).

ZIL_UINTl6-A number whose value is between 0 and 65,535 (16 bits,
unsigned).

ZIL_INT32-A number whose value is between -2,147,483,648 and
2,147,483,647 (32 bits, signed).

ZIL_UINT32-A number whose value is between 0 and 4,294,967,295 (32 bits,
unsigned).

The seventh overloaded function writes information into the storage file according to the
following values:

• returnValueout is the number of bytes written.

• buffm is a pointer to the buffer that contains the information to be written.

• sizein is the size of each item to be written.

• lengthin is the number of items to be written.

In general, programmers are discouraged from using this function, because the integrity
of the type of value being stored cannot be guaranteed across environments. For example,
the storage size of a value (e.g., int) in DOS might be different than that in Motif. All
of the other Store() functions, however, are the same across environments.

The eighth overloaded function writes information into the storage file according to the
following value:

returnValueout is the number of bytes written.

stringin is a pointer to the string that is to be written.

681

ZIL_STORAGE_OBJECT::Touch

Syntax

#include <ui_gen.hpp>

void Touch(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function sets ZIL_STORAGE::inode.modifyTime (the time of the last modification)
of the storage object to the current time.

Example
#include <ui_gen.hpp>

ExampleFunction(ZIL_STORAGE_OBJECT *object)
{

object->Touch();

682 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 69­
ZIL_STORAGE_OBJECT_READ_ONLY

The ZIL_STORAGE_OBJECT_READ_ONLY class is used to load an object's data using
Zinc Application Framework data files. The most common use is to load persistent
objects (e.g., objects created using Zinc Designer) using Zinc data files created with ZIL_­
STORAGE_READ_ONLY. Although the ZIL_STORAGE_OBJECT_READ_ONLY is
stored in a file, it should be thought of as a file and not a record in a file. A ZIL_­
STORAGE_OBJECT may have many pieces of data associated with it. As each piece
of data is loaded from the ZIL_STORAGE_OBJECT_READ_ONLY its file pointer is
advanced so that it is pointing to the next piece of data. ZIL_STORAGE_OBJECT only
allows data to be loaded from the file. If write access is needed use the ZIL_­
STORAGE_OBJECT class. See "Chapter 70--ZIL_STORAGE_READ_ONLY" in this
manual for more information regarding data files.

The ZIL_STORAGE_OBJECT_READ_ONLY class is declared in UI_GEN.HPP. Its
public and protected members are:

class ZIL_EXPORT_CLASS ZIL_STORAGE_OBJECT_READ_ONLY public
ZIL_INTERNATIONAL

{
public: II Read-Only support

int objectError;
OBJECTID objectID;
ZIL_ICHAR *stringID;

ZIL_STORAGE_OBJECT_READ_ONLY(void) ;
ZIL STORAGE OBJECT READ ONLY(ZIL STORAGE READ ONLY &file,

-const ZIL_ICHAR *na~e, OBJECTID nObjectID);
virtual ~ZIL_STORAGE_OBJECT_READ_ONLY(void);

long Seek(long _position);
ZIL_STATS_INFO *Stats(void);
ZIL_STORAGE_READ_ONLY *Storage(void);
long Tell (void) ;
virtual int Load(ZIL_INT16 *value);
virtual int Load(ZIL_UINT16 *value);
virtual int Load(ZIL_INT32 *value);
virtual int Load(ZIL_UINT32 *value);
virtual int Load(ZIL_UINT8 *value);
virtual int Load(ZIL INT8 *value);
virtual int Load(void *buff, int size, int length);
virtual int Load(ZIL_ICHAR *string, int length);
virtual int Load(ZIL_ICHAR **string);

virtual int Store(void *buff, int size, int length);
};

683

General Members

This section describes those members that are used for general purposes.

• objectError is the result of the last attempt to load this object from a file. This value
is set to one of the values defined by ermo. For more information see the global
variable ermo in your compiler language reference manual.

• objectlD is the objectlD for the type of object being loaded.

• stringID is the name of the object.

ZIL_STORAGE_OBJECT READ ONLV::ZIL_STORAGE ­
OBJECT_READ_ONLV

Syntax

#include <ui_gen.hpp>

or
ZIL_STORAGE_OBJECT_READ_ONLY(ZIL_STORAGE_READ_ONLY &file,

const ZIL_ICHAR *name, ZIL_OBJECTID nObjectlD);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

684

These overloaded constructors each create a new ZIL_STORAGE_OBJECT_READ_­
ONLY.

The first overloaded constructor creates a ZIL_STORAGE_OBJECT_READ_ONLY with
no associated object. This advanced constructor is reserved for internal use only.

Zinc Application Framework-Programmer's Reference Volume 1

The second overloaded constructor creates a ZIL_STORAGE_OBJECT_READ_ONLY
with the following parameters:

• file in is the file containing the object.

• namein is the name of the object.

• nObjectIDin is the objectID of the object.

Example
#include <ui_win.hpp>

void UIW_WINDOW: :Load(const char *name, ZIL_STORAGE_READ_ONLY *directory,
ZIL_STORAGE_OBJECT_READ_ONLY *file)

II Check for a valid directory and file.
int tempDirectory = FALSE, tempFile = FALSE;
if (name && !file)
{

char pathName[128J, fileName [32] , objectName[32];
ZIL_STORAGE_READ_ONLY::StripFullPath(name, pathName, fileName,

objectName) ;
if (! directory)
{

ZIL_STORAGE_READ_ONLY::AppendFullPath(pathName, pathName, fileName);
ZIL_STORAGE_READ_ONLY::ChangeExtension(pathName, ".dat");
directory = new ZIL_STORAGE_READ_ONLY(pathName, UIS_READ);
tempDirectory = TRUE;

}
if (!file)
{

if (objectName[OJ == '\0')
strcpy(objectName, fileName);

directory->ChDir (" -UIW_WINDOW") ;
file = new ZIL_STORAGE_OBJECT_READ_ONLY(*directory, objectName,

ID WINDOW, UIS READ);
if (fil~->objectErr;r)

ZIL_STORAGE_OBJECT_READ ONLV::-ZIL STORAGE_­
OBJECT_READ_ONLV

Syntax

#include <ui_gen.hpp>

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This destructor destroys the class information associated with the ZIL_STORAGE_­
OBJECT_READ_ONLY.

Example
#include <ui_win.hpp>

void UIW_WINDOW: :Load(const char *name, ZIL_STORAGE_READ_ONLY *directory,
ZIL_STORAGE_OBJECT_READ_ONLY *file)

II Clean up the file and storage.
if (tempFile)

delete file;
if (tempDirectory)

delete directory;

686 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_STORAGE_OBJECT_READ_ONLV::Load

Syntax

#include <uLgen.hpp>

int Load(ZIL_INTI6 *value);
or

int Load(ZIL_UINTI6 *value);
or

int Load(ZIL_INT32 *value);
or

int Load(ZIL_UINT32 *value);
or

int Load(ZIL_UINT8 *value);
or

int Load(ZIL_INT8 *value);
or

int Load(void *buff, int size, int length);
or

int Load(ZIL_ICHAR *string, int length);
or

int Load(ZIL_ICHAR **string);

Portability

These functions are available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

The first six overloaded functions read information from the storage file according to the
type of value given.

• returnValueou1 is the number of bytes read.

• valueou1 is the numeric value read. The following values are supported:

ZIL_INT8-A number whose value is between -128 and 127 (8 bits, signed).

687

ZIL_UINT8-A number whose value is between 0 and 255 (8 bits, unsigned).

ZIL_INTl6-A number whose value is between -32,768 and 32,767 (16 bits,
signed).

ZIL_UINT16-A number whose value is between 0 and 65,535 (16 bits,
unsigned).

ZIL_INT32-A number whose value is between -2,147,483,648 and
2,147,483,647 (32 bits, signed).

ZIL_UINT32-A number whose value is between 0 and 4,294,967,295 (32 bits,
unsigned).

The seventh overloaded function reads information from the storage file according to the
following values:

• buffoul is a pointer to the buffer that will receive the information. This buffer must
be large enough to contain the information read.

• sizein is the size of each item to be read.

• lengthin is the number of items to be read.

In general, programmers are discouraged from using this function, because the integrity
of the type of value being loaded cannot be guaranteed across environments. For
example, the storage size of a value in DOS might be different than that in Motif. All
of the other Load() functions, however, are the same across environments.

The eighth overloaded function reads information from the storage file according to the
following values:

stringOUI is a pointer to the character buffer that will receive the information. This
buffer must be large enough to contain the information read.

lengthin is the number of characters to read.

The ninth overloaded function reads information from the storage file according to the
following values:

stringOUI is a pointer to a string pointer where the information will be written. This
string is allocated by the library.

688 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_STORAGE_OBJECT_READ_ONLY::Seek

Syntax

#include <ui_gen.hpp>

long Seek(1ong -position);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This advanced function positions the file pointer to the position specified by -position.
This function should only be used with a value obtained from Tell().

• returnValueOUI is the updated file position.

• -positionin is the position to which the file pointer should be set.

ZIL_STORAGE_OBJECT_READ_ONLY::Stats

Syntax

#include <ui_gen.hpp>

ZIL_STATS_INFO *Stats(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

689

Remarks

This function returns some statistics regarding the ZIL_STORAGE_OBJECT_READ_­
ONLY.

• returnValueout is a pointer to a ZIL_STATS_INFO structure. For more information
regarding ZIL_STATS_INFO, see the beginning of "Chapter 70-ZIL_STORAGE_­
READ_ONLY." If an error occurs, NULL is returned.

ZIL_STORAGE_OBJECT_READ_ONLY: :Storage

Syntax

#include <uLgen.hpp>

ZIL_STORAGE_READ_ONLY *Storage(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns a pointer to the ZIL_STORAGE_READ_ONLY that contains the
ZIL_STORAGE_OBJECT_READ_ONLY.

• returnValueout is a pointer to a ZIL_STORAGE_READ_ONLY file.

ZIL_STORAGE_OBJECT_READ_ONLY::Store

Syntax

#include <uLgen.hpp>

virtual int Store(void *buff, int size, int length);

690 Zinc Application Framework-Programmer's Reference Volume 1

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual function allows the programmer to have low-level access to the file.

This function writes information into the storage file according to the following values.
In general, programmers are discouraged from using this function, because the integrity
of the type of value being loaded cannot be guaranteed across environments. For
example, the storage size of a value (e.g., int) in DOS might be different than that in
Motif. All of the other Store() functions, however, are the same for DOS and Motif.

bufftn/out is a pointer to the buffer that contains the information to be written.

• sizein is the size of each item to be written.

• lengthin is the number of items to be written.

Syntax

#include <ui~en.hpp>

long Tell(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

691

Remarks

This advanced function returns the current position of the file pointer.

• returnValueout is the current position of the file pointer.

692 Zinc Application Framework-Programmer's Reference Volume 1

The ZIL_STORAGE_READ_ONLY class is used to read Zinc Application Framework
data files. It is created as a class so that the file can be treated as an object, which does
the reading.

Although the ZIL_STORAGE_READ_ONLY is stored in a file, it should be thought of
as a file system and not just a file. The ZIL_STORAGE_READ_ONLY class is similar,
in design, to the Unix file system. This means that within a ZIL_STORAGE_READ_­
ONLY object, there can be many files (i.e., objects derived from ZIL_STORAGE_­
READ_ONLY_OBJECT) and levels of sub-directories. The programmer has the ability
to copy, delete and move files across directories. The maximum length of a ZIL_­
STORAGE_READ_ONLY object is about 16 megabytes with the maximum size of an
individual object being 4 megabytes. A single ZIL_STORAGE_READ_ONLY object
may contain a maximum of 16,000 objects (i.e., ZIL_STORAGE_READ_ONLY_­
OBJECT.)

ZIL_STORAGE_READ_ONLY is typically used to retrieve persistent objects (e.g.,
objects created using Zinc Designer) to be retrieved. Another common use for ZIL_­
STORAGE_READ_ONLY is as a simple data base.

The ZIL_STORAGE_READ_ONLY class is declared in UI_GEN.HPP. Its public and
protected members are:

struct ZIL_EXPORT_CLASS ZIL_STATS_INFO
{
public:

ZIL_INT32 size;
ZIL_INT32 createTime;
ZIL_INT32 modifyTime;
ZIL_UINT16 useCount;
ZIL_UINT16 revision;
ZIL_UINT16 countryID;
ZIL_INODE_NUMBER inurn;

};

class ZIL_EXPORT_CLASS ZIL_STORAGE_READ_ONLY : public ZIL_INTERNATIONAL
{
public: II Static file system support routines

void StorageName{ZIL_ICHAR *buff);
static void AppendFullPath(ZIL_ICHAR *fullPath,

const ZIL_ICHAR *pathName = ZIL_NULLP{ZIL_ICHAR),
const ZIL_ICHAR *fileName = ZIL_NULLP{ZIL_ICHAR),
const ZIL_ICHAR *extension = ZIL_NULLP{ZIL_ICHAR));

static void ChangeExtension{ZIL_ICHAR *name,
const ZIL_ICHAR *newExtension);

static void StripFullPath(const ZIL_ICHAR *fullPath,
ZIL_ICHAR *pathName = ZIL_NULLP(ZIL_ICHAR),
ZIL_ICHAR *fileName = ZIL_NULLP{ZIL_ICHAR),
ZIL_ICHAR *objectName = ZIL_NULLP{ZIL_ICHAR),
ZIL_ICHAR *objectPathName = ZIL_NULLP{ZIL_ICHAR));

static void TempName{ZIL_ICHAR *tempname);

693

static int ValidName(const ZIL_ICHAR *name, int createStorage FALSE);
protected:

static void MakeFullPath(ZIL_ICHAR *tmppath);

public: II Read-Only support
static int cacheSize;
static UI_PATH *searchPath;
int storageError;

ZIL_STORAGE_READ_ONLY(void) ;
ZIL STORAGE READ ONLY(const ZIL ICHAR *name); II Read Only
virtual -ZIL_STORAGE_READ_ONLY(~oid);
int ChDir(const ZIL_ICHAR *newName);
int GetCWD(ZIL_ICHAR *path, int pathLen);
ZIL_STORAGE_DIRECTORY *OpenDir(const ZIL_ICHAR *name);
ZIL STATS INFO *Stats(void);
int-Version(void);

public:
ZIL_ICHAR *FindFirstObject(const ZIL_ICHAR *pattern);
ZIL_ICHAR *FindNextObject(void);
ZIL_ICHAR *FindFirstID(ZIL_UINT16 id);
ZIL_ICHAR *FindNextID(void);

} ;

General Members

This section describes those members that are used for general purposes.

• ZIL_STATS_INFO contains the status of the file access operations.

size is the size, in bytes, of the object or file.

createTime contains the time when the object or file was created. createTime
uses the C language type time_t.

modifyTime contains the time when the object or file was last modified.
modifyTime uses the C language type time_to

useCount is the number of times the object is used. MS-DOS files are used only
once.

revision is the revision number of the file or object (i.e., the number of times that
a file or object has been modified.)

countryID denotes the ID of the country for which the object was created. A
value of 0 is used to denote the current country.

inum is the inode number of the object. (No further documentation of this
member is provided.)

694 Zinc Application Framework-Programmer's Reference Volume 1

• cacheSize indicates how much memory is to be used as a read and write cache. The
default cacheSize is 8 Kbytes.

• searchPath contains the search path for the ZIL_STORAGE_READ_ONLY file when
it is opened.

• storageError is the result of the last file access. This value is set to one of the values
defined by ermo. For more information see the global variable ermo in the compiler
language reference manual.

Syntax

#include <uLgen.hpp>

ZIL_STORAGE_READ_ONLY(void);
or

ZIL_STORAGE_READ_ONLY(const ZIL_ICHAR *name);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded constructors both create a new ZIL_STORAGE_READ_ONLY class
object.

The first overloaded constructor creates a ZIL_STORAGE_READ_ONLY with no
associated disk file.

The second overloaded constructor creates a ZIL_STORAGE_READ_ONLY and binds
it to a disk file.

• namein is the name of the file to be opened. It may contain a path name. If the
storage file cannot be opened, this function will use UCPATH functions to search

695

other paths for the file. For example, "-zinc-examples-*.dat" will return the first
.DAT file found with that path. Notice that the ,-, character is used as the directory
separator. The '*' character is considered to be a wildcard character.

Example

#include <ui_win.hpp>

UI_HELP_SYSTEM::UI_HELP_SYSTEM(char *pathName,
UI_WINDOW_MANAGER *windowManager, UI_HELP_CONTEXT helpContext)
defaultHelpContext(helpContext)

II Open the help storage unit.
storage = new ZIL_STORAGE_READ_ONLY(pathName);
if (storage->storageError)
{

delete storage;
storage = NULL;

Syntax

#include <ui_gen.hpp>

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This destructor destroys the class information associated with the ZIL_STORAGE_­
READ_ONLY object and closes any files opened by the ZIL_STORAGE_READ_ONLY
constructor. If a file was opened with the VIS_TEMPORARY flag, it will be deleted
when this destructor is called.

696 Zinc Application Framework-Programmer's Reference Volume 1

Example

#include <ui_win.hpp>

UI_HELP_SYSTEM: :-UI_HELP_SYSTEM(void)
{

if (storage)
delete storage;

delete helpWindow;

Syntax

#include <ui_gen.hpp>

static void AppendFullPath(ZIL_ICHAR *fullPath,
const ZIL_ICHAR *pathName = ZIL_NULLP(ZIL_ICHAR),
const ZIL_ICHAR *fileName = ZIL_NULLP(ZIL_ICHAR),
const ZIL_ICHAR *extension = ZIL_NULLP(ZIL_ICHAR));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function combines fragments of the path, file name and extension in order to
construct a complete path name.

fullPath oUI is the complete path name that is passed back.

• pathNamein is the name of the path.

• fileName in is the name of the storage file.

• extensionin is the extension to the file name (e.g., ".dat").

697

Example

#include <ui_win.hpp>

UI WINDOW OBJECT *UI WINDOW OBJECT: :New(const char *name,
- ZIL_STORAGE_READ=ONLY *directory,

ZIL_STORAGE_READ_ONLY_OBJECT *file)

II Check for a valid directory and file.
int tempDirectory = FALSE;
if (name && !file)
{

char pathName[128] , fileName [32] , objectName[32];
ZIL_STORAGE_READ_ONLY: :StripFullPath(name, pathName, fileName,

obj ectName) ;
if (!directory)
{

ZIL_STORAGE_READ_ONLY::AppendFullPath(pathName, pathName, fileName);
ZIL_STORAGE_READ_ONLY: :ChangeExtension(pathName, ".dat");
directory = new ZIL_STORAGE_READ_ONLY(pathName, UIS_READ);
tempDirectory = TRUE;

}
if (!file)

return (new UIW_WINDOW(name, directory, NULL));

ZIL_STORAGE_READ_ONLY: :ChangeExtension

Syntax

#include <uLgen.hpp>

static void ChangeExtension(ZIL_ICHAR *name, const ZIL_ICHAR *newExtension);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function changes the extension (e.g., ".dat") associated with the filename.

• nameout is the full name of the file, possibly including the path.

698 Zinc Application Framework-Programmer's Reference Volume 1

newExtensionin is the new extension that will replace the previous extension (if any).

Example

#include <ui_win.hpp>

UI_WINDOW_OBJECT *UI_WINDOW_OBJECT: :New(const char *name,
ZIL_STORAGE_READ_ONLY *directory,
ZIL_STORAGE_READ_ONLY_OBJECT *file)

II Check for a valid directory and file.
int tempDirectory = FALSE;
if (name && !file)
{

char pathName[128] , fileName[32], objectName[32];
ZIL_STORAGE_READ_ONLY: :StripFullPath(name, pathName, fileName,

objectName) ;
if (!directory)
{

ZIL_STORAGE_READ_ONLY: :AppendFullPath(pathName, pathName, fileName);
ZIL_STORAGE_READ_ONLY::ChangeExtension(pathName, ".DAT");
directory = new ZIL_STORAGE_READ_ONLY(pathName, UIS_READ);
tempDirectory = TRUE;

}
if (!file)

return (new UIW_WINDOW(name, directory, NULL));

Syntax

#include <uLgen.hpp>

int ChDir(const ZIL_ICHAR *newName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

699

Remarks

This function changes the current working directory within a ZIL_STORAGE_READ_­
ONLY file.

• returnValueout is 0 on success and -Ion failure.

• newNamein is the name of the directory that will become the new current working
directory. newName specifies a single sub-directory and not an entire path. The
character "." is used to refer to the current working directory and " .." is used to
refer to the parent directory. " .." refers to the root directory if the current working
directory is the root directory. The separator ,-, is similar to the '\' in the DOS
directory system.

Example
#include <ui_win.hpp>

main(int argc, char *argv[])
{

II Create the help directory.
ZIL_STORAGE_READ_ONLY *helpFile new ZIL_STORAGE_READ_ONLY(fileName,

UIS_READWRITE);
if (helpFile->storageError)
{

delete helpFile;
helpFile = new ZIL_STORAGE_READ_ONLY(fileName, UIS_CREATE

UIS_READWRITE) ;
}
helpFile->MkDir ("UI_HPP") ;
if (newHelpDirectory)

helpFile->RmDir("UI_HELP_CONTEXT");
helpFile->MkDir ("UI_HELP_CONTEXT") ;

II Print genhelp status.
PrintStatus("PROCESSING %s:\n", fileName);
ZIL_OBJECTID helpID = 0;

II Generate the HPP directory.
helpFile->ChDir(I-UI_HPP");
ZIL_STORAGE_READ_ONLY_OBJECT *hppElement

new ZIL_STORAGE_READ_ONLY_OBJECT(*helpFile,
"HELP_CONTEXTS", ID_HELP_CONTEXT, UIS_CREATE I UIS_READWRITE);

II Generate the help contexts.
helpFile->ChDir(I-UI_HELP_CONTEXT");

700 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_STORAGE_READ_ONLY::FindFirstID

Syntax

#include <uLgen.hpp>

ZIL_ICHAR *FindFirstID(ZIL_UINT16 id);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2

• NEXTSTEP

This function finds the first object in the current directory of the storage object whose
objectID matches id.

• returnValueoul is a pointer to a string containing the stringID of the object whose
objectID matches id. If no match is found, returnValue is NULL.

• idin is the objectID of the object to be located.

ZIL_STORAGE_READ_ONLY::FindFirstObject

Syntax

#include <ui_gen.hpp>

ZIL_ICHAR *FindFirstObject(const ZIL_ICHAR *pattern);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

Chapter 70 - ZIL_STORAGE_READ_ONL Y 701

Remarks

This function finds the first object whose string/D matches pattern inside the storage
object in its current directory.

• returnValueout is a pointer to a string containing the string/D of the object that
matches pattern. If no match is found, returnValue is NULL.

• patternin is the stringID of an object. pattern may contain wildcards. For example,
if pattern were "i*", then FindFirstObject() would return the string/D of the first
object that has an "i" as the first letter of string/D. Additionally, the '?' wildcard
may be used to specify a single unknown character such as "* .BK?".

ZIL_STORAGE_READ_ONLY::FindNextID

Syntax

#include <ui_gen.hpp>

ZIL_ICHAR *FindNextID(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function finds the next object in the current directory in the storage whose object/D
matches the objectID that was used for the most recent call to FindFirstlD(). This
function call must be preceded by a call to FindFirstlD().

• returnValueout is a pointer to a string containing the string/D of the object whose
object/D matches the objectID that was used for the most recent call to
FindFirstlD(). If no match is found, returnValue is NULL.

702 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_STORAGE_READ_ONLV::FindNextObject

Syntax

#include <ui_gen.hpp>

ZIL_ICHAR *FindNextObject(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function finds the next object in the current directory in the storage whose stringID
matches the pattern of the last call to FindFirstObject(). This function call must be
preceded by a call to FindFirstObject().

• returnValueoul is a pointer to a string containing the stringID of the object that
matches the pattern of the last call to FindFirstObject(). If no match is found,
returnValue is NULL.

ZIL_STORAGE_READ_ONLV::GetCWD

Syntax

#include <ui_gen.hpp>

int GetCWD(ZIL_ICHAR *path, int pathLen);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

703

Remarks

This function returns the name of the current directory.

• returnValueout indicates the success of the call. If returnValue is zero, the call was
successful. Otherwise, an error occurred.

• pathout is the path name of the current working directory. This pointer must be a
buffer allocated by the programmer.

• pathLenin is the length of the buffer supplied in path.

ZIL_STORAGE_READ_ONLY::MakeFuIiPath

Syntax

#include <ui_gen.hpp>

static void MakeFullPath(ZIL_ICHAR *tmppath);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function creates a full path name, including a drive letter, from a partial path name.

• tmppathin/out is the partial path. The function modifies the contents of tmppath to
contain the full path for the partial path originally supplied.

704 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_STORAGE_READ_ONLY::OpenDir

Syntax

#include <ui_gen.hpp>

ZIL_STORAGE_DIRECTORY *OpenDir(const ZIL_ICHAR *name);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function creates a directory pointer within the file. This function creates a new
ZIL_STORAGE_DIRECTORY which allows multiple pointers to be maintained within
the storage file.

• returnValueout is a pointer to the ZIL_STORAGE_DIRECTORY which points to the
directory opened.

• namein is the path name of the directory to be opened.

ZIL_STORAGE_READ_ONLY::Stats

Syntax

#include <ui_gen.hpp>

ZIL_STATS_INFO *Stats(void);

705

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2

• NEXTSTEP

This function returns statistics regarding the ZIL_STORAGE_READ_ONLY object.

• returnValueout is a pointer to a ZIL_STATS_INFO structure. For more information
regarding ZIL_STATS_INFO, see the beginning of this chapter. If an error occurs,
NULL is returned.

ZIL_STORAGE_READ_ONLV::StorageName

Syntax

#include <uLgen.hpp>

void StorageName(ZIL_ICHAR *bujj);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

706

This function returns the name of the file associated with the ZIL_STORAGE_READ_­
ONLY object.

buJJ;n/out is a buffer used to pass back the name of the ZIL_STORAGE_READ_ONLY
file. buff should be large enough to hold the largest path plus the NULL terminator.

Zinc Application Framework-Programmerfs Reference Volume 1

Example

#include <ui_gen.hpp>

char *ExampleFunction(ZIL_STORAGE_READ_ONLY *storage)
{

static char name[129];
storage->StorageName(&name);

return (&name);

ZIL_STORAGE_READ_ONLV::StripFuIiPath

Syntax

#include <ui_gen.hpp>

static void StripFullPath(const ZIL_ICHAR *fullPath,
ZIL_ICHAR *pathName =ZIL_NULLP(ZIL_ICHAR),
ZIL_ICHAR *fileName = ZIL_NULLP(ZIL_ICHAR),
ZIL_ICHAR *objectName = ZIL_NULLP(ZIL_ICHAR),
ZIL_ICHAR *objectPathName = ZIL_NULLP(ZIL_ICHAR));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function takes a full path name and divides it into its path and file name components.
The arguments fullPath, pathName, fileName, objectName and objectPathName all have
the NULL argument specified so that the information will not be saved if no other
argument is provided.

• fullPath in is the complete path name that is passed down.

• pathNamein is the name of the path.

707

• fileNamein is the name of the storage file (including the extension).

• objectNamein is the name of the specific object.

• objectPathNamein is the path name for the specific object.

Example

#include <ui_win.hpp>

UI_WINDOW_OBJECT *UI_WINDOW_OBJECT::New(const char *name,
ZIL_STORAGE_READ_ONLY *directory,
ZIL_STORAGE_READ_ONLY_OBJECT *file)

II Check for a valid directory and file.
int tempDirectory = FALSE;
if (name && !file)
{

char pathName[128], fileName[32], objectName[32], objectPathName[128];
ZIL_STORAGE_READ_ONLY::StripFullPath(name, pathName, fileName,

objectName, objectPathName)i
if (! directory)
{

ZIL_STORAGE_READ_ONLY::AppendFullPath(pathName, pathName, fileName);
ZIL_STORAGE_READ_ONLY: :ChangeExtension(pathName, ".dat");
directory = new ZIL_STORAGE_READ_ONLY(pathName, UIS_READ);
tempDirectory = TRUE;

}
if (!file)

return (new UIW_WINDOW(name, directory, NULL));

Syntax

#include <uLgen.hpp>

static void TempName(ZIL_ICHAR *tempname);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

708 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This function creates a temporary read and write file that has a unique file name.

• tempnameout is a buffer that will contain a unique file name that can be used as a read
and write file.

Syntax

#include <ui_gen.hpp>

static int ValidName(const ZIL_ICHAR *name, int createStorage =FALSE);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function indicates whether the specified file exists on the disk.

• returnValueout is TRUE if the file exists or if it can be created. Otherwise, return­
Value is FALSE.

• namein is the name of the file to be checked.

• createStoragein , when TRUE, allows the name to not actually exist as long as the
directory and the file name are valid. When createStorage is FALSE, the file must
exist in the specified path and directory.

Example
#include <ui_gen.hpp>

main(int argc, char *argv[])
{

II Make sure there is a specified text file.

Chapter 70 - ZIL_STORAGE_READ_ONLY 709

if (argc != 2)
{

printf("Usage: genhelp <text file name>\n");
return (1);

}
II Open the text file.
char fileName [128] ;
strcpy(fileName, argv[l])i
ZIL_STORAGE_READ_ONLY: : ChangeExtension (fileName, ". txt") ;
FILE *textFile = fopen(fileName, "rb");
if (!textFile)

printf("Could not open the text file: %s.\n", fileName)i
II Open the data file.
ZIL_STORAGE_READ_ONLY::ChangeExtension(fileName, ".dat");
if (IZIL_STORAGE_READ_ONLY::ValidName(fileName, TRUE»)
{

printf("Could not create the help data file: %s.\n", fileName);
return (0);

Syntax

#include <uLgen.hpp>

int Version(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the version of ZIL_STORAGE_READ_ONLY used to create the
file.

• returnValueout is an integer containing the ZIL_STORAGE_READ_ONLY version
number. The version number is 400 for version 4.0 of Zinc Application Framework.

710 Zinc Application Framework-Programmer's Reference Volume 1

Example

#include <ui_gen.hpp>

ExampleFunction(ZIL_STORAGE_READ_ONLY *storage)
{

int version = storage->Version();
printf("The version of this data file is %d.\n", version);

Chapter 70 - ZIL_STORAGE_READ_ONLY 711

712 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 71 - ZIL_TEXT_ELEMENT

The ZIL_TEXT_ELEMENT structure is used by the ZIL_DECORATION class to provide
the text mode decorations for objects. An object's decorations are those bitmaps or
characters that are used to draw an image on the object. The decorations typically include
a graphical image, or bitmap, for use in graphics mode and a textual image, or character
string, for use in text mode. Most environments don't require these decorations since the
operating system typically provides them. Zinc does all the drawing in DOS and Curses,
however, so these environments use decorations extensively. An example of where a
decoration would be used is the maximize button. In graphics mode, it typically has a
small up-arrow bitmap. In text mode, though, it usually displays a left bracket, an up­
arrow character, and a right-bracket; all text characters, of course. This class maintains
the text images. See "Chapter 50-ZIL_BITMAP_ELEMENT" for information on the
bitmaps used for decorations.

The ZIL_TEXT_ELEMENT structure IS declared in UI_GEN.HPP. Its public and
protected members are:

struct ZIL_EXPORT_CLASS ZIL_TEXT_ELEMENT
{

ZIL_ICHAR *texti
ZIL_NUMBERID numberIDi
ZIL_ICHAR stringID[ZIL_STRINGID_LEN] i

};

General Members

This section describes those members that are used for general purposes.

text is the character string maintained by the ZIL_TEXT_ELEMENT.

• numberlD is a numeric value used to identify the ZIL_TEXT_ELEMENT.

• stringlD is a string value used to identify the ZIL_TEXT_ELEMENT.

Chapter 71 - ZIL_ TEXT_ELEMENT 713

714 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 72 - ZIL_TIME

The ZIL_TIME class is a lower-level class used to store and manipulate time values. It
is not a window object. See "Chapter 29-UIW_TIME" of Programmer's Reference
Volume 2 for information about the time window object.

The ZIL_TIME class is declared on UI_GEN.HPP. Its public and protected members
are:

class ZIL EXPORT_CLASS ZIL_TIME public ZIL_UTIME
{
public:

ZIL_TIME (void) ;
ZIL_TIME(const ZIL_TIME &time);
ZIL_TIME(int hour, int minute, int second = 0, int hundredth = 0);
ZIL_TIME(const ZIL_ICHAR *string, TMF_FLAGS tmFlags = TMF_NO_FLAGS);
ZIL_TIME(int packedTime);
void Export (int *hour, int *minute, int *second = ZIL_NULLP(int),

int *hundredth = ZIL_NULLP(int));
void Export (ZIL_ICHAR *string, TMF_FLAGS tmFlags);
void Export(int *packedTime);
TMI_RESULT Import(void);
TMI_RESULT Import(const ZIL_TIME &time);
TMI_RESULT Import (int hour, int minute, int second = 0,

int hundredth = 0);
TMI_RESULT Import(const ZIL_ICHAR *string, TMF_FLAGS tmFlags);
TMI_RESULT Import (int packedTime);

long operator=(long hundredths);
long operator=(const ZIL_TIME &time);
long operator+(long hundredths);
long operator+(const ZIL_TIME &time);
long operator-(long hundredths);
long operator-(const ZIL_TIME &time);
long operator++(void);
long operator--(void);
void operator+=(long hundredths);
void operator-=(long hundredths);
int operator==(ZIL_TIME& time);
int operator!~(ZIL_TIME& time);
int operator>(ZIL_TIME& time);
int operator>~(ZIL_TIME& time);
int operator«ZIL_TIME& time);
int operator<=(ZIL_TIME& time);

};

General Members

This section describes those members that are used for general purposes.

Chapter 72 - ZIL_ TIME 715

Syntax

#include <uLgen.hpp>

ZIL_TIME(void);
or

ZIL_TIME(const ZIL_TIME &time);
or

ZIL_TIME(int hour, int minute, int second =0, int hundredth =0);
or

ZIL_TIME(const ZIL_ICHAR *string, TMF_FLAGS tmFlags =TMF_NO_FLAGS);
or

ZIL_TIME(int packedTime);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
.NEXTSTEP

These overloaded constructors create a new ZIL_TIME class object.

The first overloaded constructor takes no arguments. It sets the time information
according to the system's time.

The second overloaded constructor is a copy constructor that takes a previously
constructed ZIL_TIME object to specify the default time.

• timein is a reference pointer to a previously constructed ZIL_TIME object.

The third overloaded constructor uses integer arguments to specify the default time.

• hourin is the hour. This argument must be in the range from °to 23.

• minutein is the minute. This argument must be in the range from 0 to 59.

716 Zinc Application Framework-Programmer's Reference Volume 1

• secondin is the second. This argument must be in the range from 0 to 59.

• hundredthin is the hundredths of a second. This argument must be in the range from
oto 99.

The fourth overloaded constructor uses a string argument to specify the default time.

• stringin is a string that contains the time information.

• tmFlagsin specifies how to interpret the time string. The following flags (declared in
UI_GEN.HPP) override the country dependent information (supplied by the operating
system):

TMF_COLON_SEPARATOR-Formats the time with colons separating the
time fields. For example, 12 p.m. is formatted as 12:0Opm.

TMF_HUNDREDTHS-Formats the time with a hundredths of seconds value.
For example, if the time is "12: 15: 10.09pm" and the TMF_HUNDREDTHS flag
is set, the value" 12" is interpreted as hours, the value "15" is interpreted as
minutes, "10" is interpreted as seconds, and the "09" is interpreted as
hundredths of seconds.

TMF_LOWER_CASE-Converts the time to lower-case.

TMF_NO_FLAGS-Does not associate any special flags with the ZIL_TIME
object. In this case, the time will be formatted using the default country
information. This is the default argument if no other argument is specified. This
flag should not be used in conjunction with any other TMF flags.

TMF_NO_HOURS-Formats the time with no hour. For example, if the time
is "12:15" and the TMF_NO_HOURS flag is set, the value "12" is interpreted
as minutes and "IS" is interpreted as seconds.

TMF_NO_MINUTES-Formats the time with no minute value. For example,
if the time is "12: IS" and the TMF_NO_MINUTES flag is set, the value" 12"
is interpreted as seconds and the value "15" is interpreted as hundredths of
seconds.

TMF_NO_SEPARATOR-Does not place a separator between time fields.

TMF_SECONDS-Formats the time with a seconds value. For example, if the
time is "12:15:10" and the TMF_SECONDS flag is set, the value "12" is

Chapter 72 - ZIL_TIME 717

interpreted as hours, the value "15" is interpreted as minutes and "10" is
interpreted as seconds.

TMF_SYSTEM-Sets the time value according to the system time if the string
is blank or NULL. For example, if the TMF_SYSTEM flag is set and a NULL
string value is specified, the time will be set to the system time.

TMF_TWELVE_HOUR-Formats the time using a 12 hour format, regardless
of the default country information.

TMF_TWENTY_FOUR_HOUR-Formats the time using a 24 hour format,
regardless of the default country information.

TMF_UPPER_CASE-Converts the time to upper-case.

TMF_ZERO_FILL-Forces the hour, minute, second and hundredths fields to
be zero filled when their values are less than 10.

The fifth overloaded constructor uses a packed integer argument to specify the default
time.

• packedTimein is a packed representation of the time (whose format is the same as the
MS-DOS file times). This argument is packed according to the following bit pattern:

bits 0-4 specify the seconds divided by 2 (e.g., a value of 5 means 10 seconds),
bits 5-10 specify the minutes (0 through 59) and
bits 11-15 specify the hours (0 through 59).

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_TIME timel; II System time initialization.
ZIL_TIME time2(12, 0, 0); II Integer initialization.
ZIL_TIME *time3 = new ZIL_TIME(1 12:00:00pm"); I I String initialization.

718 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_TIME::Export

Syntax

#include <ui_gen.hpp>

void Export(int *hour, int *minute, int *second = ZIL_NULLP(int),
int *hundredth = ZIL_NULLP(int));
or

void Export(ZIL_ICHAR *string, TMF_FLAGS tmFlags);
or

void Export(int *packedTime);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

The first overloaded function returns time information through the four integer arguments.

hourout is a pointer to the variable that is to contain the hour. If this argument is
NULL, no hour information is returned. Otherwise, this argument will be set within
the range from 0 to 23.

• minuteout is a pointer to the variable that is to contain the minute. If this argument
is NULL, no minute information is returned. Otherwise, this argument will be set
within the range from 0 to 59.

secondout is a pointer to the variable that is to contain the second. If this argument
is NULL, no second information is returned. Otherwise, this argument will be set
within the range from 0 to 59.

hundredthout is a pointer to the variable that is to contain the hundredths of a second.
If this argument is NULL, no hundredths information is returned. Otherwise, this
argument will be set within the range from 0 to 99.

The second overloaded function returns the time information through the string argument.

Chapter 72 - ZIL_ TIME 719

• stringout is a pointer to a string that gets the formatted time. This string must be long
enough to contain the time.

• tmFlagsin specifies how the return time should be formatted. The following flags
(declared in UI_GEN.HPP) override the country dependent information (supplied by
the operating system):

TMF_COLON_SEPARATOR-Formats the
time with colons separating the time fields.

TMF_HUNDREDTHS-Formats the time with
a hundredths of seconds value.

TMF_LOWER_CASE-Converts the time to
lower-case.

TMF_NO_FLAGS-Does not associate any
special flags with the ZIL_TIME object. In this
case, the time will be formatted using the default
country information. This is the default
argument if no other argument is specified. This
flag should not be used in conjunction with any
other TMF flags.

TMF_NO_HOURS-Formats the time with no
hour.

TMF_NO_MINUTES-Formats the time with
no minute value.

TMF_NO_SEPARATOR-Does not place a
separator between time fields.

TMF_SECONDS-Formats the time with a
seconds value.

TMF_TWELVE_HOUR-Formats the time
using a 12 hour format, regardless of the default
country information.

TMF_TWENTY_FOUR_HOUR-Formats the

12:00
13:00:00
12:00 a.m.

1:05:00.00
23:15:05.99
7:45:59.00 a.m.

12:00 p.m.
1:00 a.m.

12:00
13:00:00
12:00 a.m.

37:59
56:43.99

12:56
11:45.99

1200
130000

12:00:05 a.m.
1:13:25
16:00:00

12:00 a.m.
1:00 p.m.
5:00 p.m.

12:00
13: 00
17:00

720 Zinc Application Framework-Programmer's Reference Volume 1

time using a 24 hour format, regardless of the
default country information.

TMF_UPPER_CASE-Converts the time to
upper-case.

TMF_ZERO_FILL-Forces the hour, minute
and second values to be zero filled when their
values are less than 10.

12:00 P.M.
1:00 A.M.

01:10 a.m
13:05:03
01:01 p.m.

The third overloaded function returns time information through a packed integer argument.

• packedTimeout is a packed representation of the time (whose format is the same as the
MS-DOS file times). This argument is packed according to the following bit pattern:

bits 0-4 specify the seconds divided by 2 (e.g., a value of 5 means 10 seconds),
bits 5-10 specify the minutes (0 through 59) and
bits 11-15 specify the hours (0 through 59).

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_TIME time; II Use a system time.

int hour, minute, second;
time.Export(&hour, &minute, &second);
printf("Integer time value: hour-%d, minute-%d, second-%d\n",

hour, minute, second);

char stringTime[128];
time.Export(stringTime, TMF_NO_FLAGS);
printf("String time value: %s", stringTimel;

II The destructor for time is automatically called when the
II scope of this function ends.

ZIL_TIME::lmport

Syntax

#include <ui_gen.hpp>

TMCRESULT Import(void);

Chapter 72 - ZIL_ TIME 721

or
TMCRESULT Import(const ZIL_TIME &time);

or
TMCRESULT Import(int hour, int minute, int second = 0, int hundredth = 0);

or
TMI_RESULT Import(const ZIL_ICHAR *string, TMF_FLAGS tmFlags);

or
TMCRESULT Import(int packedTime);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions set the value of the ZIL_TIME object.

The first overloaded function sets the time information according to the system time.

• returnValueout is the result of the import operation. returnValue can have one of the
following values:

TMI_GREATER_THAN_RANGE-The time was greater than the maximum
value of a negatively open-ended range.

TMI_INVALID-The time was invalid or was in an invalid format.

TMI_LESS_THAN_RANGE-The time was less than the minimum value of
a positively open-ended range.

TMI_OK-The time was successfully imported.

TMI_OUT_OF_RANGE-The time was out of the valid range for times.

TMI_VALUE_MISSING-All of the required field values were not present.

The second overloaded function copies the time information from the time reference
argument.

722 Zinc Application Framework-Programmer's Reference Volume 1

• returnValueoul is the result of the import operation. See the first function for possible
values.

• timein is a reference pointer to a previously constructed time.

The third overloaded function sets the time information according to specified integer
arguments.

• returnValueoul is the result of the import operation. See the first function for possible
values.

• hourin is the hour. This argument must be in the range from 0 to 23.

• minutein is the minute. This argument must be in the range from 0 to 59.

• secondin is the second. This argument must be in the range from 0 to 59.

• hundredthin is the hundredths of a second. This argument must be in the range from
oto 99.

The fourth overloaded function sets the time using information passed in a string.

returnValueou1 is the result of the import operation. See the first function for possible
values.

stringin is a pointer to the time string. If this is an empty string (i.e., ""), the
ZIL_TIME will be set to "blank." Passing a blank ZIL_TIME to the UIW_­
TIME::DataSet() function will cause the time field to be displayed as blank space.
See the DataSet section of "Chapter 29-UIW_TIME" of Programmer's Reference
Volume 2 for more information.

• tmFlagsin specifies how the time should be formatted. The following flags (declared
in UI_GEN.HPP) override the country dependent information (supplied by the
operating system):

TMF_HUNDREDTHS-Formats the time with a hundredths of seconds value.
For example, if the time is "12:15:10.09pm" and the TMF_HUNDREDTHS flag
is set, the value "12" is interpreted as hours, the value "15" is interpreted as
minutes, "10" is interpreted as seconds, and the "09" is interpreted as
hundredths of seconds.

Chapter 72 - ZIL_TIME 723

TMF_NO_FLAGS-Does not associate any special flags with the ZIL_TIME
object. In this case, the time will be formatted using the default country
information. This flag should not be used in conjunction with any other TMF
flags.

TMF_NO_HOURS-Formats the time with no hour. For example, if the time
is "12:15" and the TMF_NO_HOURS flag is set, the value "12" is interpreted
as minutes and" 15" is interpreted as seconds.

TMF_NO_MINUTES-Formats the time with no minute value. For example,
if the time is "12:15" and the TMF_NO_MINUTES flag is set, the value "12"
is interpreted as seconds and the value "15" is interpreted as hundredths of
seconds.

TMF_SECONDS-Formats the time with a seconds value. For example, if the
time is "12:15:10" and the TMF_SECONDS flag is set, the value "12" is
interpreted as hours, the value "15" is interpreted as minutes and "10" is
interpreted as seconds.

The fifth overloaded function sets the time information through a packed integer
argument.

• returnValueout is the result of the import operation. See the first function for possible
values.

• packedTimeinlout is a packed representation of the time (whose format is the same as
the MS-DOS file times). This argument is packed according to the following bit
pattern:

bits 0-4 specify the seconds divided by 2 (e.g., a value of 5 means 10 seconds),
bits 5-10 specify the minutes (0 through 59) and
bits 11-15 specify the hours (0 through 59).

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_TIME time; II Initialize a system time.

724

II Import the time in various forms, then print out
II the results.
char stringTime[128J;
time.lmport(20, 0);
time. Export (stringTime, TMF_NO_FLAGS);

Zinc Application Framework-Programmer's Reference Volume 1

printfl"String time value: %s\n", stringTime);

time. Import ("8: 00 p.m." I TMF_SECONDS) ;
time.ExportlstringTime, TMF_TWENTY_FOUR_HOUR);
printfl"String time value: %s\n", stringTime);

II The destructor for time is automatically called when the
II scope of this function ends.

ZIL_TIME::operator =

Syntax

#include <uLgen.hpp>

long operator = (long hundredths);
or

long operator = (const ZIL_TIME &time);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

The first operator overload assigns the value specified by hundredths to the ZIL_TIME
object.

returnValueou1 is the number of hundredths of seconds in the resulting time. This raw
value is returned so that the operator may be used in a statement containing other
operations.

• hundredthsin is the time, given in the number of hundredths of seconds, to be assigned
to the ZIL_TIME object.

The second operator overload assigns the value specified by time to the ZIL_TIME object.

Chapter 72 - ZIL_ TIME 725

• returnValueout is the number of hundredths of seconds in the resulting time. This raw
value is returned so that the operator may be used in a statement containing other
operations.

• timein is the time to be assigned to the ZIL_TIME object.

Example

#include <ui_gen.hpp>

AddOneHour(ZIL_TIME currentTime, ZIL_TIME &nextHour, ZIL_TIME &hourAfterNext)
{

long oneHour = 360000Li
ZIL_TIME twoHours(2, 0) i

II Adding 1 hour to the current time gives the next hour.
nextHour = currentTime + oneHour;

II Adding 2 hour to the current time gives the following hour.
hourAfterNext = currentTime + twoHours;

ZIL_TIME::operator +

Syntax

#include <uLgen.hpp>

long operator + (long hundredths);
or

long operator + (const ZIL_TIME &time);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

726

The first operator overload adds the value hundredths to the ZIL_TIME object.

Zinc Application Framework-Programmer's Reference Volume 1

• returnValueout is the number of hundredths of seconds resulting from the addition
operation. This raw value is returned so that the operator may be used in a statement
containing other operations.

hundredthsin is the number of hundredths of seconds to be added to the ZIL_TIME
object.

The second operator overload adds the value of time to the ZIL_TIME object.

returnValueout is the value resulting from the addition operation. This raw value is
returned so that the operator may be used in a statement containing other operations.

• timein is the time to be added to the ZIL_TIME object.

Example

#include <ui_gen.hpp>

AddOneHour(ZIL_TIME currentTime, ZIL_TIME &nextHour, ZIL_TIME &hourAfterNext)
{

long oneHour = 360000L;
ZIL_TIME twoHours(2, 0);

II Adding 1 hour to the current time gives the next hour.
nextHour = currentTime + oneHour;

II Adding 2 hours to the current time gives the following hour.
hourAfterNext = currentTime + twoHours;

ZIL_TIME: :operator -

Syntax

#include <ui_gen.hpp>

long operator - (long hundredths);
or

long operator - (const ZIL_TIME &time);

Chapter 72 - ZIL_ TIME 727

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

The first operator overload subtracts the value hundredths from the ZIL_TIME object.

• returnValueoul is the number of hundredths of seconds resulting from the subtraction
operation. This raw value is returned so that the operator may be used in a statement
containing other operations.

• hundredthsin is the number of hundredths of seconds to be subtracted from the
ZIL_TIME object.

The second operator overload subtracts the value of time from the ZIL_TIME object.

• returnValueoul is the value resulting from the subtraction operation. This raw value
is returned so that the operator may be used in a statement containing other
operations.

• timein is the time to be subtracted from the ZIL_TIME object.

Example

#include <ui_gen.hpp>

SubtractOneHour(ZIL_TIME currentTime, ZIL_TIME &previousHour,
ZIL_TIME &twoHoursBefore)

long oneHour = 360000L;
ZIL_TIME twoHours(2, 0);

II Subtracting 1 hour from the current time gives the previous hour.
previousHour = currentTime - oneHour;

II Subtracting 2 hours from the current time gives the hour
II two hours previous.
twoHoursBefore = currentTime - twoHours;

728 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_TIME::operator >

Syntax

#include <uLgen.hpp>

int operator> (ZIL_TIME &time);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_TIME object is chronologically
greater than the time specified by time.

• returnValueoul is TRUE if the ZIL_TIME object is chronologically greater than time.
Otherwise, returnValue is FALSE.

timein is the time to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_TIME currentTimei II Initialize a system time.
ZIL_TIME midnight("12:00am");

II Check the time.
if (currentTime == midnight)

printf("It's exactly midnight.\n"li
else if (currentTime > midnight)

printf("We're in the wee hours of the morning.\n");
else

printf("It's still late night.\n");

Chapter 72 - ZIL_ TIME 729

ZIL_TIME: :operator >=

Syntax

#include <ui_gen.hpp>

int operator >= (ZIL_TIME &time);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_TIME object is chronologically
greater than or equal to the time specified by time.

• returnValueou1 is TRUE if the ZIL_TIME object is chronologically greater than or
equal to time. Otherwise, returnValue is FALSE.

• timein is the time to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_TIME currentTimei II Initialize a system time.
ZIL_TIME midnight("12:00am");

II Check the time.
if (currentTime >= midnight)

printf("Tomorrow is here.\n");
else

printf("It's still late night.\n");

730 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_TIME::operator <

Syntax

#include <uLgen.hpp>

int operator < (ZIL_TIME &time);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_TIME object is chronologically less
than the time specified by time.

• returnValueou, is TRUE if the ZIL_TIME object is chronologically less than time.
Otherwise, returnValue is FALSE.

timein is the time to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_TIME currentTime; II Initialize a system time.
ZIL_TIME midnight("12:00am"l;

II Check the time.
if (currentTime < midnight)

printf("It's still late night.\n"l;
else

printf("Tomorrow is here.\n"l;

Chapter 72 - ZIL_ TIME 731

ZIL_TIME::operator <=

Syntax

#include <uLgen.hpp>

int operator <= (ZIL_TIME &time);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_TIME object is chronologically less
than or equal to the time specified by time.

• returnValueout is TRUE if the ZIL_TIME object is chronologically less than or equal
to time. Otherwise, returnValue is FALSE.

• timein is the time to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_TIME currentTime; II Initialize a system time.
ZIL_TIME midnight("12:00am");

II Check the time.
if (midnight <= currentTime)

printf("It's still late night.\n");
else

printf("TOmOrrow is here.\n");

732 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_TIME::operator ++

Syntax

#include <ui_gen.hpp>

long operator ++ (void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload increments the ZIL_TIME by one hundredth of a second.

• returnValueout is the number of hundredths of seconds after the ZIL_TIME object has
been incremented. This raw value is returned so that the operator may be used in a
statement containing other operations.

Example

#include <ui_gen.hpp>
AdvanceCurrentTime(ZIL_TIME ¤tTime)
{

II Advance the current time.
++currentTimei

ZIL_TIME::operator --

Syntax

#include <uLgen.hpp>

long operator -- (void);

Chapter 72 - ZIL_TIME 733

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload decrements the ZIL_TIME by one hundredth of a second.

• returnValueout is the number of hundredths of seconds after the ZIL_TIME object has
been decremented. This raw value is returned so that the operator may be used in
a statement containing other operations.

Example

#include <ui_gen.hpp>

DecrementCurrentTime(ZIL_TIME ¤tTime)
{

II Advance the current Time.
--currentTime;

ZIL_TIME: :operator +=

Syntax

#include <uLgen.hpp>

void operator += (long hundredths);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

734 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This operator adds hundredths to the ZIL_TIME object and copies the result back into the
ZIL_TIME object.

hundredthsin is the number of hundredths of seconds to be added to the ZIL_TIME
object.

Example

#include <ui_gen.hpp>

AddOneHour(ZIL_TIME *currentTime)
{

long oneHour = 360000Li

II Add 1 hour.
*currentTime += oneHour;

ZIL_TIME::operator -=

Syntax

#include <ui_gen.hpp>

void operator -= (long hundredths);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator subtracts hundredths from the ZIL_TIME object and copies the result back
into the ZIL_TIME object.

hundredthsin is the number of hundredths of seconds to be subtracted from the
ZIL_TIME object.

Chapter 72 - ZIL_ TIME 735

Example

#include <ui_gen.hpp>

SubtractHour(ZIL_TIME *currentTime)
{

long oneHour = 360000L;
II Subtract 1 hour.
*currentTime -= oneHour;

ZIL_TIME::operator ==

Syntax

#include <uLgen.hpp>

int operator == (ZIL_TIME &time);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_TIME object is chronologically equal
to the time specified by time.

returnValueoul is TRUE if the ZIL_TIME object is chronologically equal to time.
Otherwise, returnValue is FALSE.

• timein is the time to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_TIME currentTime; II Initialize a system time.
ZIL_TIME midnight ("12: OOam") ;

II Check the time.

736 Zinc Application Framework-Programmer's Reference Volume 1

if (currentTime == midnight)
printf("It's exactly midnight.\n");

else if (currentTime > midnight)
printf("We're in the wee hours of the morning.\n");

else
printf("It's still late night.\n");

ZIL_TIME::operator !=

Syntax

#include <ui_gen.hpp>

int operator != (ZIL_TIME &time);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_TIME object is chronologically not
equal to the time specified by time.

returnValueout is TRUE if the ZIL_TIME object is chronologically not equal to time.
Otherwise, returnValue is FALSE.

time in is the time to be compared.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_TIME currentTime; II Initialize a system time.
ZIL_TIME startTime("12:00am");

II Check the time.
if ((currentTime != startTime) && (currentTime < startTime))

printf("It's still not time yet!\n");

Chapter 72 - ZIL_TIME 737

738 Zinc Application Framework-Programmer's Reference Volume 1

CHAPTER 73 - ZIL_UTIME

The ZIL_UTIME class object is used to maintain and manipulate a unified time and date
value.

The ZIL_UTIME class is declared in UI_GEN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS ZIL_UTIME public ZIL_INTERNATIONAL
{
public:

static ZIL_ICHAR _dayName[];
static ZIL_ICHAR _monthName[];
static ZIL_ICHAR _timeName[];
static int defaultInitialized;

enum UTMI_RESULT
{

UTMI_OK = 0,
UTMI_INVALID,
UTMI_VALUE_MISSING,
UTMI_OUT_OF_RANGE,
UTMI_LESS_THAN_RANGE,

};

II Time successfully imported.
II Invalid time value or format.
II Required value not present.
II Time out of range (used by UIW_TIME)
II Time less than positively open-ended
II range.
II Time greater than negatively open-ended
II range.

ZIL_UTIME(void);
ZIL_UTIME(const ZIL_UTIME &utime);
ZIL_UTIME(const ZIL_ICHAR *string);
ZIL_UTIME(int year, int month, int day, int hour, int minute,

int second, int milliSecond);
virtual -ZIL_UTIME(void);
int DaysInMonth(void);
int DaysInYear(void);
void Export (int *year, int *month, int *day, int *hour, int *minute,

int *second, int *milliSecond);
int Export (ZIL_ICHAR *string, int maxsize, const ZIL_ICHAR *format);
int Export(ZIL_ICHAR *string, int maxsize);
UTMI_RESULT Import (void) ;
UTMI_RESULT Import(const ZIL_UTIME &utime);
const ZIL_ICHAR *Import(const ZIL_ICHAR *string,

const ZIL_ICHAR *format);
int LeapYear(void);

ZIL_UTIME *operator=(const ZIL_UTIME &utime);
ZIL_UTIME *operator+(const ZIL_UTIME &utime);
ZIL_UTIME *operator-(const ZIL_UTIME &utime);
int operator==(const ZIL_UTIME &utime);
int operatorl=(const ZIL_UTIME &utime);
int operator>(const ZIL_UTIME &utime);
int operator>=(const ZIL_UTIME &utime);
int operator«const ZIL_UTIME &utime);
int operator<=(const ZIL_UTIME &utime);

void SetLanguage(const ZIL_ICHAR *languageName
void SetLocale(const ZIL ICHAR *localeName);

protected:
ZIL_UINT32 jday;
ZIL_INT32 usec;

Chapter 73 - ZIL_UTIME 739

int recurse;
const ZIL_LOCALE *myLocale;
const ZIL_LANGUAGE *myoayStrings;
const ZIL_LANGUAGE *myMonthStrings;
const ZIL_LANGUAGE *myTimeStrings;

void ConvertJday(int *pYear, int *pMonth, int *poay, int *pOayOfWeek);
void ConvertUsec(int *hour, int *minute, int *second, int *milliSecond);
int OayOfWeek(void);
void Import (int year, int month, int day,

int hour, int minute, int second, int millisecond);
void MakeCanonical(void);

public:
int basisYear;
int zoneOffset;

};

General Members

This section describes those members that are used for general purposes.

• _dayName is a string used to identify the ZIL_MESSAGE_LIST structure maintained
by the ZIL_INTERNATIONAL class that contains the strings used for day names.
By default, _dayName is "ZIL_DAY."

• _monthName is a string used to identify the ZIL_MESSAGE_LIST structure
maintained by the ZIL_INTERNATIONAL class that contains the strings used for
month names. By default, _monthName is "ZIL_MONTH."

• _timeName is a string used to identify the ZIL_MESSAGE_LIST structure maintained
by the ZIL_INTERNATIONAL class that contains the strings used for time names.
By default, _timeName is "ZIL_TIME."

• defaultlnitialized indicates if the default language strings for this object have been set
up. The default strings are located in the file LANG_DEF.CPP. If defaultlnitialized
is TRUE, the strings have been set up. Otherwise they have not been. defaultlnitial­
ized is set to TRUE when the strings are set up in the object's constructor.

• jday is the Julian date representation of the date being maintained by the ZIL_UTIME
class.

• usee is the number of milliseconds in the time being maintained by the ZIL_UTIME
class.

• reeurse is a flag used when importing new date and time values from a string.
reeurse is set by the function and should not be used by the programmer.

740 Zinc Application Framework-Programmer's Reference Volume 1

• myLocale is the ZIL_LOCALE class that contains the formatting information for
dates and times.

• myDayStrings is the ZIL_LANGUAGE object that contains the string translations for
the days of the week.

• myMonthStrings is the ZIL_LANGUAGE object that contains the string translations
for the days of the month.

• myTimeStrings is the ZIL_LANGUAGE object that contains the string translations for
times.

• basisYear is the year from which dates are offset if the date does not contain a full
year. For example, if basisYear is 1900, then a year of 90 is assumed to be 1990.

• zoneOffset indicates how many timezones are between the current locale and the
Greenwich timezone.

Syntax

#include <ui_win.hpp>

ZIL_UTIME(void);
or

ZIL_UTIME(const ZIL_UTIME &utime);
or

ZIL_UTIME(const ZIL_ICHAR *string);
or

ZIL_UTIME(int year, int month, int day, int hour, int minute, int second,
int milliSecond);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Chapter 73 - ZIL_UTIME

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

741

Remarks

These overloaded constructors create a new ZIL_UTIME class object.

The first overloaded constructor creates a ZIL_UTIME object using the system's data and
time.

The second overloaded constructor is a copy constructor that takes a previously
constructed ZIL_UTIME object to specify the date and time.

• utimein is a pointer to a previously constructed ZIL_UTIME object.

The third overloaded constructor uses a string argument to specify the date and time.

• stringin is a string that contains the date and time information. The format must be
consistent with the format specified in ZIL_LOCALE::dateTimeStringFormat. By
default, the format is "YYYY-mm-dd HH:MM:SS.KK" where Y is a year digit, m
is a month digit, d is a day digit, H is an hour digit, M is a minute digit, S is a
second digit and K is a thousandths of second digit.

The fourth overloaded constructor uses integer arguments to specify the date and time.

yearin is the year. This argument must be either 0, if no year value is to be used with
the date, or a value in the range from 100 to 32,767.

• monthin is the month. This argument must be either 0, if no month value is to be
used with the date, or a value in a range from 1 (January) to 12 (December).

• daYin is the day. This argument must be either 0, if no day value is to be used with
the date, or a value in a range from 1 to 31 that should be valid for the specified
month and year.

hourin is the hour. This argument must be in the range from °to 23.

• minutein is the minute. This argument must be in the range from °to 59.

• secondin is the second. This argument must be in the range from °to 59.

• milliSecondin is the thousandths of a second. This argument must be in the range
from °to 999.

742 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_UTIME::£IL_UTIME

Syntax

#include <uLgen.hpp>

virtual -ZIL_UTIME(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This virtual destructor destroys the class information associated with the ZIL_UTIME
object.

ZIL_UTIME: :ConvertJday

Syntax

#include <ui_gen.hpp>

void ConvertJday(int *pYear, int *pMonth, int *pDay, int *pDayOjWeek);

PortabiIity

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function converts the Julian date into integer values for the year, month, day and day
of week.

Chapter 73 - ZIL_UTIME 743

• pYearout is the year associated with the date.

• pMonthout is the month associated with the date, where 1 is January and 12 is
December.

• pDaYout is the day of the month associated with the date.

• pDayOjWeekout is the day of week associated with the date, where 1 is Sunday and
7 is Saturday.

ZIL_UTIME::ConvertUsec

Syntax

#include <uLgen.hpp>

void ConvertUsec(int *hour, int *minute, int *second, int *millisecond);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

744

This function converts the time into integer values for the hour, minute, second and
millisecond.

• hourout is the hour associated with the time.

• minuteout is the minute associated with the time.

• secondout is the second associated with the time.

millisecondout is the millisecond associated with the time.

Zinc Application Framework-Programmer's Reference Volume 1

ZIL_UTIME::DayOfWeek

Syntax

#include <ui_gen.hpp>

int DayOtWeek(void);

Portability

This function is available on the following environments:

• DOS Text·
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the numerical value of the day of the week (Sunday = l, Monday
= 2, . . . Saturday = 7) for the ZIL_UTIME object.

NOTE: DayOtweek() may return questionable values for dates before 1753 due to the
switch from the Julian calendar to the Gregorian calendar.

• returnValueoul is the day of the week.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_UTIME utime;

II Print the current day of week.
printf("Today is %d.\n", utime.DayOfWeek(»);

Chapter 73 - ZIL_UTlME 745

ZIL_UTIME::DayslnMonth

Syntax

#include <ui_gen.hpp>

int DayslnMonth(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the number of days in the month specified by the ZIL_UTIME
object. For example, if the date were December 15, 1993, DayslnMonth would return
31.

NOTE: DayslnMonth() may return questionable values for dates before 1753 due to the
switch from the Julian calendar to the Gregorian calendar.

• returnValueout is the number of days in the month.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

II Print the number of days in the current month.
ZIL_UTIME utime;
printf("This month has %d days.\n", utime.DayslnMonth(»);

746 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_UTIME::DayslnYear

Syntax

#include <ui_gen.hpp>

int DayslnYear(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function returns the number of days in the year specified by the ZIL_UTIME object.
For example, if the date were January 15, 1992, DaysInYear() would return 366 (i.e.,
1 extra day for leap year).

NOTE: DaysInYear() may return questionable values for dates before 1753 due to the
switch from the Julian calendar to the Gregorian calendar.

• returnValueOUI is the number of days in the year.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

II Print the number of days in the year.
ZIL_UTIME utime;
printf(UThis year has %d days.\n", utime.DayslnYear(»);

Chapter 73 - ZIL_UTlME 747

ZIL_UTIME::Export

Syntax

#include <uLgen.hpp>

void Export(int *year, int *month, int *day, int *hour, int *minute,
int *second, int *milliSecond);
or

int Export(ZIL_ICHAR *string, int maxSize, const ZIL_ICHAR *format);
or

int Export(ZIL_ICHAR *string, int maxSize);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions obtain the value of the ZIL_UTIME object.

The first overloaded function returns date and time information through several integer
arguments.

• yearout is the year associated with the date.

• monthout is the month associated with the date.

daYout is the day of the month associated with the date.

• hourout is the hour associated with the time.

• minuteout is the minute associated with the time.

• secondout is the second associated with the time.

• milliSecondout is the millisecond associated with the time.

748 Zinc Application Framework-Programmer's Reference Volume 1

The second overloaded function returns date information through the string argument,
using format to format the string.

returnValueoul indicates if the export was successful. returnValue is non-zero if the
export was successful. Otherwise, the export was unsuccessful.

stringin/OUI is a pointer to a string that gets the formatted utime. This string must be
long enough to contain the combined time and date.

maxSizein is the size of the string buffer.

formatin specifies how the string is to be formatted. format is a printf-style format
string that uses special symbols to represent the various possible fields.

The third overloaded function returns the date information through the string argument.

returnValueoul indicates if the export was successful. returnValue is non-zero if the
export was successful. Otherwise, the export was unsuccessful.

stringOUI is a pointer to a string that gets the formatted utime. This string must be
long enough to contain the combined time and date.

• maxSizein is the size of the string buffer.

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_UTIME utime;

II Print out the time and date.
char stringUtime[128];
utime.Export(stringUtime, 128);
printf("String value: %s". stringUtimel;

II The destructor for utime is automatically called when the
II scope of this function ends.

Chapter 73 - ZIL_UTIME 749

ZIL_UTIME::lmport

Syntax

#include <ui_gen.hpp>

UTMCRESULT Import(void);
or

UTMCRESULT Import(const ZIL_UTIME &utime);
or

const ZIL_ICHAR *Import(const ZIL_ICHAR *string, const ZIL_ICHAR *format);
or

void Import(int year, int month, int day, int hour, int minute, int second, int millisecond);

PortabiIity

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

These overloaded functions set the value of the ZIL_UTIME object.

The first overloaded function sets the date and time information according to the system
information.

• returnValueout is the result of the import operation. returnValue can have one of the
following values:

UTMI_GREATER_THAN_RANGE-The date or time value was greater than
the maximum value in a range that goes to negative infinity.

UTMI_INVALID-An invalid format was encountered (e.g., "31 Jan, 1992").

UTMI_LESS_THAN_RANGE-The date or time value was less than the
minimum value in a range that goes to positive infinity.

UTMI_OK-The date and time were entered in a correct format and within the
valid range.

750 Zinc Application Framework-Programmer's Reference Volume 1

UTMI_OUT_OF_RANGE-The date or time value was out of range (e.g., "Jan
33, 1992").

UTMI_VALUE_MISSING-A required date or time value was missing (e.g.,
" 5, 1991 ").

The second overloaded function copies the date and time information from the utime
reference argument.

• returnValueout is the result of the import operation. See the first function for possible
values.

• utimein is a pointer to a previously constructed utime.

The third overloaded function copies the time and date information from the string
argument.

returnValueout is the date and time string that resulted from the import.

stringin is a string that contains the date and time information.

• formatin is a printf-style format string that specifies how the date and time
information can be parsed from string.

The fourth overloaded function copies the date and time information from the specific
date and time values.

yearin is the year to associate with the date.

monthin is the month to associate with the date.

daYin is the day to associate with the date.

hourin is the hour to associate with the time.

minutein is the minute to associate with the time.

• secondin is the second to associate with the time.

millisecondin is the millisecond to associate with the time.

Chapter 73 - ZIL_UTIME 751

Example

#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_UTIME utime;

II Import the time and date and print out the results.
char stringUtime[128Ji
utime.lmport("1994-1-28 1:35:00.0", defaultLocale->dateTimeStringFormat);
utime.Export(stringUtime, 128) i
printfl"String value: %s\n", stringUtime);

II The destructor for utime is automatically called when the
II scope of this function ends.

ZIL_UTIME::LeapYear

Syntax

#include <ui_gen.hpp>

int LeapYear(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function indicates if the year is a leap year.

• returnValueout indicates if the year is a leap year. returnValue is TRUE if the year
is a leap year. Otherwise it is FALSE.

752 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_UTIME::MakeCanonical

Syntax

#include <ui~en.hpp>

void MakeCanonical(void);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This function ensures that jday and usee are synchronized. For example, if a number of
milliseconds are added to the utime, usee may contain a value greater than the number
of milliseconds in a day. If this happens, jday needs to be updated by an extra day and
usee needs to be updated so that it represents a proper time for the date.

ZIL_UTIME::SetLanguage

Syntax

#include <uLgen.hpp>

void SetLanguage(const ZIL_ICHAR *languageName = ZIL_NULLP(ZIL_ICHAR));

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Chapter 73 - ZIL_UTIME

• DOS Graphics
• OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

753

Remarks

This function sets the language to be used by the object. The string translations for the
object will be loaded and the object's myDayStrings, myMonthStrings, and myTimeStrings
members will be updated to point to the new ZIL_LANGUAGE objects. By default, the
object uses the language identified in the LANG_DEF.CPP file, which compiles into the
library. (If a different default language is desired, simply copy a LANG_<ISO>.CPP file
from the ZINC\SOURCE\lNTL directory to the \zINC\SOURCE directory, and rename
it to LANG_DEF.CPP before compiling the library.) The language translations are
loaded from the I18N.DAT file, so it must be shipped with your application.

• languageNamein is the two-letter ISO language code identifying which language the
object should use.

ZIL_UTIME: :SetLocale

Syntax

.. #include <uLgen.hpp>

void SetLocale(const ZIL_ICHAR *localeName);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.0SFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

754

This function sets the locale to be used by the object. The locale infonnation for the
object will be loaded and the object's myLocale member will be updated to point to the
new ZIL_LOCALE object. By default, the object uses the locale identified in the
LOC_DEF.CPP file, which compiles into the library. (If a different default locale is
desired, simply copy a LOC_<ISO>.CPP file from the ZINC\SOURCE\lNTL directory
to the \zINC\SOURCE directory, and rename it to LOC_DEF.CPP before compiling the
library.) The locale infonnation is loaded from the I18N.DAT file, so it must be shipped
with your application.

Zinc Application Framework-Programmer's Reference Volume 1

• localeNamein is the two-letter ISO country code identifying which locale information
the object should use.

ZIL_UTIME: :operator =

Syntax

#include <uLgen.hpp>

ZIL_UTIME *operator =(const ZIL_UTIME &utime);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload assigns the value specified by utime to the ZIL_UTIME object.

• returnValueOUI is a pointer to the ZIL_UTIME object after it has been updated. This
pointer is returned so that the operator may be used in a statement containing other
operations.

utimein is the time and date to be assigned to the ZIL_UTIME object.

Example

#include <ui_gen.hpp>

AssignUtime(ZIL_UTIME aUtime, ZIL_UTIME &anotherUtime)
{

anotherUtime = aUtime;

Chapter 73 - ZIL_UTlME 755

ZIL_UTIME::operator +

Syntax

#include <ui_gen.hpp>

ZIL_UTIME *operator + (const ZIL_UTIME &utime);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload adds the value contained in utime to the ZIL_UTIME object.

• returnValueout is a pointer to the ZIL_UTIME object after it has been updated. This
pointer is returned so that the operator may be used in a statement containing other
operations.

• utimein is the time and date to be added to the ZIL_UTIME object.

Example

#include <ui_gen.hpp>

AddUtime(ZIL_UTIME aUtime, ZIL_UTIME &anotherUtime)
{

ZIL_UTIME currentUtime;

anotherUtime = aUtime + currentUtime;

756 Zinc Application Framework-Programmer's Reference Volume 1

ZIL_UTIME: :operator -

Syntax

#include <ui_gen.hpp>

ZIL_UTIME *operator - (const ZIL_UTIME &utime);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSFlMotif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload subtracts the value contained in utime from the ZIL_UTIME
object.

returnValue OUI is a pointer to the ZIL_UTIME object after it has been updated. This
pointer is returned so that the operator may be used in a statement containing other
operations.

utimein is the time and date to be subtracted from the ZIL_UTIME object.

Example

#include <ui_gen.hpp>

SubtractUtime(ZIL_UTIME aUtime, ZIL_UTIME &anotherUtime)
{

ZIL_UTIME currentUtime;

anotherUtirne = aUtirne - currentUtirne;

Chapter 73 - ZIL_UTlME 757

ZIL_UTIME: :operator >

Syntax

#include <uLgen.hpp>

int operator > (const ZIL_UTIME &utime);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload detennines whether the ZIL_UTIME object is chronologically
greater than the utime specified by utime.

• returnValueout is TRUE if the ZIL_UTIME object is chronologically greater than
utime. Otherwise, returnValue is FALSE.

• utimein is the time and date to be compared.

ZIL_UTIME::operator >=

Syntax

#include <uLgen.hpp>

int operator >= (const ZIL_UTIME &utime);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

758 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This operator overload determines whether the ZIL_UTIME object is chronologically
greater than or equal to the utime specified by utime.

returnValueoul is TRUE if the ZIL_UTIME object is chronologically greater than or
equal to utime. Otherwise, returnValue is FALSE.

• utimein is the time and date to be compared.

ZIL_UTIME::operator <

Syntax

#include <uLgen.hpp>

int operator < (const ZIL_UTIME &utime);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_UTIME object is chronologically less
than the utime specified by utime.

returnValueoul is TRUE if the ZIL_UTIME object is chronologically less than utime.
Otherwise, returnValue is FALSE.

utimein is the time and date to be compared.

Chapter 73 - ZIL_UTlME 759

ZIL_UTIME::operator <=

Syntax

#include <ui_gen.hpp>

int operator <= (const ZIL_UTIME &utime);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
.NEXTSTEP

This operator overload determines whether the ZIL_UTIME object is chronologically less
than or equal to the utime specified by utime.

• returnValueout is TRUE if the ZIL_UTIME object is chronologically less than or equal
to utime. Otherwise, returnValue is FALSE.

• utimein is the time and date to be compared.

ZIL_UTIME: :operator ==

Syntax

#include <ui_gen.hpp>

int operator == (const ZIL_UTIME &utime);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

760 Zinc Application Framework-Programmer's Reference Volume 1

Remarks

This operator overload determines whether the ZIL_UTIME object is chronologically
equal to the utime specified by utime.

• returnValueoul is TRUE if the ZIL_UTIME object is chronologically equal to utime.
Otherwise, returnValue is FALSE.

• utimein is the time and date to be compared.

ZIL_UTIME::operator !=

Syntax

#include <ui_gen.hpp>

int operator != (const ZIL_UTIME &utime);

Portability

This function is available on the following environments:

• DOS Text
• Macintosh

Remarks

• DOS Graphics
.OSF/Motif

• Windows
• Curses

• OS/2
• NEXTSTEP

This operator overload determines whether the ZIL_UTIME object is chronologically not
equal to the utime specified by utime.

• returnValueoul is TRUE if the ZIL_UTIME object is chronologically not equal to
utime. Otherwise, returnValue is FALSE.

• utimein is the time and date to be compared.

Chapter 73 - ZIL_UTlME 761

762 Zinc Application Framework-Programmer's Reference Volume 1

INDEX

!= (operator overload)
bignum implementation of 522
date implementation of 556
position implementation of 298
region implementation of 334
time implementation of 737

+ (operator overload)
bignum implementation of 514
date implementation of 545
list implementation of 223
time implementation of 726

++ (operator overload)
bignum implementation of 517
date implementation of 551
position implementation of 303
region implementation of 335
time implementation of 733

+= (operator overload)
bignum implementation of 519
date implementation of 553
position implementation of 305, 337
region implementation of 337
time implementation of 734

- (operator overload)
bignum implementation of 515
date implementation of 546
list implementation of 234
time implementation of 727

-- (operator overload)
bignum implementation of 518
date implementation of 552
position implementation of 304, 336
time implementation of 733

-= (operator overload)
bignum implementation of 520
date implementation of 554
position implementation of 306
region implementation of 338
time implementation of 735

* (operator)
bignum implementation of 516

< (operator overload)
bignum implementation of 525

Index

date implementation of 549
position implementation of 299
time implementation of 731

<= (operator overload)
bignum implementation of 526
date implementation of 550
position implementation of 302
time implementation of 732

=(operator overload)
bignum implementation of 513
date implementation of 544
time implementation of 725

== (operator overload)
bignum implementation of 521
date implementation of 555
position implementation of 297
region implementation of 333
time implementation of 736
UCREGION implementation of 333

> (operator overload)
bignum implementation of 523
date implementation of 546-548, 730
position implementation of 300
time implementation of 729

>= (operator overload)
bignum implementation of 524
date implementation of 548
position implementation of 301
time implementation of 730

&
hotkey designator 609

_atcFlags 25-27
_backgroundColor 196, 198, 252, 254,

376, 378
_basisYear 529, 543
_blankString 614
_bottom 342
_className 139, 180, 183,205,403,404,

415, 482, 567, 592, 630, 632, 646
_dayName 740
_denominator 353, 354
_dncFlags 71, 72
_doDelete 649, 650

763

_errorPaletteMapTable 282
_errorString 614
_fileName 308,312,314,315
_fillAttributes 196, 198
_fillPattem 196, 198, 252, 254, 376, 378
_foregroundColor 196, 198, 252, 254, 376,

378
~raphicSwitches 16, 17
_helpPaletteMapTable 282
_langName 615
_left 342
_locale 615
_locName 615
_manager 45, 48, 49
_mapName 649-651
_maximum 71, 72
_minimum 71, 72
_mode 369, 370
_monthName 740
_moveBuffer 370
_normalPaletteMapTable 281
_numberID 400, 426, 427
_numerator 353, 354
_object 25, 26, 45, 46, 71, 72, 353, 354,

569, 575
_of~et 25, 26, 353, 354
_outlineAttributes 196, 198
_path 581, 587
_pathString 283
_position 671, 673, 683, 689
_reference 25, 26
_region 341, 342
_right 342
_rlcFlags 353, 354
_screen 369, 370
_screenID 342
_stopDevice 38, 40, 196, 198, 252, 254,

369, 370, 376, 378
_tComerLL 373
_tComerLR 373
_tComerUL 372
_tComerUR 372
_textSwitches 16, 17
_tHorizontal 373
_timeName 740
_top 342

_tVertical 373
_type 126, 146, 148
_virtualCount 38, 40, 196, 198, 252, 254,

369, 370, 376, 378
_virtualRegion 38, 40, 196, 198, 252, 254,

369, 370, 376, 378
_zincPathString 283

A

abs (function)
bignum implementation of 504

absolute 400, 406, 409, 441, 442, 451,
504

absolute value
dates 531, 742
time 716

abstract classes
device implementation of 59
display implementation of 83

active object 424
Add (function) 159, 181,223, 241, 387

list-block implementation of 241
adding windows to window manager 387
allocate 238,406,595,603-606,611,612,

649, 653, 656, 657
allocateBelow 347, 350
ALT_STATE 60
altDigits 639, 641
ANSI functions 595
appClass 85, 89, 459, 461, 462
appContext 85, 88
AppendFullPath (function) 697
appleAbout 245, 248
appleMenu 245, 247
argc 16-19,284,285,459,461,462,665,

667, 700, 709, 710
args 413, 446
argv 16-19,459,461,462
arrays

of class objects 237
of event information 318, 324
pop-up item definition 213

Assign (function) 296, 328

764 Zinc Application Framework-Programmer's Reference Volume 1

position implementation of 296
region implementation of 328

AssignData (function) 558, 583, 618, 634
atcFlags 25-27
autodetection

graphics drivers 41, 199, 255, 379
text screen 371

B

backgroundPalette 41, 85, 88, 199, 254,
278, 282, 371, 378

backup 86, 89, 663, 669, 670
base class 125, 219
baseCallback 402
basisYear 529, 543, 740, 741
Beep (function) 134
BGI display 37
BGIFONT 37-39, 42
BGIFONT (structure) 38
BGIPATTERN 37, 39
Bitmap (function) 92
Bitmap (virtual function) 92
bitmapArray 37, 85, 92, 95, 97, 195, 245,

251, 259, 265, 271, 308, 375, 459,
460

BitmapArrayToHandle (function) 95
BitmapArrayToHandle (virtual function)

95
BitmapHandleToArray (function) 97
BitmapHandleToArray (virtual function)

97
bitmapHeight 37, 85, 92, 95, 97, 195, 245,

251, 259, 265, 271, 308, 375, 459,
460

bitmapWidth 37, 85, 92, 95, 97, 195, 245,
251, 259, 265, 271, 308, 375,459,
460

blinkRate 465,466,469
bnumLeftParen 639, 641
bnumRightParen 639,641
border

text mode 372
Borland

Index

graphics display 37
breakHandlerSet 473
buff 56~ 571, 575, 577, 675, 68~ 683,

687, 690, 693, 706
bwBackground 104, 277, 278

c
C library

overloaded functions 593
cacheSize 694, 695
canonicalLocale 595, 613, 614
cascading windows 392
ceil (function)

bignum implementation of 504
cellHeight 85, 87, 117, 282, 296, 332
cellWidth 85, 87, 296, 332
Center (function) 388
ChangeExtension (function) 698
character

context-dependent 602
hotkey 609
size 607, 654
spacing 602
text mode windows 372

character set
hardware 607, 612, 655, 657
mapping 604-606, 652, 653
multi-byte 607, 654
Unicode 607, 612, 655, 657
unmapping 611, 656

characters
high intensity 369

CharMapInitialize (function) 596
charSize 37, 38
chartod (function) 597
ChDir (function) 699
class arrays

list block implementation of 238
ClassLoadData (function) 561,585,621,

635
className 125, 128, 139, 179, 180, 182,

183, 205, 400-404, 415, 444, 482,

765

563, 566, 567, 581, 589, 591, 592,
627, 630-632, 646

ClassName (function) 128, 182,415
classRegister 446
classRegistered 444
ClassStoreData (function) 562, 585, 622,

636
clip 100, 107,282, 350,401,412,443
clipping 341, 347
clipRegion 37, 38, 85, 86, 92, 94, 98, 99,

102, 104-107, 109-111, 114, 116, 117,
195, 196, 245, 246, 251, 252, 259,
260, 265, 266, 271, 272, 308, 369,
375, 376, 459, 460

codeSet 90, 595, 615
color palettes

black & white 278
gray-scale 278

colorAttribute 277
colorBackground 104, 277, 278
colorBitmap 37, 85, 92, 94-98, 195, 245,

251, 259, 265, 271, 308, 375, 459,
460

colorForeground 104, 277, 278
colorMap 85, 88
colors 435
columns 65, 66, 85, 87, 197, 343, 350,

351, 371, 424
compare function

definition of 220, 239
CompareDevices (function) 64
compareFunction 219-221,223,226,233,

238, 239, 241
compareFunctionNarne 404
Control (function) 20
control-break

setting 473
controlData 402, 444
controlScreenID 400, 405
convenienceFunction 402, 444, 446
ConvertFromFilename (function) 597
converting

multi-byte string 607, 612, 655, 657
Unicode 607, 612, 655, 657
wide-character string 607, 612, 655, 657

ConvertJday (function) 743

ConvertToFilename (function) 598
ConvertUsec (function) 744
coordinates

cursor 466
copy constructor

date use of 530
Count (function) 224

list implementation of 224
countdown timer 493
countryID 693, 694
CreateData (function) 564, 589, 628, 644
CreateMotifString (function) 415
createStorage 694, 709
createTime 693, 694
Ctype functions 595
currency

format 640
currencySymbol 640
Current (function) 159, 183, 225, 285,

319, 348
list implementation of 225, 319, 348

cursor 465
appearance 465
position on screen 466

D

data file
path to 283
traversing 588

data files
finding objects 701-703
linking 664
naming 669, 706
removing directories 662, 667
renaming objects 666
saving 669
saving internal buffers 663
saving objects 668
statistics 705
valid recognition 709
versions 710

766 Zinc Application Framework-Programmer's Reference Volume 1

date 3,5,6,9, 10, 13, 176,279,403,405,
529,530-556,641,739-744,746-753,
755-761,529

format 641
low-level 529

dates
absolute value 531
alphanumeric 531
Asian format 531, 542
European formats 531, 542
format flags 531
international formats 531
military formats 531, 542
system 502, 530
U.S. formats 532, 543

dateSeparator 641
dateStringFormat 639, 641
dateTimeStringFormat 639, 641, 742, 752
dayOrweek 529, 533, 535, 740, 745
DayOrweek (function) 533, 745
days 529, 534, 535, 544-547, 552-554,

741, 746, 747
DaysInMonth (function) 534, 746
DaysInYear (function) 534, 747
decimalSeparator 639
decimalString 499, 501, 505, 509
DecomposeCharacter (function) 599
DecomposeString (function) 600
decorations 481, 527, 557, 563, 565-568,

713
decorationsName 565, 567
defaultBitmap 563, 566
defaultCallback 401, 412
defaultCharMap 595, 596, 606, 607, 611,

612, 614
defaultDateFlags 639, 641
defaultHelpContext 205, 206, 661, 696
DefaultI18nInitialize (function) 600
defaultInitialized 139, 205, 481, 739, 740
defaultLocale 595, 601, 613, 643, 646,

752
defaultMessages 627, 630
defaultName 589
defaults 459,581,582
defaultStatus 399, 402

Index

defaultStorage 143, 400, 403, 581, 582,
588,403

defaultText 563, 566
defaultTimeFlags 639, 641
defDigits 639, 641
defProcInstance 401, 444
DeleteData (function) 559, 584, 619, 635
delta 4, 6, 13, 365, 366, 569-571, 575,

576, 577
deltaX 481, 490
deltaY 481, 490
denominator 353-355, 357, 358
depth 118, 120, 394, 395,402,419,427,

430, 431
derived classes

from base window object 399
from device base class 59

Destroy (function) 226
list implementation of 226

DestroyObject (function) 662
DestroyObject(function) 662
detectgraph() (function) 41
detection

graphics drivers 41, 199, 255, 379
device1 60, 64
device2 60, 64
deviceImage 156, 160-162
DeviceImage (function) 160
DevicePosition (function) 162
devices

hiding 65
turning onJredisplaying 66

deviceState 156, 164, 166, 470, 476, 486,
489

DeviceState (function) 164
deviceType 155, 156, 160, 162, 164-166
digits 499, 500, 507, 640, 641
dirSepStr 650
display 83

abstract definition 83
Borland BGI 37
Microsoft Windows 259
OS/2 271
programmer defined 84
text display 369
UCAPPLICATION 15

767

display management 83
DisplayHelp (function) 204, 209

help system implementation of 209
displayImage 90
displayPort 307, 309
displayText 415
divX 37,38
divY 37,38
dncFlags 71, 72, 74
doubleClickRate 399, 402
dragObject 383, 384
DrawBorder (function) 416

window object implementation of 416,
426

DrawItem (function) 418
window object implementation of 418

DrawShadow (function) 419
window object implementation of 419

DrawText (function) 420
driver 37, 40, 41, 61
dst 595, 597, 598
dtFlags 529, 530, 535, 540
dwStyle 401,412, 442

E

element 125
element1 127, 128, 219, 220, 227, 230,

235, 239, 240
element2 127, 128, 220, 227, 230, 235,

239, 240
elementArray 238-241,318, 319, 324
Ellipse (function) 98
Ellipse (virtual function) 98
Encompassed (function) 329
endAngle 37, 85, 98, 99, 195,245, 251,

259,265,271, 308, 375,460
environment variable

PATH 283
ZINC_PATH 283

errno 684, 695
error management 133, 139
ErrorMessage (function) 134, 142
errors

initialized devices 60, 61
errorStatus 133-137, 139, 142, 143
errorSystem 140, 141, 143, 208, 210, 400,

403
European date formats 531, 542
event

interpretation 390, 422
Event (function) 65, 166, 184,389,421,

468, 477, 487, 497
Event (virtual function) 421

cursor implementation of 468
device implementation of 65
event manager implementation of 166
keyboard implementation of 477
mouse implementation of 487, 490
window manager implementation of 389
window object implementation of 421

event flow 389
Event Manager

UCAPPLICATION 15
event mapping 175, 434
event processing 155
eventMapTable (static variable) 112, 178,

400, 404
events

logical mapping 175
mouse 483, 487

eventType 175, 176
exit function 384
Export (function) 505, 535, 719, 748

bignum implementation of 505
date implementation of 535
time implementation of 719

extension 669, 670, 693, 697-699, 708
extraName 595, 604, 649, 650

F

face 245, 246, 307
fallbackResources 459, 461
file support functions 595
FILECHAR

type 598
filename

768 Zinc Application Framework-Programmer's Reference Volume 1

conversion 598
files

access 660
closing 661, 696
extensions 698
opening 660, 695

fill pattern
UCBGCDISPLAY implementation of

39
UCMSC_DISPLAY implementation of

252
Zinc implementation of 195, 197

fillCharacter 277
fillLine 594, 609
fillRegion 402, 416, 417, 419-421
FindFirstID (function) 701
FindFirstObject (function) 701
findFunction 219, 228, 229
FindNextID (function) 702
FindNextObject (function) 703
First (function) 167, 185, 227, 286, 320,

348
FirstPathName (function) 287
flags

advanced window objects 127, 282,
400, 402, 407, 413, 414, 407

general window objects 405
flFlag 401,413,446
floor (function) 507
flStyle 401, 412
Flush (function) 663
font 7,37-39,41-43, 86, 87, 116-119,

195, 196, 197,201,245-247,252,
253, 256, 260, 265-267, 272, 274,
275, 283, 307-310, 369, 376, 377,
380, 400, 401, 412, 426, 459-461

Font (function) 426
fontList 459, 460
fonts

default 41, 199,255,259,271
UCBGCDISPLAY implementation of

38
UCGRAPHICS_DISPLAY

implementation of 195-197, 196
UCMACINTOSH_DISPLAY

implementation of 247

Index

UCMOTIF_DISPLAY implementation
of 459, 460

UCMSC_DISPLAY implementation of
252

UCMSWINDOWS_DISPLAY
implementation of 260

UCNEXTSTEP_DISPLAY
implementation of 266

UCOS2_DISPLAY implementation of
272

UCWCC_DISPLAY implementation of
377

UCXT_DISPLAY implementation of
461

fontSet 459, 461
fontStruct 459, 460
fontTable 39,41,43, 117, 197,201,247,

253, 256, 260, 266, 272, 275, 309,
377, 380, 412, 461

forceInitialization 593, 608
foreground 44, 99, 103, 105, 106, 108,

109, 116, 198, 202, 254, 257, 265,
269, 277, 278, 378, 381, 421, 459

fractionDigits 639, 640
fRec 245, 247, 307
free list 237
FreeDecorations (function) 565
FreeI18N (function) 590
FreeLanguage (function) 628
freeList 238-240, 318, 324
FreeLocale (function) 644
fromColor 86, 246, 249
fromStandard 649-651
Full (function) 242
fullPath 693, 697, 707

G
geometry management 353
Get (function) 168, 228, 426

event manager implementation of 168
list implementation of 228
window object implementation of 426

GetBasis (function) 539

769

GetBitmap (function) 559
GetCWD (function) 703
GetLocale (function) 508
GetMessage (function) 619
GetText (function) 560
graphics

bar 107
bit image 101
bit images 92, 95, 97, 100
bitmap 92, 95, 97, 100, 101
Borland BGI 37
circle 98
ellipse 98
fill patterns 196, 198, 252, 254, 277,

278, 376, 378, 278
fill region 107
icon 100, 101
line 102
Microsoft Windows 259
OS/2 271
palette mapping 279
palettes 277
polygon 105
rectangle 107
text 116
VirtualGet 120
VirtualPut 122

graphics mode 199
GRAPHICSFONT (structure) 195-197,

196
grayScaleBackground 104, 277, 278
grouping 640

H

hab 85, 88
hardware 6, 59, 90, 199, 465, 473, 481,

495, 595, 604-607, 610-612, 614, 615,
649, 651-657

character set 605, 606, 611, 652, 653,
656

hardware character set
converting 607, 612, 655, 657
mapping 604

hardware configuration
determining 614, 615

hdc 259, 260, 307, 309
Height (function) 330
help contexts 410
help file format 206
help management 205
helpContext 203-205, 207, 209, 400, 410,

661, 696
helpSystem 208, 210, 400, 403
helpWindow 205, 206, 662, 697
hInstance 16-18,85, 88, 259, 261, 262
hmq 156
hotKey 7, 118, 120, 280, 400, 401, 404,

408, 412, 416, 421, 427, 428, 609
stripping 609
text 609

HotKey (function) 427
HotKey (virtual function)

window object implementation of 427
hotkey designator

& 609
hotKeyMapTable 400,404
hour 162, 166,715-728, 735, 736, 739,

740, 741, 742, 744, 748, 750, 751
hPrevInstance 16-18, 85, 88, 259, 261,

262
hps 271, 272
hundredth 715, 716, 719, 722, 733, 734
hundredths 402,465,715,717-720,723,

724, 725-728, 733-735
hWnd 146, 148

i18n 4,6, 11, 12, 144,211, 370,481, 512,
557, 558, 563, 564, 566, 568, 581,
582,583-587, 589-592, 595, 617-619,
627, 628, 630, 631, 633, 634, 643,
644, 646, 647, 649, 650, 754

I18nInitialize (function) 601
i18nName 581, 582, 589, 591, 592
ibignum (number type) 499-502, 505, 506,

509,510

770 Zinc Application Framework-Programmer's Reference Volume 1

icharString 595, 602
iconArray 37,85, 86, 100, 101, 195,245,

246, 251, 259, 265, 271, 375, 460
IconArrayToHandle (function) 100
IconHandleToArray (function) 101
IconHandleToArray (virtual function) 101
iconHeight 37, 85, 86, 100, 101, 195, 245,

251, 259, 265, 271, 375, 460
iconWidth 37,85, 86, 100, 101, 195,245,

251, 259, 265, 271, 375, 460
Import (function) 509, 540, 721, 750

bignum implementation of 509
date implementation of 540
time implementation of 721

inactive object 424
include file

UCDSP.HPP 7
UCEVT.HPP 7
UCGEN.HPP 6
UCWIN.HPP 8

index 117, 152, 198,219,228-231,254,
378, 412, 763

Index (function) 230
Information (function) 28, 47, 74, 128,

185, 356, 394, 429
Information (virtual function)

element implementation of 128
window manager implementation of 394

Inherited (function) 432
window object implementation of 432

initgraph() (function) 41
initializing

graphics screen 40, 43, 198, 201, 248,
254, 256, 261, 262, 267-269, 273,
274, 378, 461

initializing applications
UCAPPLICATION 15

initialState 63
input

receiving 155
input device 59

changing states 164
cursor 465
positioning of 162
programmer defined 60
reserved values for 146

Index

states 61
input information 145

mouse 483
position 295
region 327

input management 155
InputType (function) 152
installed 41,60,61, 85, 87, 126,371
intCurrencySymbol 640
interleaveStipple 85, 89
internationalization 593
interval 493-496
intFractionDigits 639, 640
inurn 693, 694
isForeground 37, 86, 104, 105, 195, 246,

251, 259, 265, 271, 308, 369, 375,
460

isMono 85, 87
IsNonSpacing (function) 601
IS08859-1 602, 603
isoImageName 566
isoLanguageName 630
isoString 595, 602, 603
ISOtoICHAR (function) 602
ISOtoUNICODE (function) 603
isText 85-87, 90, 95, 100, 107, 110, 113,

420
item

definition of structure 213

J
jday 739, 740, 753

K
key 3, 8, 11, 13, 60-62, 145-149, 153,

164, 167, 176,217,218,220,239,
280, 391, 392, 404, 408, 422, 428,
434, 473-475, 483, 484

keyboard 473

771

break handler 473
raw scan codes 474
reading characters from 155
shift state 474

L
langName 593, 595, 608, 615
language 4, 6, 11-13, 16, 139, 142, 144,

205, 206, 211, 569, 575, 581, 582,
589, 591-593, 601, 608, 615, 617-632,
640, 684, 694, 695, 740, 741, 754

language data file
traversing 588

languageName 139, 144, 205, 211, 593,
601, 627, 629, 631, 739, 753

Last (function) 170, 186, 231, 288, 320,
349

lastPalette 100, 107, 110,282,401,412
lastTime 442, 494
LeapYear (function) 752
length

multi-byte string 607, 654
level 64, 65, 156, 186, 277, 318, 389, 395,

423, 430-432, 451, 499, 529, 564,
628, 644, 691, 715

Line (function) 102
Line (virtual function) 102
Link (function) 664
LinkMain (function) 21
list 219
list block 237
list element 125
Listlndex (function) 129
lists

definition of 219
finding the next element 50, 67, 129,

438
finding the previous element 50, 69,

131,440
list-block use of 317
setting the current item 232

1istScreenID 400, 405

Load (function) 32, 53, 77, 189, 360, 453,
577, 586, 622, 687

window object implementation of 359,
453

LoadDefaultDecorations (function) 565
LoadDefaultI18N (function) 591
LoadDefaultLanguage (function) 629
LoadDefaultLocale (function) 645
LoadICHARtoHardware (function) 604
locale 4, 6, 11-13, 461, 500, 501, 506,

508, 509, 512, 557, 581, 582, 589,
591, 593, 595, 601, 608, 613-615,
633, 634-636, 639, 643-647, 740-742,
754, 755

initializing 608
localeName 500, 512, 593, 601, 643, 645,

646, 647, 739, 754
localization data 593
logical mapping

of color palettes 281
of raw events 177

logical messages
reserved values for 147

logicalEvent 95, 100, 107, 110, 113, 178,
400, 425, 434-436, 442, 447

LogicalEvent (function) 434
logicalFont 38, 43, 196, 201, 252, 256,

272, 274, 275, 376, 380
logicalPalette 110, 279-282, 400, 435, 436
LogicalPalette (function) 435
logicalValue 175, 176
lParam 146, 148, 150
lPort 307, 309
lpszCmdLine 16-18, 262

M

MACFONT 245-247
machineName 595, 614
MachineName (function) 614
Main (function) 23

ULAPPLICATION 15
MakeCanonical (function) 753
MakeFullPath (function) 704

772 Zinc Application Framework-Programmer's Reference Volume 1

manage 73,179,219,402,444,446,473,
481

Manager (function) 48
map table 604-606, 611, 652, 653, 656

exception 604
MapChar (function) 605, 652
MapColor (function) 104
MapEvent (function) 177
mapName 595, 604, 605, 649-651
MapNSColor (function) 269
MapPalette (function) 281
mapped 93,96, 101, 105, 175, 177, 250,

269, 281, 390, 595, 605, 606, 611,
612, 649, 652, 653, 656, 657

mapped text 605, 606, 611, 652, 653, 656
mapping

events 434
palettes 435
string 605, 606, 652, 653

MapRGBColor (function) 249
mapTable 175, 177,279,281
MapText

function 653
MapText (function) 605, 653
markPalette 85, 88
matchData 219, 228, 229
matchID 400, 432, 433
maxColors 38, 40, 196, 197, 246, 248,

252, 253, 260, 261, 266, 267, 272,
273, 376, 377

maxHeight 37, 39, 195, 196
maxSize 739, 748
maxWidth 37, 39, 195, 197
mblen (function) 606, 654
mbstowcs

function 654
mbstowcs (function) 607, 654
MDI windows 407
mdiChild 400,447,448
menu 5, 9, 11, 214, 247, 248, 267, 392,

401, 405, 407, 410, 443-445
menuBar 245, 248, 265, 267
menuScreenID 400, 405
messageField 205,206
mevent 146, 148
Microsoft

Index

mouse driver 481
Microsoft Windows

graphics display 259
military date formats 531, 542
millisecond 739-741,744, 748, 750, 751
miniDenominatorX 85, 87, 88
miniDenominatorY 85, 88
minimum 71-73,75, 179,365,541,722,

750
miniNumeratorX 85, 87, 88
miniNumeratorY 85, 88
minute 715-724, 739-742, 744, 748, 750,

751
minutesWestGMT 593,595
MkDir (function) 665
modifiers 145, 148, 175, 176, 474, 483,

485, 599
Modify (function) 30, 49, 75, 358, 436
modifyTime 669, 682, 693, 694
monDecimalSeparator 640
monGrouping 640
monoAttribute 277
monoBitmap 37, 85,92, 95-98, 195,245,

251, 259, 265, 271, 308, 375, 459,
460

month 529-532, 534-543, 739-744, 746,
748, 750, 751

monThousandsSeparator 640
MOTIFFONT (structure) 459, 460
mouse 481

position of screen 482
reading information from 155

MouseMove (function) 490
mpl 146, 148
mp2 146, 148
MSC_FONT (structure) 252
MSCPATTERN 251-253
msec 494
msg 145, 14~ 14~483

multi-byte string
converting 607, 612, 655, 657
length 607, 654

multX 37,38
multY 37,38
myDayStrings 740, 741, 754
rnyDecorations 481, 491

773

myLanguage 139, 144, 205, 206, 211
myLoca1e 500, 501, 509, 512, 740, 741,

754
myMonthStrings 740, 741, 754
myTimedEvent 16, 17
myTimeStrings 740, 741, 754

N
nargs 402, 413
nativeType 400, 434
nCmdShow 16-18, 85, 88, 259, 261, 262
NeedsUpdate (function) 438
negativeSign 641
negCurrencyPrecedes 639, 640
negSignPrecedes 639, 641
negSpaceSeparation 639, 641
nevent 146, 149
New (function) 33,54, 78, 191, 361, 454

window object implementation of 454
newColumn 38, 86, 114, 196,246, 252,

260, 266, 272, 369, 376, 460
newElement 219,223, 224
newExtension 693, 698
NewFunction (function) 34, 55, 80, 192,

363, 456
newLine 38, 86, 114, 196,246, 252, 260,

266, 272, 369, 376, 460
newName 659, 665, 666, 669, 670, 694,

699, 700
newRegion 38,86, 110-112, 115, 196,

246, 252, 260, 266, 271, 369, 376,
460

newScreenID 38, 86, 115, 196, 246, 252,
260, 266, 272, 369, 376, 460

Next (function) 50, 67, 129, 293, 325,
344, 438

nextColor 265, 269
NEXTFONT 265,266,307,308,310
NextPathName (function) 288
nmFlags 499, 505
nObjectID 569, 570, 575, 576, 675, 676,

683, 684
noOfBitmapElements 557, 559

noOfElements 64, 155-157, 238-240, 317,
318,324,617, 618

noOITextElements 557, 559
notifyList 494, 498
number

format 639
low-level 499
string representation 597

NUMBER_DECIMAL 499,500,507
NUMBER_WHOLE 499, 500, 507
numberID 8, 25, 26, 45, 46, 48, 394, 400,

401, 411, 426, 427, 430, 439, 440,
527, 557, 559-561, 617, 619, 620,
625, 713, 394, 430

NumberID (function) 439
numerator 353, 354, 356-358
numOptions 459,461
numPoints 37, 86, 105, 106, 196, 246,

251, 259, 265, 271, 308, 375, 460

o
object retrieval

first in list 227, 320, 348
from a list 228
last in list 231, 320, 349
next in list 50, 68, 130, 439
previous in list 51, 70, 131, 440

objectID 6, 8, 25, 28, 45-47, 51, 71, 74,
125, 128, 175, 177-179, 185, 186,
279, 281, 353, 356, 383, 394, 395,
400, 401, 411, 429-436, 448, 449,
569, 570, 575, 576, 666, 668, 675,
676, 683-685, 700-702

objectName 677, 685, 693, 698, 699, 707,
708

objectPathName 693, 707, 708
objectTable 25,31-36,45,52-57,71,76,

77,78-81, 179, 188-193,353,359,
360,361-364,400,401,403,412,
452, 453-457, 403

oemCountryCode 633
oldObject 659, 666

774 Zinc Application Framework-Programmer's Reference Volume 1

oldRegion 38, 86, 110-112, 114, 115, 196,
246, 252, 259, 260, 266, 271, 272,
369, 376, 460

oldScreenID 38, 86, 115, 196, 246, 252,
260, 266, 272, 369, 376, 460

OpenDir (function) 705
operating system

character set 604
locale data 608

operatingSystem 85, 86, 88, 90
Operator != (function) 334, 522, 556, 737,

761
Operator + (function) 173, 181, 223, 387,

514, 545, 726, 756
Operator ++ (function) 335,517,551,733
Operator += (function) 553, 734
Operator += (function) 337, 519
Operator - (function) 174,515,546,727,

757
Operator -- (function) 336, 518, 552, 733
Operator -= (function) 338, 520, 554, 735
Operator * (function) 516
Operator < (function) 525,549,731,759
Operator <= (function) 526, 550, 732, 760
Operator = (function) 513,544,725,755
Operator == (function) 333, 521, 555,

736, 760
Operator> (function) 523, 547, 729, 758
Operator >= (function) 524, 548, 730, 758
operator overload

!= 522, 556, 737, 761
+ 181, 223, 387, 514, 545, 726, 756
++ 517,551,733
+= 519, 553, 734
- 234, 396, 515, 546, 727, 757
-- 518, 552, 733
-= 520, 554, 735
* 516
< 525, 549, 731, 759
<= 526, 550, 732, 760
= 513, 544, 725, 755
== 521, 555, 736, 760
> 523, 547, 548, 729, 730, 758
>= 524, 548, 730, 758

operator overloads
!= 334

Index

++ 335
-- 336
== 333

Operator - (function) 234, 396
options 135-137, 143,251,252, 312, 315,

375, 376, 459, 461, 462, 532, 537,
542

ordering
printf arguments 596

OS/2
graphics display 271

os2ClassNarne 444
OSI18nlnitialize (function) 608
Overlap (function) 330
overloaded operators

+= 337
-= 338

p

packedDate 529, 530, 535, 540
packedTime 715,716, 719, 722
palette

definition structure 277
palette mapping 435
paletteMapTable 110, 282, 400, 404, 459
palettes

logical mapping 279
ParseLangEnv (function) 615
pasteBuffer 401, 412
pasteLength 401, 412
path

data file 283
environment variable 283

pathLen 694, 703
pathName 287,289,291, 292, 581, 582,

661, 677, 685, 693, 696-699, 707, 708
paths

creating 697
finding 287, 288
splitting 707
valid recognition 709

patterns 247, 261, 377

775

pattemTable 39, 197, 198, 247, 253, 254,
261, 377, 378

pDay 740, 743
pDayOfWeek 740,743
persistent objects

New (function) 403
pFlags 569, 570, 659, 660, 675, 676
pixMapColorTable 245, 247
places 267, 273, 405, 411, 479, 491, 498,

499,500,507, 511-513, 566, 630, 646
pMode 308,312, 314, 315
pMonth 740, 743
point 29, 48, 103, 106, 144, 211, 214,

220, 229, 246, 295, 296, 309, 333,
393,416,425,462,498,499,501,
506, 507, 510, 512, 513, 640, 664,
754

pointer device
changing images 160

pointSize 307, 309
Poll (function) 68, 471, 479, 491
Poll (virtual function)

cursor implementation of 471
device implementation of 68
keyboard implementation of 479
mouse implementation of 491
timer implementation of 498

Polygon (function) 105
Polygon (virtual function) 105
polygonPoints 38, 86, 105, 196, 246, 251,

259, 265, 271, 308, 375, 460
posCurrencyPrecedes 639, 640
position indicator 295

cursor 465
positiveSign 640
posSignPrecedes 639, 640
posSpaceSeparation 639, 640
POSTSCRIPTFONT 307,309
postSpace 85, 87, 442
preSpace 85, 87, 442
Previous (function) 50, 69, 131, 294, 325,

345, 440
PRINTERFONT 307, 310
printerMode 307,309, 312, 314
printerPort 307, 309
printf-type functions

enhancements 596
printJob 307, 310
processError 401, 451
procInstance 401, 444
program termination 391
programPath 283, 284, 292
psFontTable 309
Put (function) 171, 172
pwcs 595, 607, 612, 649, 654, 657
pYear 740, 743

Q

qF1ags 156, 172
QFlags (function) 172
queueBlock 64, 156, 240-242, 244, 318,

319, 324

R
range 76, 365, 366, 406, 409, 451, 509,

510, 531, 536, 540, 541, 716, 717,
719, 722, 723, 739, 742, 750, 751

rawCode 145,147, 148, 175-177,218,
296, 332, 437, 474, 483, 484

rbignum (number type) 499, 501, 502,
505, 506, 509-511

ReadDir (function) 672
reading

from keyboard 168
from mouse 168

rect 327, 328
Rectangle (function) 107
Rectangle (virtual function) 107
RectangleXORDiff (function) 110
RectangleXORDiff (virtual function) 110
recurse 740
RedisplayType (function) 440
refNumberID 25, 26
RegionConvert (function) 441
RegionDefine (function) 112

776 Zinc Application Framework-Programmer's Reference Volume 1

RegionDefine (virtual function) 112
Regionlnitialize (function) 114
RegionMax (function) 442
RegionMove (function) 114
RegionMove (virtual function) 114
RegisterObject 444
RegisterObject (function) 444
rememberCWD 283, 284, 292
removing hotkey characters 609
removing windows 392
RenameObject (function) 666
repeatRate 399, 402
ReportError (function) 136
request 6, 8, 9, 25, 28-30, 45, 47, 48, 71,

74, 75, 105, 125, 128, 179, 185, 186,
353, 356-358, 383, 394, 395, 400,
429, 430-432, 592

reserved values
input devices 146
logical messages 147
system messages 146

retValue 595, 603
revision 693, 694
revisions 659, 668-670
RewindDir (function) 672
rgbColorMap 245, 247
rlcFlags 353, 354, 357
RmDir (function) 667
Root (function) 447
round (function)

bignum implementation of 511,512

s
SampleFunction (function) 2
Save (function) 668
SaveAs (function) 669
screen 83

coordinates 87
regions 341, 350

screen colors 281
screen identification 84
ScreenDump (function) 314

Index

scroll 3,5,8,9,11,13, 111, 145, 148,
150,217,365,366,402,405,407,
474, 475, 483, 484

scroll bar
position 365

scrolling
scroll bar 365

search path 284
searchID 45,46, 51, 400, 401, 403, 411,

448, 449
SearchID (function) 51, 448
searchPath 15-18,20,23,37,39,195,

197, 251, 253, 375, 377, 694, 695
searchPath (static variable) 695
Seek (function) 689
SeekDir (function) 673
SetBasis (function) 543
SetCTime (function) 678
SetCurrent (function) 232
SetDecorations (function) 566
SetFont (function) 43, 201, 256, 274, 380
SetLanguage (function) 144, 211, 630, 753
SetLocale (function) 512, 646, 754
SetMTime (function) 679
SetPattem (function) 43, 201, 256, 380
shell 89, 401, 411
shiftState 8, 147,217,218,474
showing 365, 366
signStr 499, 505
signString 499, 501, 509
size

multi-byte character 607, 654
Sort (function) 233

list implementation of 233
spacing

character 602
Split (function) 350
src 595, 597, 598
startAngle 37, 85,98,99, 195,245,251,

259,265,271, 308, 375, 460
static variables

eventMapTable 112, 178, 400, 404
Stats (function) 689, 705

storage implementation of 705
status

general window objects 409

777

storage
setting default 403

Storage (function) 690
storage files 659, 693
storage objects 675, 683
storageError (variable) 661, 665, 667, 669,

694, 695, 696, 700, 695
StorageName (function) 706
Store (function) 35, 56, 80, 193, 363, 456,

571, 587, 623, 680, 690
Store (virtual function) 35, 56, 80, 193,

363, 456
str 594, 595, 600, 613
strcmp

wild card characters 613
string

converting 602, 603, 607, 612, 655, 657
filename 598
ISO 602,603
manipulation 595
multi-byte 607, 612, 655, 657
wide-character 607, 612, 655, 657

stringID 395,400,411,427,431,439,
449, 527, 625, 666, 683, 684, 701,
702, 703, 713, 395, 431

StringID (function) 449
strip 415, 416
StripFullPath (function) 707
StripHotMark (function) 609
Strstrip (function) 609
Subtract (function) 172, 187, 234, 243,

396
list-block implementation of 243

SVGA mode 199
SwapData (function) 625
system messages

reserved values for 146

T

Tell (function) 691
TellDir (function) 674
tempname 693, 708
TempName (function) 708

text
determining height 117
determining width 119
mapped 605, 606, 611, 652, 653, 656
palette mapping 279
palettes 277
presentation of 116
unmapped 611, 656

Text (function) 116
Text (virtual function) 116
text display 369
text mode

border 372
characters 372

TextHeight (function) 117
TextHeight (virtual function) 117
textScreenID 400, 405
TextWidth (function) 119
TextWidth (virtual function) 119
thousandsSeparator 640
time

format 641
low-level 715

time_t 694
time12StringFormat 639, 641
timer device 493
times

alphanumeric 717, 718, 721
format flags 717
system 716

timeSeparator 641
TimeStamp (function) 610
timeStringFormat 639, 641
title 5, 8, 10, 21, 22, 24, 39, 130, 131,

135, 137, 139, 142, 143, 178, 197,
205, 206, 215, 224, 253, 260, 267,
272, 377, 388,401-403,407, 444-446,
461

titleField 205, 206
titleMessage 133, 135, 136, 139, 142
tmFlags 715,716,719,722
tmppath 694, 704
tmrFlags 493-495
topShell 85, 89
TopWidget (function) 450
toStandard 649, 650

778 Zinc Application Framework-Programmer's Reference Volume 1

Touch (function) 682
Touching (function) 332
Traverse (function) 587
traversing

data file 588
truncate (function)

bignum implementation of 5 I2
typeFace 246,251,252,307,309,375,

376

u
U.S. date formats 532, 543
UCAPPLICATION (class) 15
UCAPPLICATION (function) 18
UCATTACHMENT (class) 25
UCATTACHMENT (function) 26
UCBGCDISPLAY (class) 37
UCBGCDISPLAY (function) 40
UCCONSTRAINT (class) 45
UCCONSTRAINT (function) 46
UCDEVICE (class) 59
UCDEVICE (function) 61
UCDIMENSION_CONSTRAINT (class)

71
UI_DIMENSION_CONSTRAINT

(function) 72
UCDISPLAY (class) 83
UCDISPLAY (function) 90
UCELEMENT (class) 125
UCELEMENT (function) 126
UCERROR_STUB (class) 133
UCERROR_SYSTEM (class) 139
UCERROR_SYSTEM (function) 140
UCEVENT (function) 148
UCEVENT (structure) 145
UCEVENT_MANAGER (class) 155
UCEVENT_MANAGER (function) 157
UCEVENT_MAP (structure) 175
UCGEOMETRY_MANAGER (class) 179
UCGEOMETRY_MANAGER (function)

180
UCGRAPHICS_DISPLAY (class) 195
UI_GRAPHICS_DISPLAY (function) 198

Index

UCHELP_STUB (class) 203
UCHELP_SYSTEM (class) 205
UCHELP_SYSTEM (function) 207
UCITEM (structure) 213
UCKEY (structure) 217
UCLIST (class) 219
UCLIST (function) 221
UCLIST_BLOCK (class) 237
UCLIST_BLOCK (function) 239
UCMACINTOSH_DISPLAY (class) 245
UCMACINTOSH_DISPLAY (function)

248
UCMSC_DISPLAY (class) 251
UCMSC_DISPLAY (function) 254
UCMSWINDOWS_DISPLAY (class) 259
UCMSWINDOWS_DISPLAY (function)

261
UCNEXTSTEP_DISPLAY (class) 265
UCNEXTSTEP_DISPLAY (function) 267
UCOS2_DISPLAY (class) 271
UCOS2_DISPLAY (function) 273
UCPALETTE (structure) 277
UCPALETTE_MAP (structure) 279
UCPATH (class) 283
UCPATH (function) 284
UCPATH_ELEMENT (class) 291
UCPATH_ELEMENT (function) 291
UCPOSITION (structure) 295
UCPRINTER (class) 307
UCPRINTER (function) 310
UCQUEUE_BLOCK (class) 317
UCQUEUE_BLOCK (function) 317
UCQUEUE_ELEMENT (class) 323
UCQUEUE_ELEMENT (function) 323
UCREGION (structure) 327
UCREGION_ELEMENT (class) 341
UCREGION_ELEMENT (function) 342
UCREGION_LIST (class) 347
UCRELATIVE_CONSTRAINT (class)

353
UCRELATIVE_CONSTRAINT (function)

354
UCSCROLL_INFORMATION (structure)

365
UCTEXT_DISPLAY (class) 369
UCTEXT_DISPLAY (function) 370

779

UCWCC_DISPLAY (class) 375
UCWCC_DISPLAY (function) 378
UCWINDOW_MANAGER (class) 383
UCWINDOW_MANAGER (function) 385
UCWINDOW_OBJECT (class) 399
UCWINDOW_OBJECT (function) 413,

452
UCXT_DISPLAY (class) 459
UCXT_DISPLAY (function) 461
UID_CURSOR (class) 465
UID_CURSOR (function) 466
UID_KEYBOARD (class) 473
UID_KEYBOARD (function) 475
UID_MOUSE (class) 481
UID_MOUSE (function) 485
UID_TIMER (class) 493
UID_TIMER (function) 495
unicode 90, 195, 197,459,461, 593, 595,

598, 599, 600, 602-607, 611, 612,
630, 649, 651, 654, 655, 657

character set 607, 655
converting 607, 612, 655, 657
converting to 602, 603
mapping 604-606, 652, 653
unmapping 611, 656
wild card characters 613

UnMapChar (function) 610, 655
unmapped 595,605,606, 611, 612, 649,

653, 655-657
unmapped text 605, 606, 611, 652, 653,

656
unmapping

string 611, 656
UnMapText (function) 611, 656
useArgs 402, 444, 446
usec 739, 740, 753
useCount 565, 567, 581, 582, 590, 592,

629, 631, 645, 647, 693, 694
UseDecorations (function) 567
useDefault 557, 559-561, 617, 619, 620
usedMenuID 247
UseIl8N (function) 591
UseLanguage (function) 631
UseLocale (function) 647
user events 147
user function

item use of 214
parameters 410

userFlags 400, 410
userFunction 400,410-412,414,450,451
UserFunction (function) 450
userFunctionName 401, 404, 412
userObject 400, 410, 412
userObjectName 401, 412
userStatus 400, 410
userTable 25, 31-36, 45,52-57,71, 76-81,

179, 188-194, 353, 359-364, 400, 401,
404, 410, 412, 452, 453-457

utime 3,6, 13,494,529, 715, 739-761

v
val 595, 599, 675, 678, 679
Validate (function) 451
Validate (virtual function)

window object implementation of 451
validation 451
ValidName (function) 709
values

comparing dates 547-550, 555, 556
comparing integers 522
comparing numbers 521, 523-526
comparing times 729-732, 736, 737

Version (function) 710
virtual destructor 127
virtual member functions

window object use of 399
VirtualGet (function) 120
VirtualGet (virtual function) 120
VirtualPut (function) 122
VirtualPut (virtual function) 122

w
WCCFONT 375-377
WCCPATTERN 375-377
Wcstombs (function) 612, 657

780 Zinc Application Framework-Programmer's Reference Volume 1

wide-character string
converting 607, 612, 655, 657

widgetClass 402, 444, 446
width 37-39, 71, 73, 86-88, 93, 96, 98,

101, 102, 103, 107-109, 112, 118-120,
127, 195-197, 246, 251, 252, 259,
265, 266, 271, 308, 327, 333, 369,
375,376,402,413,414,460

Width (function) 333
wild card characters

strcmp 613
WildStrcmp (function) 613
winClassName 401,444,445
window characters

text mode 372
window management 383
window manager

adding windows 387
subtracting windows 392
UCAPPLICATION 15

window object 399
windowID 282,411,433
windowingSystem 85, 86, 88, 90, 91
windowObject 145, 148, 498
windows

cascading 392
centering 388
removing 396

windowScreenID 400, 405
WinMain (function)

UCAPPLICATION 15
wMsg 146, 148
woAdvancedFlags (variable) 127, 282,

400, 402, 407, 413, 414, 407
woFlags 95, 113, 127, 280, 400, 402, 405,

413, 414, 417, 442
woFlags (variable) 405
woStatus 280,400,409,417,433
woStatus (variable) 409
wParam 146, 148

x
X 6, 84, 89, 106, 218, 459-462

Index

xDisplay 85, 89
xevent 145, 14~ 148, 151, 483
xGc 85,89
xorGC 85,89
xorPalette 85, 88, 282
xRadius 37, 85, 98, 195, 245, 251, 259,

265, 271, 308, 375, 460
xScreen 85, 89
xScreenNumber 85, 89

y

year 522, 524, 526, 529-532, 535-544,
739,740-744,747,748,750-752

yRadius 37, 85,98, 195,245,251,259,
265, 271, 308, 375, 460

z
ZIL_BIGNUM (class) 499
ZIL_BIGNUM (function) 501
ZIL_BITMAP_ELEMENT (class) 527
ZIL_DATE (class) 529
ZIL_DATE (function) 530
ZIL_DECORATION (class) 557
ZIL_DECORATION (function) 558
ZIL_DECORATION_MANAGER (class)

563
ZIL_DECORATION_MANAGER

(function) 563
ZIL_DELTA_STORAGE_OBJECT (class)

569
ZIL_DELTA_STORAGE_OBJECT_READ

_ONLY (class) 575
ZIL_DIGITS 499, 500
ZIL_I18N (class) 581
ZIL_I18N (function) 582
ZIL_I18N_MANAGER (class) 589
ZIL_INTERNATIONAL (class) 593
ZIL_LANGUAGE (class) 617
ZIL_LANGUAGE (function) 618, 620

781

ZIL_LANGUAGE_ELEMENT (class) 625
ZIL_LANGUAGE_MANAGER (class)

627
ZIL_LANGUAGE_MANAGER (function)

627
ZIL_LOCALE (class) 633
ZIL_LOCALE (function) 634
ZIL_LOCALE_ELEMENT (class) 639
ZIL_LOCALE_MANAGER (class) 643
ZIL_LOCALE_MANAGER (function)

643
ZIL_MAP_CHARS (class) 649
ZIL_MAP_CHARS (function) 650
ZIL_NUMBER 499,501
ZIL_STATS_INFO 13, 683, 689, 690,

693, 694, 705, 706
ZIL_STORAGE (class) 659
ZIL_STORAGE (function) 660
ZIL_STORAGE_ (function) 684
ZIL_STORAGE_DIRECTORY (class) 671
ZIL_STORAGE_OBJECT (class) 675
ZIL_STORAGE_OBJECT (function) 676
ZIL_STORAGE_OBJECT_READ_ONLY

(class) 683
ZIL_STORAGE_READ_ONLY (class)

693
ZIL_STORAGE_READ_ONLY (function)

695
ZIL_TEXT_ELEMENT (structure) 713
ZIL_TIME (class) 715
ZIL_TIME (function) 716
ZIL_UTIME (class) 739
ZIL_UTIME (function) 741
Zinc events 146
Zinc graphics 195
ZINC_LANG 615
ZINC_PATH

environment variable 283
ZINCFONT 197
zoneOffset 740, 741

-UCAPPLICATION (function) 20
-UCATTACHMENT (function) 28
-UCBGCDISPLAY (function) 42
-UCCONSTRAINT (function) 47

-UCDEVICE (function) 63
-UCDIMENSION_CONSTRAINT

(function) 73
-UCDISPLAY (function) 91
-UCELEMENT (function) 127
-UCERROR_STUB (function) 133
-UCERROR_SYSTEM (function) 141
-UCEVENT_MANAGER (function) 158
-UCGEOMETRY_MANAGER (function)

181
-UCGRAPHICS_DISPLAY (function)

200
-UCHELP_STUB (function) 203
-UCHELP_SYSTEM (function) 208
-UCLIST (function) 222
-UCLIST_BLOCK (function) 240
-UCMACINTOSH_DISPLAY (function)

249
-UCMSC_DISPLAY (function) 255
-UCMSWINDOWS_DISPLAY (function)

262
-UCNEXTSTEP_DISPLAY (function)

268
-UCOS2_DISPLAY (function) 274
-UCPATH (function) 285
-UCPATH_ELEMENT (function) 293
-UCQUEUE_BLOCK (function) 318
-UCQUEUE_ELEMENT (function) 324
-UCREGION_ELEMENT (function) 343
-UCRELATIVE_CONSTRAINT (function)

356
-UCTEXT_DISPLAY (function) 372
-UCWCC_DISPLAY (function) 379
-UCWINDOW_MANAGER (function)

386
-UCWINDOW_OBJECT (function) 414
-UCXT_DISPLAY (function) 463
-UID_CURSOR (function) 467
-UID_KEYBOARD (function) 476
-UID_MOUSE (function) 486
-UID_TIMER (function) 496
-ZIL_BIGNUM (function) 503
-ZIL_I18N (function) 583
-ZIL_MAP_CHARS (function) 651
-ZIL_STORAGE (function) 661
-ZIL_STORAGE_ (function) 686

782 Zinc Application Framework-Programmer's Reference Volume 1

-ZIL_STORAGE_DIRECTORY (function)
671

-ZIL_STORAGE_OBJECT (function) 678
-ZIL_STORAGE_READ_ONLY (function)

696
-ZIL_UTIME (function) 743

Index 783

 GNU Free Documentation License
 Version 1.3, 3 November 2008

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
 <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input

to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy

a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has fewer than five),
 unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section Entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
 Preserve the Title of the section, and preserve in the section all
 the substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements"
 or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains

nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit

corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

